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Abstract: COVID-19, caused by SARS-CoV-2 infection, has been prevalent worldwide for 
almost a year. In early 2000, there was an outbreak of SARS-CoV, and in early 2010, 
a similar dissemination of infection by MERS-CoV occurred. However, no clear explanation 
for the spread of SARS-CoV-2 and a massive increase in the number of infections has yet 
been proposed. The best solution to overcome this pandemic is the development of suitable 
and effective vaccines and therapeutics. Fortunately, for SARS-CoV-2, the genome sequence 
and protein structure have been published in a short period, making research and develop
ment for prevention and treatment relatively easy. In addition, intranasal drug delivery has 
proven to be an effective method of administration for treating viral lung diseases. In recent 
years, nanotechnology-based drug delivery systems have been applied to intranasal drug 
delivery to overcome various limitations that occur during mucosal administration, and 
advances have been made to the stage where effective drug delivery is possible. This review 
describes the accumulated knowledge of the previous SARS-CoV and MERS-CoV infections 
and aims to help understand the newly emerged SARS-CoV-2 infection. Furthermore, it 
elucidates the achievements in developing COVID-19 vaccines and therapeutics to date 
through existing approaches. Finally, the applicable nanotechnology approach is described 
in detail, and vaccines and therapeutic drugs developed based on nanomedicine, which are 
currently undergoing clinical trials, have presented the potential to become innovative 
alternatives for overcoming COVID-19. 
Keywords: COVID-19, SARS-CoV-2, antiviral drug, vaccines, nanoparticles, 
nanotechnology

Introduction
At the end of 2019, viral infectious disease emerged in China, which spread 
worldwide in months. The World Health Organization (WHO) officially declared 
that the coronavirus outbreak is turning into a pandemic on March 11, 2020.1,2 The 
WHO named this novel coronavirus to SARS-CoV-2 and the disease as COVID- 
19.3,4 Coronaviruses (CoVs) are RNA viruses, 27–32 kb in size, and belong to the 
Coronaviridae family of viruses, which includes the genera Alphacoronavirus, 
Betacoronavirus, Gammacoronavirus, and Deltacoronavirus. It is known as “cor
ona” virus because all CoV particles consist of crown-like peplomer spikes. The 
CoV particles are pleomorphic and approximately 80 to 160 nm in diameter.5,6 

CoVs are known to infect humans and various types of animals. In particular, 
human coronaviruses (HCoVs), a notable group of CoVs, give rise to several 
respiratory diseases, including bronchiolitis, pneumonia, and common cold.7 

HCoVs are currently the most instantly evolving viruses because of their high 
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genomic nucleotide recombination rates.8 To date, seven 
known HCoVs (HCoV-229E, HCoV-NL63, HCoV-HKU1, 
HCoV-OC43, Middle East respiratory syndrome corona
virus (MERS-CoV), severe acute respiratory syndrome 
coronavirus (SARS-CoV), and SARS-CoV-2) have been 
classified. In addition, HCoVs are divided into two cate
gories, the Alphacoronaviruses (including HCoV-NL63 
and HCoV-229E) and Betacoronaviruses (including 
HCoV-HKU1, HCoV-OC43, MERS-CoV, SARS-CoV, 
and SARS-CoV-2).9 Virus species belonging to the 
Coronavirus are very diverse and reported to be the main 
pathogens causing upper respiratory infections, including 
cold, along with rhinoviruses. Studies showed that 
between 30% and 80% of viral colds are infections of 
rhinoviruses,10 and approximately 15% are infections of 
HCoV-229E, HCoV-NL63, HCoV-OC43, and HCoV- 
HKU1.11,12 In general, HCoVs have been reported to 
cause upper respiratory tract infections, including cold 
symptoms; however, the scope of HCoV infection is not 
limited to the upper respiratory tract alone. In severe 
infections, HCoVs tend to attack the lungs directly,13,14 

which is one of the unique characteristics of HCoVs that 
cause dyspepsia.15

HCoVs are one of the top 10 known viruses fatal to 
human beings, with mortality rates of up to 10% for 
SARS-CoV and 36% for MERS-CoV.16–18 Currently, 
approximately 79.2 million people have already been 
infected, and 1,754,493 people worldwide die within 354 
days of the appearance of SARS-CoV-2 (the WHO on 
December 27, 2020).

SARS-CoV-2 infection is characterized by serious pro
blems, such as in an incubation period of approximately 2 
weeks mild to moderate symptoms develop in infected 
patients, and a high infection rate. Therefore, vaccines 
are important, as the data show asymptomatic transmission 
of SARS-CoV-2.19–21 Moreover, development of vaccines 
and therapeutics is the most attractive option to fight 
SARS-CoV-2 infection and treat infected patients. 
Globally, scientists and doctors are working continuously 
to investigate and decipher the exact viral structure, mode 
of infection, mode of transmission, prevention, immuno
pathogenic mechanisms, and the most effective treatment 
strategies.22

Furthermore, nanotechnology tools can provide 
a broader overview of the new vaccine design strategies. 
For instance, a nano-based formulation for SARS-CoV-2 
therapeutics is being developed as a delivery vehicle, 
along with a novel nano-vaccine metastasis platform and 

useful nano drugs for treating SARS-CoV-2 infections. 
Therefore, until now, scientists are working hard to rapidly 
identify and develop appropriate nano-vaccines and treat
ment options, including new nano-based technologies.

SARS-CoV
Earlier, SARS-CoV has caused a major pandemic in the 
new millennium.23–25 SARS-CoV has been classified as 
a new virus in the group II CoVs (Beta-CoVs) of the 
Coronaviridae family, which originated from the zoonotic 
pool of viruses. Owing to its epidemiological association 
with wild game animals and occurrence of human cases 
early in the 2003 pandemic,26 the SARS-CoV strain has 
been thought to mutate from the bat-related virus through 
an intermediate civet host (Figure 1A).27,28 The spike (S) 
protein in SARS-CoV assembles peplomers, which are 
located outside the lipid envelope (Figure 1B). Moreover, 
the S proteins of SARS-CoV, MERS-CoV, and SARS-CoV 
-2 have surprisingly high amino acid sequence homogene
ity with each other (Figure 1C). The S protein directly 
interacts with the host’s cellular receptor, angiotensin- 
converting enzyme 2 (ACE2).29 With the binding of the 
S protein to ACE2, the transmembrane protease serine 2 
(TMPRSS2) and furin in the host cell membrane simulta
neously cleave the S protein to activate SARS-CoV 
(Figure 1D).30,31 The variability of the interaction between 
the S protein and ACE2 is particularly crucial for cross- 
species transmission. SARS-CoV is spread by direct con
tact with the mucous membrane, respiratory droplet nuclei, 
or fomites.32 Viral pneumonia with rapid respiratory dete
rioration is the most representative clinical manifestation 
of SARS-CoV infection. The major symptoms include 
chills, fever, muscle pain, discomfort, and nonproductive 
cough, and rhinitis and sore throat appear less frequently. 
Rapidly and newly occurring viral infections, such as 
SARS-CoV infections, are difficult to treat using vaccinol
ogy, even though no reagents are required for vaccine 
development. Moreover, diseases that have not been 
observed earlier in human beings develop and spread 
quickly. Novel zoonotic viruses are particularly capricious, 
as vaccines and remedies focused against formerly derived 
strains do not work against the strains related to current 
infectious diseases. Recently, technological advances, such 
as memory B cell immortalization and phage display, have 
achieved rapid development of human monoclonal anti
bodies (hu-mAbs) for SARS-CoV in just a single 
epidemic year.33 However, despite the ongoing efforts 
made by scientists and doctors, there exists no effective 
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treatment for SARS. Antibiotics are not effective against 
viruses, and antiviral drugs do not show much benefit. 
RNA interference (RNAi) has been proposed as a new 
therapeutic strategy for SARS-CoV because it can degrade 
specific mRNAs. In addition, the inhibition of SARS-CoV 
by RNAi in cultured cells and animal tissues has been 
reported.34–43

