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Abstract: Gene therapy has now evolved as the upcoming modality for management of
many disorders, both inheritable and non-inheritable. Knowledge of genetics pertaining to
a disease has therefore become paramount for physicians across most specialities. Inheritable
retinal dystrophies (IRDs) are notorious for progressive and relentless vision loss, frequently
culminating in complete blindness in both eyes. Leber’s congenital amaurosis (LCA) is
a typical example of an IRD that manifests very early in childhood. Research in gene therapy
has led to the development and approval of voretigene neparvovec (VN) for use in patients of
LCA with a deficient biallelic RPE65 gene. The procedure involves delivery of
a recombinant virus vector that carries the RPE65 gene in the subretinal space. This
comprehensive review reports the evidence thus far in support of gene therapy for LCA.
We explore and compare the various gene targets including but not limited to RPE6S5, and
discuss the choice of vector and method for ocular delivery. The review details the evolution
of gene therapy with VN in a phased manner, concluding with the challenges that lie ahead
for its translation for use in communities that differ much both genetically and economically.
Keywords: gene therapy, voretigene neparvovec, Luxturna, Leber’s congenital amaurosis,

retinal dystrophy

Introduction

Inherited retinal dystrophies (IRD) include a diverse group of bilateral and often
progressive retinal diseases which cause functional loss of vision and may subse-
quently progress to legal blindness. IRDs encompass both non-syndromic condi-
tions like Leber’s congenital amaurosis (LCA), retinitis pigmentosa (RP), etc., as
well as syndromic conditions involving multiple organs in addition to the eye such
as Usher syndrome, Bardet-Biedel syndrome, etc.' Before the detection of gene
defects, IRDs were classified according to clinical features, age of onset, and
Mendelian inheritance pattern. With the leap forward in the field of genetics and
subsequent identification of causative genes and mutations over the past three
decades, a much better understanding of disease pathologies in IRD is now present.
The current approach is now towards classifying IRDs on the basis of genotype and
not phenotype.”

In 1869, German ophthalmologist Dr Theodor Leber first described LCA.>* He
mentioned the progressive course of retinal degeneration in his initial description of
young children with LCA, but later noted non-progressive variants too.>°
Treatment of both RP and LCA has long been controversial, with poor outcomes
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marked by relentless disease progression and not uncom-
monly, though not universally, an eventual complete blind-
ness. Varied therapies had been attempted, including
pharmacological, surgical, electrical, ozone therapy, and
stem cells, before LCA became the first eye disorder
successfully treated with gene therapy.

Anderson et al’ launched human gene therapy in 1990
by treating a child suffering from severe combined immu-
nodeficiency. The triumph of that gene therapy was short-
lived, but acknowledged by significant media coverage.
The gene therapy did not completely cure the patient’s
condition and she had to continue previous forms of ther-
apy. As further clinical trials of gene therapy were
launched, the potential risks involved with such were
revealed, including immune mechanisms driven mortality
and neoplasia,® necessitating more research and refine-
ment. Based on the cell targeted, gene therapy can be

classified into

Somatic cell gene therapy (SCGT); in which therapeutic
genes are transferred to somatic cells which are not inher-
ited to future generations and germline gene therapy
(GGT); here therapeutic genes are introduced into germ

cells, therefore the changes are heritable and passes to

later generations.”™""

The vehicles used for transfer of desired genes to target
cells are called vectors, broadly classified into viral and
non-viral types. The essential features of an ideal vector
comprise cellular specificity (induction of only targeted
cells), large cloning specificity, low immunogenicity, and
the feasibility of being produced at a high titre.'? Different
viruses have been used as vectors in humans, and adeno-
associated viruses (AAV) are the most common and most
widely used.'>”'* Gene therapy for LCA with voretigene
neparvovec (VN) (LUXTURNA, Novartis AG, Basel,
Switzerland) is SCGT based and dependent on an AAV
vector, and is the first such therapy approved for IRD by
the US-FDA in 2017 following publications from Phase III
trials (NCT00999609). It was developed by Spark
Therapeutics as AAV2-hRPE65v2.'® Other similar devel-
opments in earlier phases of research include rAAV2-CB-
hRPE65 by Applied Genetic Technologies Corporation
(5 year results of Phase I/II trial published,
NCT00749957), and AAV2/5-OPTIRPE65 by MeiraGTx
(Phase I/l study completed in December 2018,
NCT02781480). The latter two are not yet approved for

human use.

With approval of VN, the targets are now shifting to
other human diseases — from rare ones with no available
therapy to common disorders with many other therapeutic
options. Gene therapies not only signify a successful alter-
native in potentially curative medicine, but they pose the
next affordability dilemma too. For example, gene therapy
with VN currently costs around US$ 850,000. However, in
some situations a one-time gene therapy may be useful in
the longer run.'” This review focuses on the evolution and
evidence of gene therapy for LCA especially with VN,
bringing out the challenges physicians might face towards
its application to population at large.

Exploring Gene Targets in LCA

LCA is a genetically heterogenous ocular condition where
the primary mode of inheritance is autosomal recessive,
though a few dominant traits are also reported. There are
as many as 28 genes implicated in the pathogenesis of the
disease. Mutation in these genes account for almost 75%
of the cases.'® The more common and well characterized
ones, where attempts at gene therapy have been made, are
discussed below (Table 1).

GUCY2D Gene (LCAI Locus)
GUCY2D mutation (located on chromosome 17) accounts
for 10-20% of cases of autosomal recessive LCA and 40%
cases of autosomal dominant cone rod dystrophy.'” The
GUCY2Dgene is expressed in both types of photoreceptors
(rods and cones), predominant in disc membranes of cone
receptor outer segments. The gene codes a protein, retinyl
guanylate cyclase 1 (GC-1) that is important for the synth-
esis of c-GMP. This c-GMP, the intracellular messenger of
photoreceptor excitation, in turn regulates intracellular
calcium levels, a vital step in phototransduction (conver-
sion of light to neuronal signals) in the recovery phase. It
allows the resurrection of cGMP-gated channels by replen-
ishing cGMP stores within the cell, thus regaining the
resting depolarized state after the activation stimulus.?’
Mutation of GUCY2D leads to a state which is comparable
to chronic light exposure. GUCY2D-associated LCA
patients usually show marked vision loss, photophobia,
hyperopia, nystagmus, and defective ERG since early
childhood.?"** Regardless of the severe vision loss, clin-
ical retinal changes are minimal.

