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Abstract: Palmatine is a naturally occurring isoquinoline alkaloid with various pharmaco-
logical properties. Given its antioxidant and anti-inflammatory properties, palmatine may be 
able to impede the effects of metabolic syndrome (MetS) and its related diseases triggered by 
inflammation and oxidative stress. This review summarises the existing literature about the 
effects of palmatine supplementation on MetS and its complications. The evidence shows 
that palmatine could protect against MetS, and cardiovascular diseases, osteoporosis and 
osteoarthritis, which might be associated with MetS. These protective effects are mediated by 
the antioxidant and anti-inflammatory properties of palmatine. Although preclinical experi-
ments have demonstrated the efficacy of palmatine against MetS and its related diseases, no 
human clinical trials have been performed to validate these effects. This research gap should 
be bridged to validate the efficacy and safety of palmatine supplementation in protecting 
humans against MetS and its related diseases. 
Keywords: anti-inflammation, antioxidant, myocardial reperfusion injury, obesity, 
osteoporosis, osteoarthritis

Introduction
Metabolic syndrome (MetS) is a strong risk factor for type 2 diabetes, cardiovascular 
diseases and stroke, which carry high morbidity and threaten global health.1 Although 
the definition of MetS has evolved with time, it is usually identified by the presence of 3 
out of 5 metabolic anomalies, which include obesity, hyperglycaemia, dyslipidaemia 
[high triglycerides (TG) and low high-density lipoprotein cholesterol (HDL-c) and 
hypertension].2,3 Around 20–25% of the adult populations worldwide suffer from 
MetS.4 Data from National Health and Nutrition Examination Survey between 2003 
and 2012 revealed that the prevalence of MetS in the United States was 36.5% for 
women and 30.3% for men.5 A systematic review reported that the incidence of MetS 
in the Asia-Pacific regions was between 11.9% and 37.1%.6

Oxidative stress, characterised by an imbalance between oxidants and antioxidants in 
the body, plays a major role in the development of MetS.7 Increased biomarkers of 
oxidative stress and diminished antioxidant defences were detected in the blood of 
patients with MetS, suggesting overproduction of oxidising agents in vivo.8 This imbal-
ance involved enzymatic [superoxide dismutase (SOD) activity] and non-enzymatic 
antioxidant defences (circulating vitamin C and E), as well as increased oxidation 
products of proteins and lipids.8,9 Increased adipose/fat tissue observed in obesity can 
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trigger oxidative stress.10 Tissue hypoxia due to the inadequate 
blood supply is a complication in obesity, which triggers 
cellular necrosis, and migration and phagocytosis of cellular 
debris by white blood cells.11 The process will elevate oxida-
tive stress due to the release of free radicals, such as nitric 
oxide and hydrogen peroxide, which may worsen the existing 
metabolic condition of the patients.12–14 For example, blood 
pressure was positively associated with oxidative stress bio-
markers and negatively associated with the antioxidant status 
of patients.15 On the other hand, chronic inflammation insti-
gated by a hyperactive immune response is another contributor 
to MetS.16 Increased circulating pro-inflammatory cytokines, 
such as interleukin-6 (IL-6), tumour necrosis factor-alpha 
(TNF-α), and C-reactive protein (CRP), were reported in 
patients with MetS.17 These cytokines, produced by adipo-
cytes and white blood cells, bind to the respective receptors on 
target cells and trigger a cascade of signalling events leading to 
adverse metabolic changes.18

Natural compounds with anti-inflammatory and antioxi-
dant properties, such as vitamin C, E and resveratrol, are 
hypothesised to prevent or reverse MetS complications.19–21 

Palmatine is one of the candidate agents being investigated for 
its anti-MetS properties. Palmatine is a naturally-occurring 
quaternary protoberberine in the class of isoquinoline 
alkaloids.22,23 Structurally, it is an ammonium salt with four 
methoxyl moieties attached to the phenyl rings at C2 and C3 
position.24 The preventive and curative actions of palmatine 
on cancer, cardiac hypertrophy, diabetes and its complications, 
osteoporosis, osteoarthritis, Alzheimer’s disease and atopic 
dermatitis have been reported.24–26 The biological effects of 
palmatine could be attributed to its anti-inflammatory27–29 and 
antioxidant properties.30–32 Of note, palmatine is shown to 
suppress Toll-like receptor (TLR) signalling by downregulat-
ing the expression of TLR4, Toll/IL-1 receptor-domain- 
containing adaptor protein inducing interferon-β and nuclear 
factor-kappa B in goat endometrial epithelial cells.29 This 
event leads to increased synthesis of prostaglandins E2 and 
IL-10 but reduced synthesis of TNF-α, IL-1β, IL-6, nitric 
oxide, matrix metalloproteinase (MMP)-9 and MMP-2.29 

Therefore, the current review aims to summarise the effects 
of palmatine on MetS and its associated diseases.