In an experiment using Vero cells, plasmid-based 
siRNAs designed specifically for the viral RNA polymer
ase have been shown to inhibit the SARS-CoV cytopathic 
effect.41 In addition, a study demonstrated the suppression 
of the expression of S and nucleocapsid (N) proteins when 
RNAi is applied to SARS CoV-infected cells.36 In primate 
cells, siRNA duplexes targeting SARS-CoV genomic 
RNA have been found to block viral replication and 
infection.34,40

Since developing effective vaccines and achieving 
social immunity takes too long, the therapeutic strategy 
using broadly neutralized hu-mAbs targeting SARS-CoV 
is also a useful direction to follow at present.44 The 80R, 
a hu-mAb targeting SARS-CoV, has been reported to 
neutralize the civet (SZ3) S protein effectively in vivo.45 

In the case of the hu-mAb m396, it has been reported to 
neutralize SARS-CoV equipped with GD03 S protein 
(icGD03-S) completely.46 Furthermore, animal experimen
tal data have already been accumulated, which show that 
hu-mAbs can protect against SARS-CoV infection.44 

Additionally, there have been some notable advances in 
development of small molecules targeting SARS-CoV and 
the design of polypeptides. However, no effective results 
have been published strengthening the applicability of new 
concepts, such as nanotechnology-based development of 
SARS-CoV vaccines.

The SARS-CoV epidemic is characterized by vulner
abilities in the elderly population, with a mortality rate of 
25–55% among people aging 65 years and higher.47–50 

Existing research suggests that the influenza virus vaccine 
for a young adult population is very inefficient in the 
elderly population at 17–53% compared with the record 
high level of 70–90%, which seems to be the result of an 
aging-related immune system dysfunction.51 Currently, in 
order to overcome some deficiencies pertaining to the 
aging immune system, co-administration of adjuvants 
(MF59, CpG DNA) or cytokines (IL-2) that completely 

Figure 1 SARS-CoV, MERS-CoV, SARS-CoV-2 overview. (A) The origin of SARS-CoV, MERS-CoV and SARS-CoV-2 is widely known as bats as native hosts. While SARS- 
CoV and MERS-CoV have been shown to be intermediary hosts in civets and camels, SARS-CoV-2 can infect humans through an as-yet unknown intermediate host. After 
animal infection, SARS-CoV-2 has spread rapidly worldwide to date, mainly through continuous human-to-human transmission. (B) Schematic structure of SARS-CoV-2, 
MERS-CoV and SARS-CoV including Hemagglutinin Esterase, Membrane protein, RNA & Nucleocapsid protein, Envelope, and Spike protein. (C) Comparison of the 
S proteins of SARS-CoV, MERS-CoV and SARS-CoV-2. NTD, RBD, FP, HR and Cleavage site by TMPRSS2 and furin. (D) The MERS-CoV, SARS-CoV, and SARS-CoV-2 
S proteins bind to ACE2 and DPP4, which act as receptors present in host cells. In order for the S2 domain in the virus to be fused to the host cell membrane to cause 
endocytosis, the process of cutting at two sites (S1/S2 and S2’) through the proteases Furin and TMPRSS2 is essential. SARS-CoV-2 has a much higher affinity than binding 
affinity to SARS-CoV S protein and ACE2, resulting in a high infection rate.
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activate Antigen-presenting cells (APC)/Th cells during 
vaccination has been attempted, and consequently, the 
probability of achieving a successful preventive effect 
has increased.52–54 Therefore, if a basic strategy aimed at 
developing vaccines for the elderly is continually devel
oped, it will make a significant contribution to the research 
on effective SARS-CoV vaccines.

MERS-CoV
Middle East respiratory syndrome (MERS) is a novel 
virus-associated infectious disease identified in elderly 
male patients with breathing difficulties in Saudi Arabia 
in mid-2012.55 Most of the early MERS infections 
occurred in West Asia,55 and later MERS spread to 
Southeast Asia, North America, Europe, and North 
Africa.56–62

MERS-CoV has also been classified as a new virus of 
the group II CoVs (Beta-CoVs) in the Coronaviridae 
family.63 In order to enter host cells, MERS-CoV, similar 
to SARS-CoV, requires a receptor for the S protein. In the 
case of MERS-CoV, candidate proteins that act as recep
tors have been identified as tetopeptidases, such as dipep
tidyl peptidase 4 (DPP4).64 When the S protein interacts 
with DPP4, the next step is the activation of the infection 
by TMPRSS2 and furin expressed on the host cell mem
brane (Figure 1D).65,66 MERS-CoV has shown little varia
tion, except for a single mutation during the infection 
process between human populations. It has also been 
reported that this single mutation is independent of the 
process of binding to DPP4. Another characteristic of 
MERS-CoV is its ability to bind DPP4 of multiple species. 
Therefore, it is possible to infect other animals with 
MERS-CoV, except camels and humans (Figure 1A).64,65

About 60% of all MERS cases are estimated to occur 
via human-human transmission of MERS-CoV,67 and for 
the remaining cases, the cause of MERS-CoV infection 
has not been identified. Furthermore, the risk of virus 
transmission has been reported to be significantly reduced 
for the second case.67 Research has shown that MERS is 
fatal to the elderly and patients with underlying diseases, 
such as kidney or lung disease, chronic heart disease, high 
blood pressure, and diabetes.68–73 One of the most persua
sive animals is the one-humped camel (Camelus drome
darius) that propagates MERS-CoV to humans, as 
antibodies that neutralize MERS-CoV have been detected 
in camel herds in the Middle East and Africa.74–83 

Humans with MERS usually begin to develop symptoms 
after an incubation period of 2 weeks, which include 

respiratory infections, fever, shortness of breath, and dry 
or productive cough.68 To date, MERS-specific therapeu
tic drugs have not been developed. In vitro studies have 
shown that some potential drugs are effective for treating 
MERS; however unfortunately, most of these drugs have 
not been proven effective using animal models closely 
related to humans. Therefore, clinical treatment of 
MERS comprises symptomatic treatment and supportive 
care.

Unlike other host animals, replication of MERS-CoV is 
impossible in mice. This is because, mouse DPP4 
(mDPP4) has two amino acid sequences different from 
that of human DPP4 (hDPP4), which prevents the binding 
of the S protein in MERS-CoV.84 Therefore, the mouse 
model has been developed as a strategy for replacing 
mDPP4 with hDPP4 or a mutant of mDPP4 so that it 
can bind to the viral S protein.85 Initially developed 
mouse models have frequently failed to reproduce the 
disease observed in humans with MERS-CoV infection. 
However, recently, several transgenic mouse models have 
been reported to reproduce the human disease caused by 
MERS-CoV infection relatively well. Therefore, it is 
thought that the development of such a mouse model can 
contribute greatly to testing the efficacy of the candidate 
MERS-CoV vaccine.

Since DPP4 is a specific receptor for MERS-CoV, it 
represents a good strategic target for designing therapeutic 
agents. The therapeutic agents targeting DPP4, such as 
DPP4 and DPP4 antagonists and specific antibodies, 
mainly inhibit the interaction or binding between DPP4 
and MERS-CoV receptor-binding domain (RBD), thereby 
suppress the MERS-CoV infection. In developing thera
peutics against MERS, it is essential to consider the func
tion and structure of the S protein. Therefore, specific 
regions of the S1 and S2 subunits, RBD, and N-terminal 
domain related to S proteins are the main targets. Almost 
all MERS-CoV-neutralizing antibodies have been designed 
to target RBD. In particular, RBD-specific monoclonal 
antibodies have stronger neutralizing activity than that of 
antibodies made with other targets.