Animal model gene therapy for GUCY2D mutants has
used both AAV and lentiviral vectors. Preserved ellipsoid
zone integrity on OCT, despite damaged receptor func-

tions, opens the door for gene therapy trials.*>
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Progress in Gene
Therapy

Prominent
OCT Features

Foveal globular

lesions

-Specific Aspects
vision — up to hand

Phenotype
Severely affected

motion detection

Variable visual acuity

Fundus: Peripheral

and macular pigment

deposits with central

atrophic and

chorioretinal sclerosis

Location and
Visual Cycle Effect
Codes for a widely
expressed growth

factor TGF-B pathway

specifying the dorsal-

ventral retinal axis

Peripherin 2 localizes

to the photoreceptor

outer segment, where

it serves as an

adhesion molecule to

stabilize the segment

Protein Affected

(pathway)
Grow differentiation

factor 6

Peripherin

(Photoreceptor

morphogenesis)

Inheritance

Mode of
Autosomal
recessive

Autosomal

recessive

Unknown

% of
LCA
Cases

Unknown

LCA
Locus
LCA |7

Phenotype

not

described

Chromosome

8q22.1

6p2l.1

Table | (Continued).

Gene
GDF6'*5:146

PPRH2I47—I49

Abbreviations: LCA, Leber’s congenital amaurosis; OCT, optical coherence tomography; RPE, retinal pigment epithelium; AAV, adeno-associated virus; ERG, electroretinogram; FDA, Food and Drug Administration.

AIPLI Gene (LCA 4 Locus)

Mutation of AIPLI gene (Aryl-hydrocarbon-interacting-
protein-like 1, chromosome 17) accounts for 4-8% cases
of recessive LCA.?*?" It exclusively expresses in rod,
cone photoreceptors, and the pineal gland. AIPLI acts as
a photoreceptor-specific co-chaperone of phosphodiester-
ase 6, a crucial enzyme effector in the phototransduction
pathway.”® So, a mutation in AIPLI gene prevents assem-
bly of the PDE6 holoenzyme. This results in an upsurge in
intracellular cGMP leading to a prolonged opening of the
cyclic nucleotide-gated channels. These patients develop
pigmentary changes and maculopathy at an early age.”” !
In addition to photophobia, light gazing, and night blind-
ness, they are also commonly affected with nystagmus,
keratoconus, hyperopia, extinguished ERG, and cataract.>?
Fascinatingly, hand-held OCT imaging of four patients (all
of them of age less than 4 years) showed a relative pre-
servation of central outer retinal structure, making them
candidates for gene therapy.”' Replacement of the AIPLI
gene with an AAV vector in a mouse model has revealed
promising results in terms of restoring cellular function.
The AIPL1 sequence is small in size (~1.2 kb) so it can be
proficiently packaged. Due to the rapid progression and
early onset, there is only a narrow window period to
intervene in order to rescue this form of retinopathy.!

RPGRIPI (LCA 6 Locus)

Mutation of RPGRIPI gene (chromosome 14qll)
accounts for 5% of cases of LCA.>* RPGRIPI encodes
a 1287 amino acid protein that binds with retinitis pigmen-
tosa GTPase regulator (RPGR) and anchors it to connect-
ing cilia present between the two segments of

3435 In  contrast to other variants,

photoreceptors.
RPGRIP1-LCA trails a relatively non-progressive course
after an initial rapid deterioration of visual acuity. In
addition, the photoreceptors in the central retina remain
preserved for a longer period of time following visual
deterioration (which later progress to pigmentary retino-
pathy), providing a wide window of opportunity for
intervention.”! Studies have been done in RPGRIPI
knock-out mice and canine models, showing improvement

in both photoreceptor function and structure.*®>’

CRBI Gene (LCA 8 Locus)

CRBI is a “human homologue of the Drosophila mela-
nogaster gene” responsible for the protein Crumbs.
Mutations in it are associated with RP, LCA (7-17% of
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Table 3 Gene Cassettes Under Trials for LCA in Comparison to Voretigene Naparvovec

Trial Number | Current Drug Name- Viral Gene Technique Route Notable Difference with
Stage Sponsor Capsid Copy VN
NCT00999609 | Drug Voretigene rAAV2/2 RPE65 Gene Subretinal | —
approved Naparvovec augmentation
Spark
Theapeutics
NCTO03140969 | Phase I/ll Sepofarsen/QR- RNA based | CEP290 | RNA antisense | Intravitreal | Different gene therapy
NCTO03913143 | Completed 110 gene oligonucleotide technique all together,
NCTO03913130 | Phase Il/lll ProQR therapy different gene
Recruiting technology
Phase I/l
active not
recruiting
NCT02946879 | Dose AAV OPTIRPE65 | rAAV2/5 RPE65 Gene Subretinal | Different viral capsid, intron-
escalation MeiraGTx UK I augmentation codon optimized gene
trial Ltd delivered
Recruiting
NCTO03872479 | Phase I/ll Edit-101 rAAV2/5 CEP290 | Gene editing Subretinal | Different gene therapy all
Recruiting Allergan/Editas with CRISPR/ together, different gene
Medicine Inc- Cas
NCTO00481546 | Phase | active | AAV2-CBSB- rAAV2 RPE65 Gene Subretinal | Different promoter
NCTO00821340 | not recruiting | RPE65 augmentation
NCTO00749957 | Phase University of
| Completed Pennsylvanaia,
Phase I/11 Hadassah
Completed Medical
Organization,
Applied
Genetics
Technology
Corp.
NCT03920007 | Phase I/ll SAR439483 rAAV2/5 GUCY2D | Gene Subretinal | Different gene and viral capsid
active not Sanofi — augmentation
recruiting Genzyme
NCTO00643747 | Phase l/ll tgAAG76- rAAV2/2 RPE65 Gene Subretinal | Different promoter
Completed rAAV 2/2. augmentation
hRPE65p.
hRPEé65)
University
College of
London
NCTO01496040 | Phase I/ll rAAV2/4hRPE65 | rAAV2/4 RPE65 Gene Subretinal | Different promoter and viral
Completed Nantes augmentation capsid
university
Hospital