The Effects of Palmatine on 
Components of MetS
Central obesity is a key feature of MetS. The excess nutri-
ents are stored in the adipose tissue as lipids, leading to 
hypertrophy of adipocytes and increased fat mass.33 Weight 

reduction through lifestyle, dietary, pharmacological and 
surgical interventions are often prescribed to patients with 
MetS.34,35 The antiadipogenic activities of palmatine have 
been demonstrated in in vitro and in vivo models. Choi et al 
reported that 3T3-L1 pre-adipocytes treated with palmatine 
(12.5, 25 and 50 µM) for 24 hrs showed reduced lipid 
accumulation compared to the untreated cells during 
differentiation.36 Expression of proliferator-activated 
receptor-γ (PPAR-γ) and CCAAT/enhancer-binding pro-
tein-α (C/EBP-α) was also reduced with palmatine treat-
ment, which signifies a reduction in adipogenesis. These 
positive findings justify further investigation into the anti- 
obesity effects of palmatine.

In an animal study by Ning et al, 4-week old Syrian 
golden hamsters with hyperlipidemia induced by with high- 
fat diet (HFD) showed reduced body weight, serum total 
cholesterol (TC), TG, and low-density lipoprotein choles-
terol (LDL-c) after being treated with palmatine (23.35, 
46.70 and 70.05 mg/kg/day) for four weeks.37 Palmatine 
increased the expression of low-density lipoprotein receptor 
(LDLR) and cholesterol 7α-hydroxylase (CYP7A1), which 
mediate the endocytosis of cholesterol and the conversion 
of cholesterol to bile acid, respectively.38–41 It also 
decreased apical sodium-dependent bile acid transporter 
(ASBT) mRNA and protein expression in these hamsters, 
which subsequently reduces the bile acid reabsorption in the 
intestine and increases the excretion of total bile acids in the 
faeces.42,43 Besides, CYP7A1 also will be upregulated to 
compensate for the low bile acid level by converting it to 
cholesterol.44

Similarly, in another study by He et al, 5-week old 
Syrian golden hamsters with hyperlipidemia induced by 
high-fat high-cholesterol diet were treated with palmatine 
(46.7 mg/kg/day for 140 days).45 The treated hamsters 
showed reduced body weight and epididymal adipose 
weight, improved lipid profile and increased LDLR and 
CYP7A1 mRNA and protein expression. Additionally, pal-
matine supplementation also reduced 3-hydroxy-3-methyl 
glutaryl coenzyme A reductase (HMGCR) mRNA and pro-
tein expression and increased uncoupling protein (UCP)-2 
mRNA expressions.45 HMGCR is the rate-limiting enzyme 
in the mevalonate pathway responsible for cholesterol 
synthesis.46 A decrease in HMGCR expression suggests 
a reduction in cholesterol production.47,48 UCP-2 is 
a mitochondrial protein involved in thermogenesis and 
energy expenditure.49 An increase in UCP-2 expression is 
associated with a reduction in body weight due to improved 
energy metabolism.50
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In another study by Ma et al, female KK-Ay mice with 
hyperlipidemia and hyperglycemia induced by HFD 
showed a decrease in serum TC, TG and LDL-c but an 
increase in HDL-c after being treated with palmatine (25, 
50, 100 mg/kg/day) for 40 days.51 11-hydroxypalmatine 
(100 mg/kg/day) derived from tubers of Stephania glabra 
also reduced blood glucose level in alloxan-induced dia-
betic Swiss albino mice.52 Palmatine (10 mg/kg for 6 
weeks) also reduced blood glucose and increased insulin 
in streptozocin-induced diabetic rats.32 These changes 
were attributed to reduced oxidative stress, marked by 
the lowering of malondialdehyde (MDA) and nitrite levels 
and the increasing of SOD activity.32 However, 24 hrs of 
palmatine treatment (up to 14.6 µM) inhibited the glucose 
uptake in HepG2 cells via a non-concentration-dependent 
manner51 which suggest the hypoglycaemic properties of 
palmatine may not be related to glucose transportation or 
insulin sensitivity.