SARS-CoV-2
In Wuhan, being the most largely populated in central 
China, patients began to develop severe pneumonia due 
to an unknown cause at the end of 2019.86 Rapid research 
resulted in identifying the cause of the disease to be a type 
of coronavirus. To date, the number of infected people 
continues to increase rapidly.
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SARS-CoV-2 belongs to the genus Betacoronavirus, 
and its sequence is 79% identical to the genomic sequence 
of SARS-CoV.87 Similar to other human betacorona
viruses, it is estimated that more than 90% of the genes 
in the SARS-CoV-2 genome match with those from bats, 
and there are several candidates for intermediate hosts 
existing before transmission to humans, but these are still 
unknown.88,89 Until now, there has been a strong hypoth
esis that the transmission occurred to humans by accident, 
such as that for SARS-CoV. Public health measures that 
can be used to control the transmission of SARS-CoV-2 
across individuals are as much as passive approaches, such 
as isolation, social distancing, and refraining from small 
indoor gatherings. Moreover, there is a high likelihood of 
another major crisis occurring in the near future, as there is 
no vaccine or specific treatment available for SARS-CoV 
-2 even after an alleviation of the situation.

Like SARS-CoV, SARS-CoV-2 binds to the receptor 
ACE2 using the RBD of the S protein.90,91 Subsequently, 
the processes of fusion of cell membranes and entry of the 
virus into the host cell occur, similar to the mechanisms 
underlying other virus infections. The process by which 
TMPRSS2 and furin activate the S protein plays a critical 
role in SARS-CoV-2 infection and its spread throughout 
the patient’s body. Therefore, the host and host cell affinity 
depend on the amino acid sequence and distribution of 
ACE2, TMPRSS2, and furin (Figure 1D).92,93 In addition, 
in smokers or people with heart diseases, ACE2 levels are 
higher than that in healthy people, thereby increasing the 
susceptibility to SARS-CoV-2 infection and fastening the 
disease progression.94,95

SARS-CoV-2 infection is not limited to any particular 
class, and people of all age groups are vulnerable. The 
virus is mainly transmitted through droplets from sympto
matic patients; however, there are many cases of infection 
from asymptomatic people, wherein the virus is trans
mitted even before the symptoms appear.96 SARS-CoV-2, 
present in the droplets from symptomatic patients, can 
usually survive on the contact surface for several days 
but is easily degraded by commonly available disinfec
tants, such as hydrogen peroxide and sodium 
hypochlorite.97 This droplet can cause infection via its 
inhalation through the respiratory tract during conversation 
with a SARS-CoV-2-infected individual or by touching the 
mucous membrane area with the hand that touched 
a surface contaminated by the droplet. In general, infection 
is caused by droplets containing SARS-CoV-2 at less than 
2 m, and the risk of airborne transmission has not been 

reported. SARS-CoV-2 can survive for up to 3 h in dro
plets, and it has been known to have a survival period of 
about 4 h on copper compared with other metals and 
materials.98

Initially, after SARS-CoV-2 infection, symptoms such 
as dry cough, fever, and fatigue appear.99 Although not 
common, symptoms such as body aches, headaches, con
junctivitis, diarrhea, and sore throat may also appear.100 

Currently, respiratory symptoms caused by SARS-CoV-2 
vary widely, ranging from mild to severe hypoxia due to 
acute respiratory distress syndrome (ARDS).99 

Epidemiological studies have shown that the incidence 
rate is significantly lower in children, and the mortality 
rate is very high in the elderly population.101–103 As the 
mortality rate in more severely ill patients increases, the 
disease can also be fatal to the elderly population. When 
infected with SARS-CoV-2, macrophages and monocytes 
move to the site of infection, and T and B cells together 
induce an immune response and begin to remove virus 
particles.99 In most healthy individuals, this immune 
response is used as a defense mechanism against viral 
infection; however, in patients with immunomodulatory 
disorders, a cytokine storm occurs, leading to severe 
organ failure, damaging multiple organs. This can also 
lead to death.104

When SARS-CoV-2 was first discovered, the most 
commonly searched genome was clade L, corresponding 
to NC_045512.2. In early 2020, the first mutant virus 
clades S and O appeared to have been identified. Clades 
V and G have appeared around the same time in mid- 
January. Subclades GH and GR have been reported one 
month after appearance of clade G. In general, clades 
S and GH have been observed in America, including the 
United States, and G and GR clades are widespread in 
Europe. While the appearance of clade G (including GH 
and GR) continues to increase gradually, that of clades 
L and V is gradually declining. The most common clades 
of the SARS-CoV-2 genome currently spread worldwide 
are the G clades and their derivative GH and GR clades 
(Figure 2). In particular, the GR clade (Nucleocapsid 
RG203KR mutations and the combination of the spike 
D614G) with high infectivity is currently the most com
mon form of SARS-CoV-2 across the globe.105 According 
to a recently published study, the high mortality associated 
with the G clade (including GH and GR) is due to carrying 
the D614G mutation in the S protein, which causes SARS- 
CoV-2 to enter the cells at a rate more than double and be 
more resistant to anti-serum neutralization.106,107
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Therapeutic Strategies
Antiviral Drugs
Currently, COVID-19 has increasing number of disease 
determinants worldwide without availability of approved 
treatment options, and thus, researchers are urgently devel
oping effective vaccines and treatments. In addition, 
attempts of using existing medicines that have been 
approved for other uses may benefit COVID-19 patients 
to a limited extent. In vitro studies have shown that several 
drugs approved for other applications have some effect on 
SARS-CoV-2, but the results were different in small-scale 
non-randomization trials. These include remdesivir, which 
was developed as an experimental drug against Ebola virus 
(EBOV) during the Ebola epidemic in West Africa, chlor
oquine (CQ) and hydroxychloroquine (HCQ) for malaria, 
and lopinavir/ritonavir (LPV/r), which is used as an 
acquired immunodeficiency syndrome (AIDS) treatment.

First, remdesivir, a nucleotide analog prodrug that inhi
bits the function of the viral RNA polymerases, has been 
reported to reduce SARS-CoV-2 infection remarkably in 
Vero cells (Figure 3).108,109 Another study has found that 
expanded access to remdesivir in severely ill COVID-19 
patients improves clinically in 36 of 53 patients.110 

However, trials in severely ill COVID-19 patients in 
China have shown statistically insignificant clinical 
results.111

Second, HCQ and CQ are representative drugs for the 
treatment and prevention of malaria. HCQ and CQ have 
been shown to be effective against SARS-CoV-2 infection 
in an in vitro study (Figure 3).112 However, in 
a prospective randomized trial on COVID-19 patients in 
China, there was no effect of HCQ on the patients com
pared with those receiving conventional treatment. Rather, 
it has been found that a patient in the HCQ treatment 
group developed a serious illness.113 In clinical adjuvant 
therapy trials on SARS-CoV-2-infected patients, two high- 
and low-dose patients among patients administered 50 
different CQ doses have shown a 50% lower mortality 
rate than that of low-dose patients.114

Finally, LPV/r is an antiretroviral drug, which is 
a protease inhibitor used for treating human immunodefi
ciency virus (HIV). In vitro studies have reported that 
LPV/r displays the effect of inhibiting SARS-CoV-2 repli
cation (Figure 3).109 In addition, another clinical study has 
reported the administration of LPV/r and ribavirin in 
patients to reduce the risk of death and ARDS caused by 

Figure 2 Global distribution of SARS-CoV-2 Clades (26 June 2020). The distribution of clades by continent (North America, South America, Europe, Africa, Asia, and 
Oceania) was plotted as a percentage and the major clades of each continent were indicated. Amino acid mutations are indicated for each clade, and the resulting changes in 
the function of SARS-CoV-2 are summarized using a table.
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SARS-CoV.115 However, the clinical effect of LPV/r 
against SAR-CoV-2 is yet to be confirmed.