Abbreviations: LCA, Leber’s congenital amaurosis; AAV, adeno-associated virus.
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all cases), and some other IRDs.** *® CRBI is implicated
in cellular adhesion, maintenance of apico-basal polar-
ization, and cellular communication. It is considered
critical for the structure and function of
photoreceptors.*' In the developing retina, these proteins
are present at the apex of the RPE, Muller cell, and
photoreceptor inner segments which will eventually
result in the junction between receptor cells and glial
cells, creating the external limiting membrane.
Characteristic ocular findings comprise macular thinning,
pigmentation, relative preservation of para-vascular ret-
inal pigment epithelium with increased retinal thickness
along with altered laminar organization and loss of exter-
nal limiting membrane.*®*° The occurrence of CRBI
mutation diverges considerably in different geographic
regions (between specific populations) because of the
founder effect of genetic variation or consanguinity,
and ranges as high as 17% in Spain to possibly 0%
(absent) in India.

Gene replacement therapy for CRBI related retinopa-
thies is challenging because of its large size of cDNA
which approaches the limits of packaging capacity of
AAV. However, techniques like vector and codon optimi-
zations have facilitated the packaging of CRBI cDNA in
adeno viral vectors with in vivo expression. The other
challenge in CRBI gene therapy is simultaneous expres-
sion of the therapeutic vector in dissimilar cell types that

demand CRB function.*?

CEP290 Gene (LCA 10 Locus)

Of the LCA cases, 15-20% harbor CEP290 gene mutation,
making it the most common gene involved.** CEP290 is
a centrosomal protein present at the connecting cilium of
photoreceptors, connecting its outer and inner segments.
Mutation of genes encoding ciliary protein leads to
a spectrum disorder called ciliopathies.**** In addition to
other features, CEP290-associated LCA patients typically
suffer early onset of marked visual loss with correspond-
ing receptor dysfunction.** Studies using optical coherence
tomography have revealed that, even with profound dys-
function of cones, the foveal outer nuclear layer remains
preserved up to the fourth decade of life, though thinner as
compared to the perifoveal region.*®*’

After the advent of RPE65 based gene therapy for
LCA, there has been a substantial curiosity and encourage-
ment to devise effective gene transfer methods for the
treatment of CEP290-related retinal dystrophy. However,
the barrier to its AAV mediated delivery of CEP290 is the

size of its cDNA (~8 kb), which surpasses the maximum
capacity of traditional vectors (~4.7—4.9 kb). Hence, use of
the lentivirus (having larger packaging limit of 8—10 kb)
vector may be advantageous.”® Other viable interventions
which are currently under investigation are antisense oli-

gonucleotide, minigene transfer (truncated CEP290
domain — miniCEP290°** %) and CRISPR/Cas9-based
techniques. ***°

RDH 12 Gene (LCA 13 Locus)
RDH 12 gene mutation accounts for about 4-5% of reces-
sive LCA. RDHI2 gene (approximately 12kb length) is
localised to chromosome 14q and consists of seven exons
which encode enzyme retinol dehydrogenase-12. The
enzyme is present in the inner segment of photoreceptors
and has reductase activity which reduces the all-trans
retinal to all-trans retinol.’®' These mutations lead to
reduced expression and activity of the enzyme, in turn
affecting photopigment regeneration (Figures 1 and 2).
The enzyme naturally protects against excess build-up of
retinaldehyde and subsequent cytotoxicity. Loss of func-
tion of the gene is highly detrimental early in life, parti-
cularly for the macula.®> Fundus shows extensive
atrophy of the RPE and retina. The unique fundus picture
in RDHI2 mutation is it's watercolour like appearance,
where there is a clear demarcation pattern at the boundary
between the preserved and affected retina, which enlarges
with the advancement of disease and becomes less appar-
ent at the end stage of the dystrophy.*® There is loss of
macular autofluorescence and typical peripapillary sparing
is clearly evident on autofluorescence. Spectral domain
OCT shows loss of normal foveal architecture and macular
thinning,**>%

Thompson et al®® reported AAV-vector mediated RDH
12 gene therapy by evaluating outcomes in wild-type and
RDH 2-knockout mice. Subretinal injection of an AAV2/8
vector produced recombinant human RDH 1?2 at the desired
location without disrupting the structural integrity.

KCNJI3 (LCA 16 Locus)
Mutation of the KCNJI13 gene (chromosome 2q37) also
accounts for cases of autosomal recessive LCA 16.
Mutations in the KCN.J13gene which encode the inwardly
rectifying potassium channel Kir7.1, causing snowflake
vitreoretinal degeneration and LCA. In the retina, Kir7.1
is localized exclusively in the RPE apical processes, where
it controls retinal function and health. Light activation of
RPE extracellular K"

photoreceptors reduces the
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concentration. The conductance of the Kir7.1 channel
increases when extracellular K* decreases and vice versa.
Thus, KCNJ13 loss-of-function directly impacts K" buf-
fering in the tight subretinal space and thereby alters
photoreceptor function.’” Retinal examination in these
cases revealed arteriolar abnormalities, pigmentation of
the retina in the macular region, and RPE abnormalities
in one case,” along with visually significant cataract in
another report.”” In vivo studies for use of Lentivirus
mediated gene therapy with this gene has suggested that
membrane potential of RPE cells can be restored with 25%
of normal protein expression. Accomplishing functional
rescue in vivo could be less challenging, and residual
mutant protein product is not expected to negatively influ-
ence functional outcomes.’