An overview of the effects of palmatine on components 
of MetS is presented in Table 1. Overall, palmatine sup-
plementation attenuated the adverse effects associated with 
MetS. The cellular studies showed that palmatine could 
suppress the formation of adipocytes. Palmatine could also 
reduce cholesterol production and reabsorption, as well as 
enhancing energy metabolism, thereby improving lipid 
profile in animals. A general limitation for the in vivo 
studies is the absence of a positive control group, ie, 
pharmacological treatment for MetS. Therefore, the effects 
of palmatine and the standard treatment cannot be com-
pared. Besides, clinical trial validating the effect of palma-
tine on MetS is absent in the literature. These research 
gaps should be considered in future studies.

The Effects of Palmatine on 
Cardiovascular Diseases Associated 
with MetS
MetS is a significant risk factor for myocardial infarction, 
a common obstructive heart disease and one of the leading 
causes of death in developed countries.53 Apart from the 
pro-atherogenic environment, the pro-inflammatory and 
pro-oxidative conditions of MetS could damage the 
blood vessel wall, triggering coronary microvascular 
dysfunction.54,55 Insufficient supply of blood and oxygen 
to the heart is the initial cause of cardiac damage, thus an 
immediate blood supply restoration is crucial in minimising 
myocardial injury. However, sudden reperfusion causes 

tissue damage despite the restored blood flow, thereby wor-
sening the initial ischemic injury.56

The cardioprotective effects of palmatine have been 
reported in several studies. In a study by Kim et al, lipopo-
lysaccharides (LPS)-stimulated RAW 264.7 cells treated 
with palmatine (1, 5, 10 µM for 16 hours) showed decreased 
high mobility group box 1 (HMGB1) release compared to the 
untreated LPS-stimulated cells.31 HMGB1 regulates the acti-
vation of neutrophils during inflammation.57 The reduction 
in HMGB1 by palmatine suggests that it could reduce inflam-
mation during MI by lowering the influx of neutrophils into 
the dying tissues.31 Human aortic endothelial cells (HAEC) 
treated with palmatine (1, 2, 5 and 10 µM for 8 hours) also 
showed increased heme oxygenase-1 (HO-1) with antioxi-
dant and anti-inflammatory properties.31 Together, these 
observations imply the potential effects of palmatine in redu-
cing inflammatory damage to the myocardium during myo-
cardial infarction.

In an animal study by Kim et al, male Sprague Dawley 
rats with ischemic reperfusion (I/R)-mediated acute myo-
cardial infarction were treated with palmatine (25 and 
50 mg/kg) 1 hr before ischemia.31 Reduced MDA and 
increased SOD and catalase (CAT) activities suggestive 
of reduced oxidative stress were observed in I/R rats 
with palmatine treatment.31 Palmatine treated I/R rats 
also showed reduced lactate dehydrogenase (LDH) and 
creatine phosphokinase (CK), which are intracellular 
metabolic enzymes of cardiomyocytes elevated after 
infarction.31 Palmatine also increased the first derivative 
(±dp/dt) of left ventricular pressure and reduced infarct 
size of the heart.31 In the myocardial tissues of I/R rats, 
cyclooxygenase-2 (COX-2) and inducible NO synthase 
(iNOS) expression were reduced with palmatine supple-
mentation, suggestive of decreased inflammation in I/ 
R-mediated myocardial infarction.31

Taken together, palmatine is effective in reducing myo-
cardial injury by suppressing inflammatory and oxidative 
damage associated with reperfusion in animal models. It 
could be used as an adjuvant to the standard therapy in the 
management of myocardial infarction. However, its puta-
tive use should be validated in a human clinical trial.

The Effects of Palmatine on 
Musculoskeletal Disorder 
Associated with MetS
Osteoporosis is a degenerative bone disease that can be 
triggered by low-grade inflammation and oxidative stress. 
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Table 1 Protective Effect of Palmatine on MetS Components

Researcher Study Design Findings

Cell Culture Studies

Choi et al 

201436

Cell line: 3T3-L1 mouse pre-adipocytes 

Mode of disease/model induction: Adipocyte differentiation 

Treatment: 12.5, 25 and 50 µM palmatine for 24 hrs 

NC: Untreated cells 

DC: Cells with adipocyte differentiation media 

PC: n.a.