The S Protein and ACE2 Interaction 
Inhibitors
The S protein is associated with the binding to host cell 
receptors and membrane fusion. Therefore, inhibitors that 
interfere with this process are used to prevent virus trans
mission from infected patients. In particular, interfering 
with the interaction of ACE2 with certain motifs in the S2 
subunit of the S protein of SARS-CoV-2, which is involved 
in the virus fusion with the host cell, may be effective. 
According to recent in vitro research, the EK1 peptide, 
a pan-CoV fusion inhibitor, inhibits receptor-mediated 
infection and fusion between SARS-CoV-2 particles and 
host cell membrane, thereby prevents the formation of 
6-helix bundles through interaction with heptad repeat 1, 
which is located in the S2 subunit of the S protein of SARS- 
CoV-2 (Figure 3).116

Neutralizing Antibodies
Unlike vaccines, monoclonal antibodies provide immediate 
protection; therefore, administering purified monoclonal 
antibodies with neutralizing capacity could be another 
SARS-CoV-2 treatment strategy. Currently, the develop
ment of effective neutralizing antibodies mainly focuses 
on the S protein immobilized on SARS-CoV-2. Two potent 
neutralizing camelid single-domain antibodies against 
SARS-CoV and MERS-CoV isolated from llama can cross- 
react with SARS-CoV-2, disrupting the receptor binding 
interface.117 Recently, it was confirmed that the 47D11 hu- 
mAb that binds to the S protein RBD can neutralize SARS- 
CoV-2 infection (Figure 3).118 The S309 antibody, also 
known as the SARS-CoV monoclonal antibody, also 
potently inactivates SARS-CoV-2 by acting on the 
S protein.119 Therefore, the use of various monoclonal anti
body cocktails, which can target the listed non-RBD and 
RBD simultaneously, can be a good alternative for effective 
and safe COVID-19 prevention and treatment.

Figure 3 The SARS-CoV-2 life cycle and potential targets by antiviral agents as therapeutic strategies. (A) SARS-CoV-2 entry in target cell through endocytosis or 
interaction of S protein and ACE2. (B) Releasing SARS-CoV-2 genomic RNA. (C), (D) Viral polyproteins are translated and cleaved to form a replication transcription 
complex (RTC). (E) Genomic and subgenomic RNA replication. (F) Subgenomic RNAs produced through the transcription are translated into viral structural proteins 
inserted in endoplasmic reticulum (ER). (G) The viral nucleocapsid, assembled viral genomic RNA and structural proteins, bud into the lumen of the ER-Golgi intermediate 
cavity (ERGIC). (H) Exocytosis of SARS-CoV-2. 1. Antiviral drugs; chloroquine (CQ), hydroxychloroquine (HCQ), lopinavir/ritonavir (LPV/r), and remdesivir. 2. S protein and 
ACE2 interaction inhibitors; EK1 peptide. 3. Neutralizing antibodies; 47D11. 4. Immunotherapy (Anti-interleukin (IL)-6 Drugs); tocilizumab and sarilumab. 5. Convalescent 
plasma therapy; Convalescent plasma (CP).
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Immunotherapy
Excessive cytokine serum levels (cytokine storm) leading 
to multiple organ damage in severely ill COVID-19 
patients are closely related to ARDS following exacerba
tion of COVID-19. Therefore, prevention and treatment of 
cytokine storms can be a good alternative that can interfere 
with COVID-19 progression. Clinical studies have shown 
that the main cause of inflammation is an increase in the 
levels of IL-6.103 The complex produced by binding of IL- 
6 with soluble IL-6 receptor (sIL-6R) or membrane IL-6 
receptor (mIL6R) activates the inflammatory response 
through interaction with gp130. Tocilizumab (monoclonal 
antibody against IL-6) can block the signal transduction 
that triggers the inflammatory responses by selectively 
acting on sIL-6R and mIL-6R (Figure 3).120 A recent 
study reported that HCQ and CQ can block the develop
ment of proinflammatory cytokines, such as IL-6, which 
are involved in the generation of cytokine storms.121 

However, the cost and safety aspects can hinder the use 
of tocilizumab in COVID-19 treatment. Based on 
a recently published study, sarilumab, another IL-6 recep
tor antagonist, may aid in rapid recovery in severely ill 
COVID-19 patients characterized by systemic hyperin
flammation (Figure 3).122

Convalescent Plasma Therapy
Convalescent plasma (CP) therapy is another effective 
method; however, the CP should be used within at least 
2 weeks post recovery to ensure high neutralizing antibody 
titers.123 According to a recent study, SARS-CoV-2 
obtained from patients with severe respiratory disease 
can be neutralized by serum from several other patients 
(Figure 3).124 In another study, it was thought that the 
clinical status of five severely ill COVID-19 patients, 
who were administered CP containing neutralizing anti
bodies, would improve.125 Even today, many clinical trials 
are testing CP for COVID-19 treatment globally.

Preventive Vaccination Strategies
To develop effective SARS-CoV-2 vaccines, a multifaceted 
strategic approach to vaccine development is being 
attempted worldwide. Since the genomic and structural 
information of SARS-CoV-2 has become available much 
faster than that of other HCoVs, there is a possibility of 
rapid vaccine development.91,126–129 Moreover, data gener
ated from vaccine development for SARS-CoV and MERS- 

CoV, which have been studied so far, are also helpful for 
developing a vaccine candidate for SARS-CoV-2.130,131

Inactivated or Live-Attenuated Vaccines
Inactivated or live-attenuated vaccines have advantages, 
such as stimulation of pattern recognition receptors and 
high immunogenicity. The viruses are alive and replicable 
but non-toxic. However, due to the risk of live viruses, 
long-term surveillance is required for assessing the safety 
of the vaccine. Several inactivated virus vaccines are cur
rently being developed against SARS-CoV-2, and the first 
clinical trials by Sinovac Biotech, Beijing, China, have 
recently begun (Figure 4). More recently, recombinant 
SARS-CoV-2 has been synthesized from viral DNA frag
ments using synthetic genomics.132,133 Based on these 
findings, it is possible to approach a slightly more rapid 
generation of live-attenuated vaccines against SARS-CoV 
-2. Additionally, Codagenix, Farmingdale, NY, USA is 
exploring vaccine candidates against SARS-CoV-2 using 
a “codon-optimized off” strategy for virus attenuation 
(Figure 4).134

Recombinant Vaccines
Recombinant vaccines allow live viruses to retain some 
additional genes derived from pathogens through genetic 
manipulation, thereby translating the target protein and 
triggering the desired immune response.135 The advan
tages of recombinant vaccines are sufficient target protein 
expression, prolonged stability, and induction of strong 
immune responses.136

Vaccinia virus vector-based vaccines are currently 
being evaluated for use in many clinical trials based on 
the studies that have shown that they can induce very 
strong immune responses to foreign antigens.137,138 

Another advantage of the vaccinia virus vector-based vac
cine could be the availability of a large-scale manufactur
ing method, as in the case where Bavarian Nordic A/S 
produced and provided large amounts of its own smallpox 
vaccine IMVAMUNE® to the US government.139