RPE65 (LCA 2 Locus)

RPE65 mutation accounts for both LCA (3—16%) and reces-
sive RP (~2%). The highest prevalence of RPE6S variants is
seen in Caucasian (16.5%) and Asian Indian popula-
tions (16%). These mutations are rarer in other populations.
The gene is localized to chromosome 1p31 and consists of
31 exons. RPE 65 codes for retinoid isomerohydrolase
(65KD) expressed in RPE.®° It is important for isomeriza-
tion of photopigment and converts all-trans retinyl ester to
11-cis retinol in phototransduction (Figures 1 and 2). This
isomerohydrolase along with LRAT (Lecithin: retinol acyl
transferase) works continuously to regenerate visual
pigments.61 Hence a mutation (RPE65deficiency) causes
deficiency of 11 cis-retinal required for the beginning of
a new visual cycle. Subsequently there is accumulation of
pigment granules in RPE (Figures 1 and 2). The conse-
quence is progressive retinal degeneration. RPE65 mutation
affects rod and cone photoreceptors differently. 11 cis-retinal
deficiency in rod photoreceptors causes an early and pro-
found nyctalopia. However, cone photoreceptors do have an
alternate retinoid cycle pathway for generation of 11 cis-
retinal which do not depend on RPE6S5, so cone mediated
vision persists in younger patients.®> Generally, this muta-
tion culminates in severe profound vision loss in infancy
with mild, if any, nystagmus. Early stage of the disease
shows bull’s eye maculopathy, while atrophy, diffuse hyper-
pigmentation, and clumping of pigments generally appears
very late in the course. Other associations include myopia
and cataract. LRAT (a key enzyme in visual cycle, locus 14
LCA) deficiency also presents with similar phenotypes,
though far less common compared to RPE65.

Early Challenges for Gene Therapy
with RPE 65 Gene

Seeing Light — From Mouse, Dog and
Monkey to Man

Acland et al®

in Briard dogs with retinopathy caused by a homozygous 4

reported success in gene replacement therapy

base pairs deletion in RPE65. The authors used subretinal
delivery of recombinant AAV2 vector that expressed the
wild type canine RPE65cDNA regulated by the ubiquitous
cytomegalovirus chicken beta actin promoter. Subretinal
injection dose ranged from 1.5x10® to 4.5x10'? vector gen-
omes (100—150 pL). Injected eyes displayed a dramatically
improved ERG response, pupillometry, and dark-adapted
flash evoked cortical potentials. These results persisted up
to 10 years following a single procedure.®*®> The results
attained in the Rpe65 "~ Briard dogs produced deep exhi-
laration in the field of gene therapy owing to more human-
like ocular anatomy and immune system of the animal
subject. However, when examined serially over years, the
outer photoreceptor nuclear layer showed progressive thin-
ning in spite of gene therapy, indicating that the effects may
be temporary. Further studies on dogs extended the usage of
other serotypes of AAV like 1, 4, and 5.66-70 Afterward,
both natural and knockout murine models were researched
for gene replacement therapy with RPE65 gene. The dose—
response relationship was also demonstrated.”"”* Further,
17 normal cynomolgus monkeys, with human-like retina,
were treated with single subretinal injection of rAAV2/
2-CBSB-RPEG65 vector. No systemic toxicity or grave ocular
adverse effects on the retinal structure or function were
noted, as confirmed at 3 weeks and 3 months post-
treatment.

AAV2/2 mediated subretinal gene transfer in Briard
dogs showed substantial morphological and functional sal-
vage of photoreceptors, translating to improvement of
functional ERG (around 20-30% of wildtype levels) and
behavioral-based vision tests, particularly under photopic
conditions.®*%**’ The stable and long-standing visual
restoration was noted to be maintained at 4 years and
even at 10 years of follow-up post-treatment in different
studies, 65:68.73.74

Early Challenges for Humanizing the

Progress in Gene Therapy
These early experimental trials were reassuring in terms of

safety and efficacy, paving the way for human
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intervention. Apart from dosage-related issues, a major
challenge in humans was the heterogeneity of mutations;
which obfuscated the genetic and visual correlation.
Another noteworthy difference that later arose between
the different human trials involved the promoter driving
the expression of RPE6S5; a human RPEG5 promoter was
used by one group,”® whereas others used a CAG promoter
chicken f
promoter).”®’® Though an ubiquitous promoter like CAG

(changed form of ubiquitous actin
offers a more robust and stronger expression pattern, it
shows a non-specific cell expression profile other than
RPE cells. In contrast, the human RPEG65 promoter drives
RPE-specific expressions of the transgene shown in pre-
clinical studies. Even though the CAG promoter expresses
genes stronger than the human RPE65 promoter, enough
transgene expression was driven by the latter to salvage
the treated canine phenotypes.sg’79 Robust outcomes were
also reported after use of the CAG promoter in multiple
parameters (discussed later).”®75%8! Although these trials
(Table 2) established the stability, safety and efficacy per-
sisting up to no less than 3 years following treatment, an
age-dependent effect of the treatment remained conten-
tious with contradictory conclusions.***? Cideciyan et al,**
in their human study, concluded that, even with therapy,
the outcomes followed the anticipated natural history.
Surprisingly, they also showed dissimilarities between
canine and human models, used for preclinical experi-
ments. Cideciyan et al also reported that rod recovery in
humans remained grossly impaired following RPE65 gene
therapy, despite improved visual sensitivity. Thus it is
obvious that there were several variables which the early
human trials needed to account for.**

The Choice of Subretinal Delivery

Gene therapy can be employed for ocular usage for the
following reasons: 1) The eye is an immune privileged
site, 2) Miniscule quantities of vectors are required to
achieve therapeutic targets, 3) It permits local treatment
without the need of intravenous dosing, and 4) The safety
and effect can be supervised by non-invasive tests.
However, compared to other parts of the body, several
barriers that shield the eye from toxicants (anatomically
and physiologically) also make delivery of drugs
difficult.®>*¢ For targeted retinal gene therapy, the possible
routes could be intravitreal, suprachoroidal, or subretinal
drug delivery (Figure 3). Subretinal drugs or genes have
direct access to cell membranes of photoreceptors and
RPE cells, making it a good location for drug delivery,