↓ lipid accumulation, PPAR-γ and C/EBP-α compared to DC

Ma et al 

201651

Cell line: Human liver cancer HepG2 cells 

Mode of disease/model induction: none 

Treatment: 0.584, 2.92, 14.6 µM of palmatine for 24 hrs 

NC: Untreated cells 

PC: Metformin (0.2–5 µg/mL)

Inhibit glucose uptake in non-concentration dependent manner

Animal Studies

Ning et al 

201537

Animals: 60 male Syrian golden hamsters (4 weeks old, 100 ± 5 g) 

Mode of disease induction: HFD-induced hyperlipidaemia 

Treatment: HFD with 23.35, 46.70 and 70.05 mg/kg/day of palmatine 

for 4 weeks 

NC: Distilled water 

DC: HFD group 

PC: 1.2 mg/kg/day of simvastatin for 4 weeks

↓ HFD-induced body weight gain and upregulation of serum TC, TG 

& LDL-c in a dose-dependent manner 

NS for HDL-c level compared to DC 

Further ↑ faecal excretion of TC and TBA compared to DC 

Restore HFD-induced downregulation of LDLR and CYP7A1 mRNA 

and protein expression 

↓ HFD-induced upregulation of ASBT 

NS for HMGCR mRNA and protein expression on DC or palmatine 

groups compared to NC

He et al 

201645

Animals: 54 male Syrian golden hamsters (5 weeks old, 100 ± 10 g) 

Mode of disease induction: HFHC-induced hyperlipidemia 

Treatment: 46.70 mg/kg/day of palmatine for 140 days 

NC: Distilled water 

DC: HFHC group 

PC: 1.2 mg/kg/day of orlistat for 140 days

↓ body weight and epididymal adipose weight gain compared to DC 

↓ HFHC-induced upregulation of serum TC and LDL-c 

Further ↑ serum HDL-c and faecal excretion of TC & TBA compared 

to DC 

↓ HMGCR and ↑ LDLR, CYP7A1 and UCP-2 mRNAs and proteins 

expression compared to DC

Ma et al 

201651

Animals: Female KK-Ay mice (8 weeks old, 40 ± 5 g) 

Mode of disease induction: HFD-induced diabetes 

Treatment: 25, 50, 100 mg/kg/day of palmatine for 40 days 

NC: n.a. 

DC: 0.9% saline 

PC: 0.32 mL of 225 mg/kg/day of metformin for 40 days

↓ serum TC, TG and liver/body weight ratio and ↑ HDL-c compared 

to DC 

↓ water intake but NS for body weight gain, food consumption, urine 

output, fasting blood glucose, postprandial blood glucose and LDL-c 

levels compared to DC

Semwal et al 

201052

Animals: Swiss albino mice of either sex (35–50 g) 

Mode of disease induction: Alloxan-induced diabetes 

Treatment: 25, 50, and 100 mg/kg 11-hydroxypalmatine 

NC: 0.9% saline without alloxan 

DC: 60 mg/kg alloxan intravenous injection 

PC: 5 mg/kg/day of glibenclamide for 24 hours on diabetic mice

↓ blood glucose level compared to NC

Pakseresht 

et al 201632

Animals: 32 male Wistar rats (35–50 g) 

Mode of disease induction: STZ-induced diabetes 

Treatment: 10 mg/kg/day of palmatine for 6 weeks 

NC: no treatment 

DC: Intraperitoneal STZ injection (55 mg/kg) 

PC: n.a.