The broad spectrum viral affinity and infectivity in 
dividing and non-dividing cells has made it possible to 
use a wide range of adenovirus (Ad) vectors to our advan
tage. Among the human Ad sera identified to date, human 
Ad serotype 5 (Ad5), which can be easily produced at high 
titers, is the most widely studied gene transfer 
vector.140,141 However, pre-existing immunity against Ad 
induced in many people who have already been exposed to 
the Ad serotype is a disadvantage of Ad vectors.
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Adeno-associated virus (AAV) is a non-pathogenic, 
low immunogenic, vector-enclosed, single-stranded DNA 
virus. AAV has both the characteristics and advantages of 
Ads. AAV vectors require a very efficient large-scale pro
duction method, such as the baculovirus system, which has 
been developed because of their low titer production 
efficiency.142,143 AAV is better than Ad when continuous 
transgene expression is required for treatment.144,145 The 
capsid modification vector is an alternative to overcome 
the low immunogenicity of AAV vectors. Mixed capsids 
generated from different serotypes provide effective gene 
transfer and tropism to host cells.146 Since AAV vectors 
often require integration with the host genome for viral 
gene expression, genotoxicity risk assessment must be 
considered when using AAV vectors.147

ChAdOx1 nCoV-19 (AZD1222), an Ad-based recom
binant vaccine developed at the University of Oxford, 
Oxford, UK, was found to be resistant in the Phase I/II 
COV001 trial, and a strong immune response to SARS- 
CoV-2 was generated in all participants (Figure 4).148 

Almost all participants receiving AZD1222 showed a four- 
fold increase in the antibody neutralizing activity against 
the SARS-CoV-2 S protein.148 In addition, no serious side 
effects were reported with the use of AZD1222.148

Application of Nanotechnology in 
COVID-19 Therapeutics
Scientists in the field of nanomedicine have steadily con
ducted research on linking the gene delivery ability of 
various nanosystems and viral vectors to high infectivity. 
Nanomedical researchers have studied the molecular 
mechanisms of vectors to develop delivery systems that 
can be used in a variety of fields.149,150 Nanoparticles 
(NPs) and viruses act at the same scale, which makes the 
nanotechnology approach very powerful in vaccine devel
opment and immunoengineering.151 NPs are tools that can 
reproduce the structural and functional properties of 
viruses, and nanomedicine can be the best alternative to 
innovative vaccine development technologies.151–153 From 
the perspective of vaccine technology development, the 
present time, wherein SARS-CoV-2 is a major threat 
worldwide, is most important, and nanotechnology and 
nanomedicine are presented as new therapeutic technolo
gies and approaches that can have a clinical impact.154–157

Theranostic Nanoparticles
Recently, the application of NPs has emerged as ground
breaking in the medical field and allows accurate diagnosis 

Figure 4 Classical vaccine, modern vaccine and nanotechnology applied vaccine against SARS-CoV-2. Types of classic vaccines and representative candidate vaccines in 
clinical trials, Nanoparticles applicable to contemporary vaccines using DNA, RNA, and subunits, representative candidate vaccines in clinical trials, and mechanism of action 
of nanotechnology-based vaccines in APC.
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and specific treatment of several diseases at once. The 
small size, low toxicity, electrical charge, and chemical 
plasticity make it possible to overcome several barriers 
encountered in various routes of administration of 
a generic drug. Treatment with NPs can target the SARS- 
CoV-2 entry and life cycle. The S protein is the most 
important factor in preventing the entry of SARS-CoV-2 
via the first process of membrane fusion. Thus, therapeutic 
NPs can be designed to pre-block SARS-CoV-2 entry by 
inhibiting the S protein from binding to host cells. Since 
the introduction of nanotechnology in the treatment of 
general viral infections, nanomedicines that can effectively 
treat viruses, including Influenza A and B viruses (IAV and 
IBV),158–160 EBOV,161 HIV1 and HIV2,162–165 Herpes 
simplex virus type 1 and 2 (HSV1 and HSV2),166–169 

hepatitis B virus (HBV),170–176 hepatitis C virus 
(HCV),177 and human norovirus (HuNoV),178 have been 
developed and commercialized in various ways (Table 1). 
In particular, a few months ago, the first SARS-CoV-2 
therapeutic drug, dexamethasone has been developed 
using nanotechnology. It has been reported of treating 
infections caused by SARS-CoV-2 using an anti-edema 
and anti-fibrotic mechanism, and effective delivery and 
treatment can be expected using various nano- 
formulating dexamethasones.179

Intranasal Delivery Therapy
Currently, many studies are being conducted on develop
ing a method for delivering nanoparticles into the nasal 
cavity as a safe and more effective countermeasure against 
viral infection and treatment.180 Since SARS-CoV-2 initi
ates infection on the mucosal surface of the eye or nasal 
cavity, mucosal therapy is the most important strategy for 
treating such infectious diseases. Delivery through the 
nasal cavity is not only simple and inexpensive but also 
non-invasive, and the NP is rapidly absorbed due to the 
cavity’s abundant capillary plexus and large surface 
area.181 The properties of the NPs, such as the surface 
charge, size, and shape, are important factors to be con
sidered while optimizing the method of delivery to the 
nasal cavity and play a critical role in effective and safe 
treatment.182 Studies have been conducted using small 
animals to evaluate the system that is delivered to the 
lungs by administering NPs to the nasal cavity. 
Therefore, findings of these animal studies cannot be 
easily generalized to humans. To date, three types of NPs 
(organic, inorganic, and virus-like NPs) have been 
designed with delivery capabilities that are suitable for 

therapeutic purposes, which can also be administered 
intranasally for effective delivery.

Treatment Using Organic NPs 
Lipid nanoparticles (LNs) are biocompatible due to their 
lipid properties; hence, they can be selectively applied in 
fields such as biomedical science. Among the various LNs, 
liposomes in the form of spherical capsules, which are 
hydrophilic on the inside and consist of a phospholipid 
bilayer on the outside, are most suitable for intranasal 
delivery.183 The advantages184–188 and 
disadvantages189–192 obtained by using liposomes have 
been summarized (Table 2). Using lipid-coated mesopor
ous silica nanoparticles, a form of LNs, an antiviral mole
cule ML336, which is unstable and highly hydrophilic 
against Venezuelan equine encephalitis virus (VEEV), 
has been delivered into VEEV-infected mice. The suitabil
ity, cycle time, and viral titer have been shown to 
improve.193 Drug candidates in the form of nucleic acids, 
such as siRNA, have a significant limitation of being 
unstable during systemic circulation.194–196 However, 
transporting siRNA using LNs can target specific organs 
and has the great advantage of preventing degradation 
during systemic circulation.197

Polymer nanoparticles (PNs) are an effective choice of 
delivery systems because their properties and functions 
can be adjusted according to their specific application. 
Conjugation of a therapeutic compound to chitosan-made 
PNs can improve penetration of the mucosal tissue and the 
persistence of PNs in the mucosal environment.198,199 

Antibody-drug conjugates using auristatin are used for 
relatively safe treatment of blood cancer by eliminating 
the risk of high toxicity but have a critical disadvantage of 
the drug payload being too low. To overcome this limita
tion, nanoparticle-drug conjugates of monomethyl aurista
tin E, developed using PN technology, enable the 
availability of a large amount of auristatin payload, and 
have high safety.200 In addition, in the case of accurin PNs 
encapsulating the Aurora B kinase inhibitor AZD2811, the 
toxicity has been observed to reduce significantly and the 
efficacy has been found to increase compared with that 
before introducing PNs, which has been shown to cause 
decisive side effects in a Phase 2 clinical trial.201

Dendrimer nanoparticles (DNs) have strong interac
tions with viruses. The resulting system improves antiviral 
activity and has a powerful effect in preventing infection 
in the host. In addition, effective cases have been reported, 
wherein DNs are used as a treatment for viral infectious 
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diseases, such as influenza virus and HIV.202 The 
advantages203–212 and disadvantages209,210,213–215 obtained 
by applying PNs and DNs are summarized (Table 2).