Subretinal

Suprachoroidal

Intravitreal

Subretinal

Figure 3 Various routes of vector delivery to the eye. The intravitreal, subretinal,
and suprachoroidal spaces are shown in the magnified inset corresponding to the
sites of the delivery of the drug.

exclusively in patients with diseases that mainly affect
RPE cells and photoreceptors.®” Intravitreal injections on
the other hand face the whole neural retina as a potential
barrier and are useful when the target for therapy lies in
the inner retina or the ganglion cell layer. A higher dosage
of drug will be needed while treating with intravitreal drug
injection. However, in comparison to subretinal delivery,
intravitreal injection is an office-based procedure with
minimal requirement of training.®® The subretinal route
offers a direct route with more specific localization and
a lower dose is needed. The subretinal space itself may be
approached in multiple ways.**°' AAV mediated subret-
inal delivery of genes has been found to be safe by a large

. 75,-76,-79,-80,-92-94
number of studies,”” "7

although procedure-
related potential side-effects can occur. The complications
reported with subretinal surgery include macular hole,
retinal tears, retinal detachment, endophthalmitis, glau-
coma, cataract, etc. There are also concerns regarding the
limited locale of retina benefitting from gene therapy, with
the improved area corresponding only to the area of the
subretinal bleb formed during subretinal delivery. This has
been confirmed using dark adapted perimetry. Another
concern is photoreceptor degeneration due to a sub-
foveal bleb.”

The other novel mode of drug delivery is the supra-
choroidal approach. The suprachoroidal space (nominal
thickness of 35 um) is a potential space found between
the sclera and choroid, and, under physiologic
conditions (Figure 3), it is mostly collapsed due to the

intraocular pressure and fibers that attach the sclera to the
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choroid. Unlike the subretinal route, the suprachoroidal
approach does not require retrobulbar anesthesia or pars
plana vitrectomy, and avoids its complications while offer-
ing a greater surface area coverage of the posterior seg-
ment of the eye. However, the suprachoroidal space is not
anatomically immune privileged and the presence of chor-
iocapillaris causes rapid clearance of the administered
drug hindering effective transduction of the retina.’®

The Choice of AAV Vector

AAV, a parvovirus, has a protein capsid surrounding
a DNA genome (single stranded) approximately 4.8 kb in
size. The genome contains genes responsible for replica-
tion, capsid, and assembly. Through usage of three promo-
ters, alternative translation starts sites, and differential
splicing, at least nine gene products are constructed by
the virus. The coding sequences are bordered by inverted
terminal repeats (ITRs) that are essential for genome repli-
cation and packaging. On the other hand, recombinant
AAYV, a protein-based nanoparticle, lacks viral DNA, can
pass through the cell membrane, and eventually deliver
genes into the nucleus. In the absence of replication pro-
teins, rAAV forms circular concatemers which accumulate
in the nucleus of transduced cells as episomes.”” The peak
gene expression is usually reached by around 4—6 weeks in
AAV mediated gene therapy. There is no integration
between host and episomal DNA, therefore the cargo
gene gets diluted over time following mitoses. This ulti-
mately results in diminished gene expression over time,
the rate depending on cellular replication. In the perspec-
tive of the RPE cells which have very low turnover rates,
rAAV is therefore an ideal vector for certain genes.
However, an essential contemplation for using the
rAAV vector is the maximum packaging limit, which is
less than other vectors like Lentivirus. In the beginning,
packaging size under 5 kb was considered adequate.”® As
discussed before, Lentivirus has been used for gene ther-
apy for LCA loci other than LCA 2 (RPEG65), like loci 1,
10, and 16. Other possible non-viral approaches for gene
delivery include bacteria or plasmid based, or others like
nanoparticles, electroporation of nucleic acids, antisense
oligonucleotides (LCA 10), and liposomes, etc. Efforts in
producing rAAV vectors with higher packaging limits
resulted in lower viral production yields.”® After delivery
to the
nucleus, it needs to be transformed into a double-

of single-stranded AAV-delivered transgenes

stranded form, a rate limiting step at the commencement
of transgene expression.'” A substitute is the use of self-

complementary AAV (scAAV). Here the single-stranded
genome can complement itself to produce its double-
stranded form.'°*'°" Though gene expression becomes
faster this way, the packaging capacity can drop signifi-
cantly to around 3 kb in this strategy. scAAV2,'*
scAAV5,'% and scAAV8'™ have the advantage of faster
onset of expression in retinal cells, though the pattern of
expression is identical to that of single-stranded vectors.

An additional constraint to the onset and extent of gene
expression is the degradation of AAV vector occurring
through phosphorylation of surface-exposed tyrosine resi-
dues that enhance proteosome-mediated degradation.
A mutation of these tyrosine residues to phenylalanine
enables vectors to partially circumvent this pathway lead-
ing to increased transduction after subretinal, intravitreal,
and intravenous administration compared to their naturally
occurring counterparts. Rational design and library selec-
tion strategies are considered to be quite useful for achiev-
ing improved function of AAV in the retina.'%’

The factors that decide the choice of AAV factor for
gene transfer therefore are: 1) targeted cell/tissue types; 2)
the target gene and its safety profile; 3) the selection of
route of delivery; and 4) the promoter sequences utilized.
AAV matches these for subretinal delivery being very
stable to wide pH and temperature changes.'°® However,
the concentration at which it can be formulated presently
is limited to approximately 5x10' particles per mL, and
higher doses pose the risk of inducing inflammatory

reactions.'®’

Promoters and Enhancers for Viral

Vectors

Gene therapy requires use of strong ubiquitous promoters
such as the cytomegalovirus (CMV) or the chimeric
chicken B-actin CMV enhancer and promoter. Other pro-
moters like the human RPE65promoter and other forms of
the chicken B-actin (CB) promoter (discussed later) have
also been utilized. The choice of promoter is also depen-
dent on the gene and the human cell intended to be
transduced. Following viral vector transduction and inser-
tion of genetic material into the target cell, specific pro-
motors permit for the transcription and construction of the
anticipated transgene only in designated target cells. By
restricting the expression of the gene to a specific target
cell type (eg, RPE, rods, or cones), they avert undesirable
side-effects from the transgene production. Addition of
promoters and enhancers in AAV mediated gene therapy
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is necessitated because of their absence in the recombinant
serotypes. Robust promoters also diminish the minimum
dose of viral genomes (and related complications) by
augmenting the gene expression. However, the size of
the promoter can be a concern as it limits the gene base
pairs that can be carried by the drug (discussed earlier).

RPE-specific expression can be driven by the use of
RPEG6S5 promoters. RPE specific promoters, the target of
LCA gene therapy, include the human RPE65 promoter,
NAG65 promoter (optimized promoter), VMD2, and Synpiii
promoters.'® With these cell-specific promotors, only the
cells that typically recognize those particular promotors
will produce the transgene product. Although other cell
types may be transduced by the viral vector, without
recognition of the promotor sequence, the genetic material
is not transcribed and the protein is not produced in those
cells. As mentioned before, human RPE65 and CAG pro-
moters have been extensively employed for LCA.
Theoretically the latter has aore robust gene expression
profile, but is not specific for the human RPE cells. In
clinical trials, the use of human RPE6 promoter has also
resulted in satisfactory gene expression.

Phase l/ll Clinical Trials

Early Results
Clinical trials for LCA2 began in 2007 following success
in preclinical studies (Table 2). AAV-RPEG65 therapy had
already been shown to be safe in canine and primate
models, as discussed before.'® % The initial results
were stated in 2008 by two independent groups. The
group from University College London and Moorfield’s
eye hospital (MEH) reported results of treatment of three
human subjects with an AAV2.RPE65 construct whose
expression was controlled by the human RPE65 promoter.
The drug was filled in a buffered saline solution at
a titer of 1x10'" vector particles per milliliter and frozen
in 1-mL aliquots at —=70°C. Up to 1 mL of the vector was
introduced, after detachment of approximately a third of
the retina, into the subretinal space using a subretinal
canula without any serious adverse events. Though statis-
tically significant improvement in vision or visual fields
was not seen in any patient, one subject showed significant
functional improvement in dark-adapted perimetry and
microperimetry. Subjective improvement in visual mobi-
lity was also noted in that patient.”’

The consortium, led by the Children’s Hospital of
Philadelphia (CHOP), including the Telethon Institute

of Genetics and Medicine (TIGEM), University of
Pennsylvania (UPENN), and the Second University of
Naples (SUN), also described the outcomes from treatment
of three subjects aged between 19-26 years with AAV2.
hRPE65v2 vector.”® A surfactant was used here to avert
the loss of the vector in containments. A subretinal injec-
tion of 1.5x10'" vector genome of AAV2.hRPE65v2 in
150 pL volume of phosphate-buffered saline was per-
formed, thereby creating a confined dome shaped retinal
detachment. The subretinal bleb was seen to resolve after
14 hours of surgery. No adverse event related to viral
dissemination was recorded. An asymptomatic macular
hole was noted in one patient on postoperative day 5,
possibly related to a pre-existing epiretinal membrane.
Remarkable improvements were seen in pupillary light
responses in all cases. Three times increase in light sensi-
tivity was noted in each treated eye, and even surpassing
that of the fellow — previously better — eye. All three
subjects revealed an improvement in dim light vision as
early as 2 weeks after surgery. A drift toward enlarged
visual field areas in each of the three patients was
observed.

Several months later, a group from UPENN and the
University of Florida (UFL) also stated comparable
results.””'"! In that study, three subjects (aged between
21-24 years) were injected with subretinal AAV2-CBSB-
hRPEG65 containing 5.96x10'? viral genome in 150 pL, in
the areas outside the macula in two subjects and within the
macular area in the third.'® No local or systemic adverse
events were documented. Dark adapted perimetry sensitiv-
ities improved in all three eyes. A significant increase in
cone and rod sensitivities were demonstrated. However,
there was no improvement in visual acuity compared to
the baseline. The authors appraised that nearly normal
sensitivity to light was reinstated in specific retinal areas,
even though the rod recovery time was still higher than
normal (8 vs 1 hour).

Long-Term Results

At the beginning of 2009, extended results from these
early phase studies were issued. Collectively the reports
suggested an age dependent response to gene therapy in
LCA with functional improvement in treated eyes.

Dose Escalation Trials: The CHOP-TIGEM-UPENN-
SUN group assessed the retinal and visual function in 12
patients (aged 844 years) with RPE65-mutation related
LCA up to 2 years.®® The subjects were given either of the
three doses, ie, 1.5x10' (low), 4.8x10' (medium), or
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1.5x10"" (high) vector genomes delivered in 150 or 300
pL solution. The previous surgical procedure was slightly
modified by including surgical peeling of epiretinal mem-
branes if present. Injections below the macula were
avoided in three patients with macular atrophy. High
dose injections were given after buttressing fovea with
perfluoro-octane liquid (aspirated subsequently).®® The
treatment was well tolerated in all patients showing
a continuous enhancement in vision both subjectively
and objectively. Pupillary light responses improved by at
least 2 log units in all patients when measured using
pupillometry (amplitude and velocity of constriction) as
early as 7 days following injection. There was also
a corresponding increase in full-field threshold sensitiv-
ities. Ambulatory vision was attained by children. An
8-year old patient attained near normal levels of light
sensitivity.

Additional reports with an up to 3-year follow-up per-
iod revealed maximal improvement in vision within the
initial 6 months of therapy and later stabilized.*>''
Functional MRI measurements revealed functioning in
the visual pathway in previously long-standing blind
eyes. This indicated a greater elasticity in the visual path-
way contrary to previous notions.''?