Treatment Using Inorganic NPs 
The ability of gold nanoparticles (GNs) to induce an immune 
response by antigen-presenting cells easily is attractive for 
use in vaccine development. GNs have the advantage of 
being easily transformed for delivery through the nasal 
cavity.216 It also has the advantage of activating the immune 
response associated with CD8+ (cytotoxic) T cells by spread
ing to the lymph nodes.217 The advantages218 and 
disadvantages219–222 of applying GNs to nanomedicine 
have been separately summarized (Table 2).

Treatment Using Virus-Like Nanoparticles 
Virus-like nanoparticles (VLPs) are capsids, comprising 
virus-derived structural proteins and adjuvants. VLPs can 
generate a potential immunogenic epitope, resulting in 

higher immunogenicity. Furthermore, since VLPs are 
small, they can act as adjuvants, and changing adjuvants 
can induce a much more effective immune response than 
viruses.223–225 As a result of intranasal delivery of VLPs 
using influenza virus, it has been found that VLP functions 
as a vaccine by producing a very large number of T cells 
and antibodies that can induce various types of immune 
reactions to improve immunity and prevent further 
infection.226 The advantages227–233 and 
disadvantages227,234,235 of applying VLPs in terms of 
drug delivery or treatment have been summarized sepa
rately (Table 2).

Treatment Using Cell-Derived Vesicles 
Cell membrane nanovesicles and exosomes have been 
reported to have the ability to bind and neutralize bacterial 
toxins by previous studies.236–238 In addition, recently, the 
development of cell membrane nanovesicles containing 
proteins having the same structure and activity as native 

Table 2 Advantages and Disadvantages of Nanomedicine on Therapeutic Strategies for COVID-19

NPs Advantages Disadvantages

Liposomes Reduced toxicity184 

Selective target specificity185 

Enhancement of drug activity against pathogens186,187 

Improved pharmacokinetics and pharmacodynamics188

Low drug entrapment189 

Difficulty of sterilization190 

Short shelf life due to instability191 

Rate of removal from the bloodstream192

Polymer Nanoparticles 

(PNs)

High stability203,204 

Various preparation methods205,206 

Control and persistence of drug release204,207 

Adjustability of chemical and physical properties208 

Suitability for hydrophilic and hydrophobic drugs203

Difficult scalability213 

Inadequate toxicological assessment214

Dendrimer Nanoparticles 
(DNs)

High cell penetration209,210 

High structural homogeneity209 

High miscibility and solubility211 

Controllable synthesis and degradation209,210,212

High production cost209 

Difficulty of clinical application in basic 

research215 

The need for quality management 
improvement210

Gold Nanoparticles (GNs) High biocompatibility210 

Controllable particle size210 

Convenience of synthesis and conjugation of various bioactive 

agents210

Nanoparticle aggregation211 

Impossible biodegradation220,221 

High cost of large-scale production222

Virus Like Particles (VLPs) Stabilization by disulfide bonds227,228 

Produced by cell-free protein synthesis227,229 

Small molecule, nucleic acid and protein loading capacity230,231 

Functionalization of antibody fragment display for specific cell 

targeting232,233

Low stability227 

Phagocytic avoidance234 

Extravasate from blood vessel235

Cell-Derived Vesicles Low inherent toxicity246 

Low apparent risk of aneuploidy247 

Low immune rejection248

Promoting metastasis formation in tumor 

cells249–252 

contribution to tumor cell survival253,254
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cells is being made by biomimetic synthesis technology 
that includes the synthesis and display of proteins on the 
cell surface.239–241 Cell membrane nanovesicles, built to 
display high levels of ACE2 and abundant cytokine recep
tors, are nanodecoys that can compete with host cells for 
viral and cytokine binding. Studies have shown that nano
decoy significantly inhibited the replication and infection 
of SARS-CoV-2 and efficiently binds and neutralizes 
inflammatory cytokines such as IL-6 and GM-CSF.242,243 

Therefore, a treatment method using cell membrane nano
vesicles can be an effective alternative to SARS-CoV-2 
and cytokine storms.

Exosomes are tiny nanovesicles with a size of 30nm to 
150nm, secreted for all types of cell-to-cell communica
tion, and are emerging nanomaterials in recent cell regen
eration, treatment, and diagnostic research.244 It has 
already been reported that exosomes containing the 
S protein of SARS-CoV induced an accelerated neutraliz
ing antibody titer by priming with a vaccine of the 
S protein of SARS-CoV and then increasing with an ade
novirus vector vaccine.245 Therefore, this strategy using 
exosomes has the potential to be sufficiently applied to 
treatment for SARS-CoV-2. The advantages246–248 and 
disadvantages249–254 of applying cell-derived vesicles to 
nanomedicine have been separately summarized (Table 2).

Pulmonary Delivery Using NP Inhalation Aerosols
If the advantage of drug delivery through the nasal cavity is to 
act on the mucous membrane area where the infection occurs, 
then the lungs are an important organ for drug delivery because 
they are another target for treating SARS-CoV-2 infection, 
which infects primarily through the respiratory tract (the 
upper airways and lung).255–257 Therefore, the use of inhaled 
aerosols is suggested as an effective non-invasive mode of 
administration. Additionally, the delivery of inhalable NPs to 
the lungs overcomes disadvantages, such as side effects caused 
by high drug concentrations in the serum with conventional 
oral or intravenous drug administration methods. Various 
nanotechnologies have been applied to develop NPs that can 
function as lung inhalation aerosols. These respirable NPs can 
be encapsulated by microparticles manufactured down to five 
microns to fit the aerodynamic size range or agglomerate into 
an aerodynamic size range. Most NPs are delivered directly to 
the lungs either by spraying colloidal dispersions or via dry 
powder inhalers and pressurized metered dose inhalers in solid 
form.255

The LNs mentioned previously are also one of the most 
widely studied NPs for effective delivery of drugs into the 

lungs.258 Due to the unique advantages of LNs, which include 
their production from substances present in the lungs, such as 
components of lung surfactants, they are the highest priority 
candidates for delivering therapeutics to the lungs.259 

Liposomes are generally liquid, and the application of aerosol 
through a nebulizer has mainly been attempted to deliver them 
to the lungs in the early days;260 however, drug stability and 
nebulizer leakage have been pointed out as the 
disadvantages.261 Therefore, to compensate for these short
comings, various studies have been conducted on the develop
ment of liposome formulations in the form of dry 
powder.262–264 Moreover, cationic liposomes, which have the 
advantage of self-assembly with nucleic acids, are attracting 
the most attention as systems that deliver genes to the lungs and 
are known to be suitable for transporting peptides and sub
stances having high molecular weight.265

PNs play important roles in drug delivery to the lungs 
by achieving efficient delivery of drugs, maintaining the 
stability of drugs, and controlling the release of drugs.266 

Currently, cationic LNs have many clinical advantages 
over PNs; however, cationic PNs are one of the important 
carriers for pulmonary delivery of genes.267,268

Although studies on delivery through the nasal cavity 
using DNs have already been mentioned above, many 
studies on pulmonary delivery using DN are also being 
conducted for delivering DNA drugs to the cell nucleus, 
with properties similar to that of liposomes.269 Research 
has already focused on drug delivery to the lungs as one of 
the applications of the method of delivering high molecu
lar weight substances into the body using DNs.270,271 In 
order to use DNs effectively while delivering drugs to the 
lungs, additional studies are needed that consider aspects 
such as the biocompatibility and cytotoxicity.