The UPENN/UFL group in their longer-term results
described outcomes in 15 subjects, all less than 30 years
of age, with the AAV2 vector. The investigators evaluated
different doses and injection strategies in five cohorts
(Table 2). The surgical adverse events included retinal
detachment in one subject requiring additional intervention
and non-resolving effusion of the choroid in a second
patient. Systemic toxicity was not noted. An improvement
of visual function, though to variable degree, was noted in
all subjects. Photoreceptors became significantly more
sensitive in the treated regions of the retina as early as 3
months post-injection and were sustained through 3 years.
Eyes with the lowest visual acuity at baseline displayed
the largest improvement in mean visual acuity.

There have been other such trials in the last decade.
Two additional publications, one each from Israel and
France, describe the outcomes in peer reviewed journals.
The immediate results from the Israel study group stated
improvement in function as early as 2 weeks in the treated
retinal area (Table 2).''* In their report of a phase V/II
study performed at Nantes University Hospital, the
French study group described the safety of AAV mediated
RPE 65 treatment for LCA. However, the improvements in

visual function were variable (Table 2).'"

Phase Il Clinical Re-Administration
Trials — A Step Forward

Phase I/II studies reported the success of unilateral injec-
tions. It was unclear whether treatment of the fellow eye
secondarily would yield any benefit. The apprehension
was that the first injection of virus might serve a role
similar to vaccination. Hence, an immunogenic response
might also cause injury to the primarily injected eye.
Therefore, re-administration studies were first performed
in large animal models before testing in the human clinical
trial subjects. Sequential subretinal delivery of a high dose
(1.5x10"" vector genome) of AAV2-hRPE65v2 was tested
in both canine models, ie, six Briard (affected) dogs,
besides four unaffected non-human primates that had
been formerly exposed systemically to research grade
AAV. It was found to be a safe procedure with a lack of
systemic and ocular toxicity for both eyes. This was fol-
lowed by initiation of human re-administration studies.''®

In human trials, re-administration of vector was done in
the fellow eye of three adults with LCA due to RPE6S5 gene
mutation 1.7-3.3 years after their initial therapy. The area
targeted in the re-administration was the region which had
sufficient viable retinal cells. All subjects received 1.5x10""
pg in 300 pL for the re-administration study in their pre-
viously un-injected eye. The oldest participants were regis-
tered foremost. Subjects were assessed every week and
a 3-months stagger was maintained between enrolments of
each of these patients. There were no toxic immune responses
in any of the subjects. After injection, the “contralateral” eyes
showed functional improvement in multiple aspects. The
results reflected an age effect whereby the younger indivi-
duals exhibited larger gains than the older individual.""”

In continuation of a previous early phase clinical study,
a dose of AAV2-hRPE65v2 (1.5x10"" pg in 300 pl) was
administered to formerly un-injected eyes of 11
subjects.''® There were no AAV related adverse events.
However, dellen formation occurred in three patients, cat-
aract in two cases, while one case developed endophthal-
mitis. Compared with baseline, results of 10 subjects
displayed developments in sensitivity of light and mobility

as early as 1 month, that sustained till 3 years.''®

Orphan Drug Status

VN received Orphan Drug designation by US FDA on
June 24, 2008, which provided incentives to assist and encou-
rage its development. On April 2, 2012, orphan designation
(EU/3/12/981) was granted by the European Commission to
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Alan Boyd Consultants Ltd, UK, for AAV2.RPE65 gene
therapy for treating LCA. Spark Therapeutics Ireland Ltd
later acquired the sponsorship in 2017.

Phase 1l Clinical Trial

Based on the results of Phase I and II trials described above,
a Phase III (“pivotal”) trial for RPE65 gene augmentation
therapy was started at CHOP and the University of lowa.
Thirty-one patients were registered and randomly allocated
to intervention (n=21) or control (n=10) groups between
November 15, 2012, and November 21, 2013. Individuals
with age >3 years with an established diagnosis of biallelic
RPEG65 mutations were enrolled if a) bilateral eyes had visual
acuity of <20/60 or visual field <20 degrees in any meridian,
or both, b) they had enough viable retinal cells as evidenced
by retinal thickness on SD-OCT (>100 microns within the
posterior pole), fundus photography, and clinical evaluation;
and c) they were able to accomplish a standardized multi-
luminance mobility test (MLMT) within the luminance range
assessed, but incapable to pass the lowest luminance level
tested of 1 lux. Primary intervention was bilateral subretinal
injection of AAV2hRPE65v2 at 1.5x10'" pg in eligible
individuals. Randomization of subjects was done to interven-
tion or control group (2:1, respectively). Subjects in both the
arms were assessed at the same time intervals for 1 year, and
then the control group was crossed to the intervention group.
Subjects in the control group, meeting all the inclusion cri-
teria, received VN (bilateral) 1 year after their baseline
evaluations.'"’

To measure results, subjects were requested to navigate
a standardized course (discussed later) under seven different
progressing illuminations commonly met during the course
of a day, “starting from 1 lux (like that of a moonless summer
night) to 400 lux (equivalent to a brightly lit office environ-
ment)”. The course involved navigation of a path defined by
large black arrows on the floor avoiding placed obstacles.
A change in multi-luminance mobility test score of >2, from
baseline to year 1, was considered a meaningful benefit in
terms of functional vision.'*°

The primary measure was defined as bilateral MLMT
performance gain at year 1. Secondary measures were
white light Full field light sensitivity threshold (FST)
testing at 1 year, taking averaged value of two eyes,
and averaged change of best-corrected visual acuity
over both eyes. FST testing assesses night blindness
(rod photoreceptors function) predominantly affected by
RPE65mutations. Kinetic and static perimetry, visual
function questionnaire, contrast sensitivity, pupil light

sensitivity, and domestic mobility assessments were
also performed. Safety assessments included immunol-
ogy testing apart from other standard tests. At 1 year, the
mean change in bilateral MLMT score was 1.8 (SD=1.1)
light levels in the intervention group, as opposed to 0.2
(1.0) in the control group. No control participant could
clear MLMT at 1 lux (lowest level), however 13/20
treated subjects did. This was a very strong indicator of
efficacy. Minimal inflammation, temporarily increased
intraocular pressure, and retinal tears were the most

commonly documented adverse effects.''’

Mobility Tests as an Indicator of Efficiency
With time, subjects with untreated RPE6S5 related LCA
lose perception of light at any illumination, restricting
independent navigation in early life. Since the traditional
metrics of mobility do not account for ambient illumina-
tion while judging accuracy and speed of navigation, the
MLMT was developed. This test is specifically designed to
quantify and ascertain outcomes focused on various facets
of vision, like field, acuity, and light sensitivity.'?' For
visually impaired individuals, the test also divides between
higher and lower performers. Even young children (4
years) navigated the standardized course precisely and at
the MLMT is
a validated test found to be both reliable and reproducible.

a reasonable pace. Most important,

Safety Concerns

VN, unlike most FDA-approved injectable treatments, neces-
sitates a surgical procedure for administration. The FDA
reviewers analyzed 41 subjects with VN intervention taking
into account safety results of both Phase I and Phase III
studies. The various treatment-related ocular adverse events,
during the follow-up period spanning between 1— 6 years,
included maculopathy (5%), macular holes (7%), retinal
tears (10%), raised intraocular pressure (IOP) (15%), and
cataract (20%). In general, 66% (21) of treated subjects
experienced one or more ocular adverse events, mostly
mild or moderate, and resolved, primarily ascribed to the
surgical procedure.''” However, two (5%) study participants
developed irreversible loss of vision, one due to raised IOP
related optic atrophy, and the other because of macular atro-
phy secondary to the procedure. A 15-year follow-up study to
evaluate long-term safety and efficacy is ongoing.

Gene Cassette of Voretigene Neparvovec
VN, as developed by Spark therapeutics, uses the rAAV2
capsid. The structure of rAAV gene cassettes is bounded
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at its ends by two inverted terminal repeats (ITRs). The
ITRs of rAAV are the only palindromic repeats carried
over from the wild type AAV. These ITRs are required as
they allow for episomal concatemerization, and thus
action of the drug. However, the ITRs of the AAV ser-
otype lack the promoter and the termination function,
which makes the presence of promoters and enhancers
necessary. Therefore, following the 5’ ITR, a promoter
sequence is incorporated in the drug. In the case of VN, it
is the ubiquitous CAG promoter (consisting of a CMV
enhancer and a chicken beta actin promoter). The job of
the promoter and enhancer sequence here is to stabilize
and increase the gene expression and transcription. This
is followed by the chicken beta actin exon and intron
which are necessary for gene regulation. Following this
the next portion of the gene cassette consists of the
RPE65 DNA which is the dysfunctional target in the
case of LCA. In VN, this DNA is a complimentary
DNA representing the human RPE65 gene, thus referred
to as hRPE65v2. Following the DNA target, the rAAV
gene cassette also requires a polyadenylation sequence.
The polyadenylation sequence is necessary for the stabi-
lity and expression of the gene product. In the case of
VN, this sequence is derived from the bovine growth
hormone. Lastly, the gene rAAV gene cassette contains
the 3'ITR. VN, therefore, pharmacologically reads as
ITR.CAG.RPE65v2.bGHpolA.ITR gene sequence har-
bored in a rAAV2 capsid. Other similar constructs
being evaluated for gene therapy for LCA are listed in
Table 3.'*

FDA Approval

On October 12, 2017, a committee dedicated to cell-tissue-
gene therapies discussed the efficacy and safety of VN.
Approval was given in December 2017 after all 16 mem-
bers voted in favor of the drug. Two-year outcomes of
MLMT were taken into account to judge the efficacy of
VN (Luxturna). The approval was given for patients with
retinal dystrophy due to RPE65 mutations.'® It is the first
FDA approved gene replacement therapy that uses AAV
vectors. The drug was priced at US$425,000 for each eye.

EU Approval

The European Commission (EC) approved VN on
November 23, 2018 as a one-time gene replacement ther-
apy for RPEG65 mutation related retinal dystrophy, pro-
The EC
decision was based on judgment of the committee that

vided some retinal function was present.

evaluates medical products intended for humans. In early
2018, Spark Therapeutics and Novartis entered into an
agreement for marketing VN in the rest of the world.'*?

Conclusion

Gene therapy for LCA with VN has matured to a level of
evidence-based success that inspires hopes for other IRDs
and non-ocular disorders. However, it also brings with
itself new challenges that need immediate addressal. At
the level of regional groups, these include individualizing
patterns of genetic defects in different ethnicities, training
retinal surgeons and ocular geneticists, provision of appro-
priate visual tests for monitoring, and economical aspects
of gene therapy. For researchers, the options of routes of
drug delivery is still open ended, especially with the
advent of the suprachoroidal approach. Subretinal delivery
is sophisticated and not an office-based procedure. Further,
due to the involvement of multiple genes, the approach to
each genotype needs to be refined, and gene augmentation
may not be the only solution. Specifically, in vivo gene
editing is likely to find a role in specific genotypes of
LCA. While AAV has currently become the approved
vector for subretinal gene delivery, its small capacity is
a hindrance and the capacity for transduction can be
improved further. The perfect promoter-gene combination
is yet elusive, and the size of promoter can be decreased to
allow more space for the gene cDNA. Some long-term
studies have shown visual and structural decline after early
improvement, which makes concerns over appropriately
timed re-administration in a previously treated eye
a reality. As retinal imaging continues to evolve with
advances like adaptive optics, outcome measures that are
simpler or universally available as against the MLMT may
be more pertinent. At the level of the patient, identification
of ideal candidates for gene therapy needs to be done very
cautiously, with emphasis on the stage of LCA, availability
of functioning photoreceptors, and choice of retinal area
for sub-retinal delivery. Judicious use of other rehabilita-
tive therapies simultaneously with gene therapy is impor-
tant, especially in the perspective of patient expectations
of outcomes.
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