Nanotechnology-Based Diagnosis
Nano biosensors have the advantage of selectively detect
ing all types of analytes by combining the excellent elec
trical and optical properties of nanomaterials with 
biological or synthetic molecules used as receptors.272 

Using these advantages, various methods of detecting 
SARS-CoV-2 are being studied.273

Currently, using a Silicon-on-insulator nanowire sensor 
made using complementary metal-oxide-semiconductor 
compatible technology, the SARS-CoV-2 antibody can be 
detected in 5–15 minutes with an expected sensitivity of 
10−12–10−15 M.274

In the case of applying Graphene, the detection of SARS- 
CoV-2 in clinical samples was attempted with a sensor 
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produced by coating the graphene sheet of the field-effect 
transistor with a specific antibody against the SARS-CoV-2 
spike protein.275 As a result of the study, it was possible to 
detect SARS-CoV-2 spike protein at a concentration of 1 fg/ 
mL in phosphate-buffered saline and 100 fg/mL clinical trans
port medium.275

The SARS-CoV-2 biosensor using thiol-modified anti
sense oligonucleotides-capped GNs can diagnose positive 
COVID-19 cases with the naked eye through color change 
within 10 minutes from total RNA isolated from infected 
biosamples.276 As another application method for GNs, the 
glycan bond between the polymer-stabilized multivalent GNs 
bearing sialic acid derivative and the S protein of SARS-CoV-2 
was identified using a glyconanoparticle platform. Applying 
these characteristics has the advantage of building a low-cost 
detection platform that can be detected in less than 30 minutes 
with a lateral flow diagnostic device.277

Nanotechnology-Based Vaccine 
Development
Subunit Vaccines
Subunit vaccine candidates are required to enhance immuno
genicity effectively by eliciting an immune response when co- 
administered with molecular adjuvants using specific parts of 
the structural components of SARS-CoV-2. Therefore, devel
oping a vaccine that targets the subunit of the SARS-CoV-2 
S protein is a top priority. This is because membrane fusion and 
receptor-binding sites are present on the S protein.278 Vaccines 
based on the S protein inhibit viral infection by activating 
antibodies that prevent viral binding and subsequent mem
brane fusion.279 The SARS-CoV-2 S protein, which interacts 
with ACE2, is a notable candidate sufficient for both vaccine 
and therapeutic development.87,124,280 In addition, NPs similar 
to immunogenic viruses have been developed and produced 
with the Novavax® proprietary recombinant nanoparticle vac
cine technology with the S protein (Figure 4).281 The 
University of Queensland, Brisbane, Australia is also develop
ing a new SARS-CoV-2 subunit vaccine using a “molecular 
clamp” technology that pre-blocks the binding of viral 
proteins.282 As an alternative, the development of subunit 
vaccines using NPs, such as VLPs and protein NPs, is also 
actively underway. A higher binding affinity of RBD in SARS- 
CoV-2 for ACE2 than that of RBD in SARS-CoV has been 
found.283 Therefore, the RBD-based SARS-CoV vaccine can 
help prevent SARS-CoV-2 infection and be important for 
SARS-CoV-2 vaccine development. Moreover, RBD-based 
vaccines are effective in preventive and therapeutic strategies 

and are currently being developed by many research institutes 
and multinational pharmaceutical companies.134 RBD-based 
vaccines also have the advantage of minimizing host immunity 
enhancement.279

Nucleic Acid Vaccines
When viruses enter the host cell by infection, the antigen 
encoded by the nucleic acid is expressed, which induces a cell- 
mediated reaction with the antibody. Based on this principle, 
nucleic acid vaccination is another effective immunization 
method that uses artificially synthesized nucleic acids to elicit 
an immune response, such as that induced by live-attenuated 
vaccines. The improved immunogenic properties that mimic 
the infectious process are the potential advantages of mRNA 
vaccines. To maximize the effect, several mRNAs are mixed 
into a single vaccine.134,284 An RNA vaccine candidate against 
SARS-CoV-2 is now known as mRNA-1273 (Moderna, 
Cambridge, MA, USA) (Figure 4). This vaccine comprises 
a synthetic mRNA strand such that the binding site for ACE2 
can be translated to the previously modified SARS-CoV-2 
S protein.285 After inoculation with intramuscular injection, 
a specific antiviral response to the SARS-CoV-2 S protein is 
induced. Moreover, the synthesis of nucleic acid vaccines does 
not require viruses, unlike conventional vaccines made of 
small subunits of inactivated or live pathogens.285 Therefore, 
as the safety is guaranteed, only the passing of the Phase I trial 
for mRNA-1273 will help a continuous evaluation of efficacy 
to progress quickly.285 mRNA-1273 is designed based on the 
LN platform; however, new nanotechnology is being intro
duced for the effective delivery of nucleic acid vaccines. In the 
case of mRNA-based vaccines, not only LNs but also DNs and 
PNs are being used for effective delivery and high 
stability.286,287 BNT162b1, under development by Pfizer, 
New York, NY, USA, is a codon-optimized mRNA vaccine 
encoding the SARS-CoV-2 RBD (Figure 4). This vaccine uses 
the RBD antigen to which the trimerization domain of T4 
fibritin has been added to increase immunogenicity.288 

Coalition for Epidemic Preparedness Innovation had begun 
developing vaccines as soon as the first gene sequence was 
released through partnership with a group developing vaccines 
using a novel platform. As a result, the mRNA-based SARS- 
CoV-2 candidate progressed to the human clinical trial 
stage.289 In addition, INO-4800, developed by Inovio 
Pharmaceuticals, Inc., Plymouth Meeting, PA, USA, is 
a candidate DNA vaccine among nucleic acid vaccines 
(Figure 4). Similar to RNA vaccines, INO-4800 is a nucleic 
acid vaccine that can induce an immune response by being 
translated into proteins within human cells. Compared with 
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conventional vaccines, nucleic acid vaccines have great advan
tages in terms of production cost and purification methods. 
Furthermore, the nucleic acid-only structure also prevents the 
production of misfolded proteins that can occur in recombinant 
vaccines.290,291 However, the immunogenicity of nucleic acid 
vaccines is greatly influenced by the amount of plasmid 
injected into the cell and the appropriate administration interval 
and route. Through nanotechnology, NPs, including cationic 
liposomes, DNs, or PNs, have been applied to the development 
of nucleic acid-based vaccines to enhance the delivery efficacy 
and stability.286,287

NP-Based Vaccines
Unlike SARS-CoV, MERS-CoV has been utilized multiple 
times to introduce nanotechnology into vaccines or therapeutic 
research. Importantly, it has been recently reported that VLPs 
are suitable for the development of vaccines or treatments for 
symptoms of MERS-CoV infection. Nano-sized VLPs, which 
have the characteristic function of the virus, have the advantage 
of being better delivered through the lymph and capillaries than 
other small vaccines.292–294 In addition, it has the effect of 
reducing the systemic inflammatory response, and similar to 
viruses, has the advantage of being able to very easily enter 
cells.293 Furthermore, the delivery of many antigens makes the 
antigen-presenting cell functioning more effective. Therefore, 
the synthesized complex recognized by the T cell receptor 
increases the vaccine’s immunogenicity and efficacy, thereby 
ensuring patient safety.293 Nano-sized VLPs entering the host 
cell are directly involved in B cell activation and boosting the 
immune system.292,295 Indeed, the characteristics of these syn
thetic nano-sized VLPs are principle to developing vaccine 
platforms.296–298 Nano-sized VLPs have also been reported to 
overcome viruses by increasing the immune response effec
tively in animal experiments.281,299,300

Recently, the MERS-CoV S protein has been synthe
sized using silkworm larvae. This has then been applied to 
the nano-sized VLPs,223 which exhibit native conforma
tional epitopes produced via incubation with surfactant 
and cell membrane vesicles.239 In another study, the devel
opment of nano-sized VLPs capable of acting as 
a nanocarrier in red blood cells has been achieved by 
single compression of red blood cells through a 1-μm 
filter.301 MERS-CoV nano-sized VLPs have been synthe
sized using the recombinant S, membrane, and envelope 
proteins, tested in animal models, and linked to having 
increased immunogenicity.223 Nano-sized VLPs have 
a wide range of applications, can enhance vaccine safety 
and effectiveness, and have tremendous advantages that 

can be utilized for specific purposes. Since these findings 
have been derived for the S protein commonly present in 
MERS-CoV and SARS-CoV, they can be effectively 
applied for treating SARS-CoV-2 infection.

Inactivation of SARS-CoV-2 in the 
External Environment Using 
Nanotechnology
SARS-CoV-2 is activated at temperatures ranging from 1 to 
35°C and is easily inactivated under UV, highly alkaline, or 
acidic conditions.302 In addition, the degree of stability of 
SARS-CoV-2 varies greatly depending on the components 
that make up the surface of the infectious particle, and SARS- 
CoV-2 can be easily inactivated with commonly available 
disinfectants.303 The activation of SARS-CoV-2 in aerosols 
and on surfaces is similar to that of SARS-CoV; therefore, 
surface treatment using NPs that have been proven effective 
against SARS-CoV will be sufficiently applicable to SARS- 
CoV-2.98 The use of nanotechnology can provide alternatives 
more effective than conventional disinfection protocols for 
viruses used in general or medical settings that typically rely 
on chemical, physical, and biological strategies. Moreover, by 
using NPs, one can freely control the release rate of metal ions, 
which have proven to be antibacterial, on the surface of sub
stances requiring antibacterial action. Because NPs can accu
mulate in cells owing to their nature, they can overcome the 
disadvantages of antimicrobial substances or metal ions that 
easily leak out of cells. Silver, which has been used as an 
antibacterial agent since ancient times, is now applied to paints 
and food trays.304–306 Silver nanoparticles (Ag-NPs) have 
already been proven to display antiviral effects against various 
viruses.307–310 Ag-NPs exert antiviral activity by dissolving 
and releasing Ag+ ions with microbial toxicity. Ag+ ions can 
interact with proteins present on the surface of the virus or 
infiltrate and accumulate in host cells, disrupting the function 
of proteins that play an important role in virus replication, such 
as enzymes involving thiols.308,311 Another antiviral function 
of Ag-NPs has been hypothesized, wherein they competitively 
interfere with virus binding to host cells because of their 
physical interactions with the viral surface, depending on 
their size.307 As a result, it has been found that Ag-NPs with 
a size of about 10 nm show the strongest physical interaction 
and antiviral effect compared with that of particles in other 
sizes.308 In addition, Ag-NPs have an antiviral effect of dama
ging the virus structure using reactive oxygen species that are 
released after binding to the virus surface. Ag-NPs have 
already been applied to and used in medical equipment. 
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When applied to face masks and air filters, they can be used to 
inactivate SARS-CoV-2 via the antiviral effect of Ag+ ions. 
Currently, it has been reported that bacteriophage MS2 from 
dust can effectively be blocked by applying Ag-NPs to 
filters.312

Copper, which has recently been proven to exhibit antiviral 
effect against HuCoV-229E, may be a suitable candidate for 
the inactivation of SARS-CoV-2.313 When a virus incubates on 
a surface coated with Cu, the virus genome is degraded and 
inactivated.313 This antiviral mechanism involves the inactiva
tion of virions by disrupting the function of certain viral 
proteins using hydroxyl radicals produced by Cu2+ ions present 
on the surface of the material and inactivation by direct contact 
with the surface.314 Similarly, studies have reported that 
SARS-CoV-2 is easily deactivated on the surface of Cu- 
loaded materials.98 Furthermore, Cu is far more advantageous 
in terms of economy than Ag, and it can easily be used to 
produce PNs and has excellent stability. Therefore, the devel
opment and application of NPs with Cu or copper oxide (CuO) 
is the most suitable strategy to inactivate SARS-CoV-2 in the 
external environment. For example, in an experiment using 
a mask containing CuO-NPs, the influenza virus has been 
shown to be inactivated remarkably.315

Graphene derivatives (GDs), together with metal NPs, can 
effectively inactivate viruses.316 The antiviral mechanism of 
GDs involves electrostatic interactions, wherein the negative 
charge on the coated surface of the GDs promotes its binding to 
the positively charged viral particles.317 When GDs are applied 
to antibodies against viruses using nanotechnology, they show 
excellent effects on rotavirus and influenza virus 
infections.318–320 In addition, this characteristic of GDs can 
also be applied to the prevention, diagnosis, and treatment of 
SARS-CoV-2, according to recent studies.321

Iron oxide nanoparticles (IONPs) have already proven 
antibacterial activity through many studies.322,323 It has also 
been approved by the US Food and Drug Administration 
(FDA) for the treatment of anemia because of the excellent 
biocompatibility of IONPs.324 The interaction between IONPs 
and the S protein of SARS-CoV-2 has been identified in recent 
studies and the potential antiviral activity of IONPs has been 
reported.325 In addition, the ability of IONPs to produce ROS 
can be applied to inactivate SARS-CoV-2 in the external 
environment.326,327

Conclusion
In the past, treatment and vaccine candidates for SARS and 
MERS have not been fully researched and developed, as they 
have not been recognized for adequate investment and 

effectiveness due to the significantly lower infection rates 
than that for COVID-19. However, unlike the case of SARS 
or MERS, COVID-19 has been a worldwide threat for almost 
a year. Research and development using innovative methods, 
such as nanotechnology, is essential to end this pandemic 
effectively in a short time. Various treatments using nanotech
nology have been developed and commercialized for common 
viral infections, such as IAV and IBV,158–160 EBOV,161 HIV1 
and 2,162–165 HSV1 and 2,166–169 HBV and HCV,170–177 and 
HuNoV.178 The accumulated advancements in these virus- 
fighting nanotechnologies can play an important role in taking 
SARS-CoV-2 treatment and vaccine development to the next 
level. The tedious COVID-19 pandemic, which has not yet 
been put to end, is now moving in the direction of overcoming 
the virus in a step-by-step fashion with the help of nanomedi
cine. Currently, several companies are moving away from 
traditional SARS-CoV-2 treatment and prevention strategies 
and using nanotechnology to develop various types of vaccines 
and therapeutics and conduct clinical evaluations. For exam
ple, dexamethasones, a COVID-19 therapeutic agent that has 
introduced via various nano-formulations, has led to a big turn 
in the treatment of COVID-19.179 In addition, the clearance of 
Phase 3 clinical trials of the liposomal mRNA vaccine 
(BNT162b) developed by Pfizer can be considered a great 
achievement of nanomedicine.328 Moreover, the technology 
that deactivates SARS-CoV-2 in the external environment 
using nanomaterials, such as Ag-NPs,307–310 NPs with Cu or 
CuO,314 and GDs,316 and diagnostic technology that can 
quickly detect SARS-CoV-2 without the use of expensive 
equipment by applying GNs,329 are also contributing towards 
the prevention and control of COVID-19. Nonetheless, owing 
to the complex situation caused by COVID-19, it is believed 
that the existing platform needs to be modified in order for the 
research in various fields globally to be more efficient. 
Therefore, nanotechnology and nanomedicine can be suitable 
alternatives to this change in the research and development 
paradigm.
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