↓ STZ-induced hyperglycaemia and ↑ STZ-induced hypoinsulinemia 

Restore STZ-induced upregulation of nitric oxide activity and 

downregulation of SOD level

Abbreviations: ↓, decrease or downregulate; ↑, increase or upregulate; ASBT, apical sodium-dependent bile acid transporter; C/EBP-α, CCAAT/enhancer-binding protein- 
α; CYP7A1, cholesterol 7α-hydroxylase; DC, disease control/model; HDL-c, high-density lipoprotein cholesterol; HFD, high-fat diet; HFHC, high-fat high-carbohydrate diet; 
HMGCR, 3-hydroxy-3-methyl glutaryl coenzyme A reductase; LDL-c, low-density lipoprotein cholesterol; LDLR, low-density lipoprotein receptor; MDA, malondialdehyde; 
n.a., not available; NC, negative control; NS, not significant; PC, positive control; PPAR-γ, proliferator-activated receptor-γ; SOD, superoxide dismutase; STZ, streptozotocin; 
TBA, total bile acids; TC, total cholesterol; TG, triglyceride; UCP-2, uncoupling protein-2.
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Pro-inflammatory cytokines, such as TNF-α and IL-1, 
increase the production of receptor activator of nuclear 
factor-kB ligand (RANKL), which promote osteoclast for-
mation and activation.58,59 They also suppress apoptosis 
and prolong the lifespan of osteoclasts.60 Reactive oxygen 
species (ROS) trigger phosphorylation and degradation of 
nuclear factor-kappa B inhibitor, leading to the activation 
of nuclear factor-kappa B, thereby promoting osteoclast 
formation and activity.61 ROS also induce apoptosis of 
osteoblasts by activating mitogen-activated protein kinases 
(MAPKs), such as extracellular signal-regulated kinases, 
c-Jun-N terminal kinase and p38.62,63 Altogether, these 
changes lead to altered bone remodelling favouring bone 
loss.

The simultaneous presence of inflammation and oxida-
tive stress in MetS could potentially result in osteoporosis. 
The increase in adipocyte differentiation in bone marrow 
prevents osteoblast differentiation because they are derived 
from a common progenitor, the multipotential mesenchy-
mal stem cells.64 Adipose tissue is a significant source of 
pro-inflammatory cytokines which triggers bone resorption 
via mechanisms mentioned above.65,66 Products of lipid 
oxidation in dyslipidaemia induce oxidative stress on osteo-
blast and prevent their differentiation but activate PPAR-γ 
signalling and promote adipocyte differentiation.16 In 
hypertension, competition between sodium and calcium 
ions reduces calcium reabsorption in the renal proximal 
tubule and contributes to increased urinary excretion of 
calcium.16 In hyperglycaemia, the accumulation of 
advanced glycosylation end products (AGEs) in collagen 
could suppress bone remodelling and reduce bone quality, 
leading to increased fracture risk.16,67,68

In a study by Ishikawa et al, palmatine (1, 5, 10, 40 and 
100 μM for five days) decreased the number of osteoclasts 
formed from RAW 264.7 macrophages and bone resorption 
activity indicated by the reduction of total pit formation and 
fluorescent intensity of conditioned media.69 Ishikawa et al 
also studied the effects of palmatine (1, 5, 10, 40, 100 and 
200 μM for 3 days) on LPS-stimulated MC3T3-E1 pre- 
osteoblasts.70 Palmatine decreased RANKL and osteoprote-
gerin (OPG) levels in culture supernatants of LPS-stimulated 
MC3T3-E1 pre-osteoblasts.70 Similarly, the RANKL and 
OPG mRNAs expression of palmatine-treated pre- 
osteoblasts also reduced compared to untreated LPS- 
stimulated pre-osteoblasts.70 In another study, RAW264.7 
cells, mouse clonal stromal cells from bone marrow (ST2 
cells), bone marrow cells (BMCs) and bone marrow 
macrophages (BMMs) were induced with RANKL or 1α,25- 

dihydroxyvitamin D3 to form osteoclasts followed by pal-
matine treatment (1, 10, 20 and 40µM) for 1 hr.27 Palmatine 
lowered pit formation and actin ring formation in 1α,25- 
dihydroxyvitamin D3-treated BMC and ST2 co-culture.27 

RANKL (but not OPG and macrophage colony-stimulating 
factor) mRNA expression was also reduced upon palmatine 
treatment in 1α,25-dihydroxyvitamin D3-stimulated ST2 
cells.27,71 Palmatine, however, did not significantly reduce 
the osteoclast formation in RANKL-treated BMMs.27 

Ishikawa et al validated the in vitro findings using ICR 
female mice with bilateral ovariectomy (OVX)-induced 
osteoporosis.70 They were treated with 1 and 10 mg/kg/day 
of palmatine for 13 weeks.70 The results showed that palma-
tine treatment reduced osteoclast number, serum RANKL, 
OPG and RANKL/OPG ratio in OVX-treated mice.70 These 
results suggest that palmatine may be able to prevent osteo-
porosis by reducing bone turnover.70 However, the effects of 
palmatine on bone in animal models of MetS have not been 
established. Further studies should consider validating the 
antiosteoporotic effects of palmatine using animal models 
induced by high-fat high-carbohydrate diet, which has been 
shown to induce deterioration of bone mass, structure and 
strength.18,20

Osteoarthritis is a degenerative joint disease marked by 
deterioration in articular cartilage, subchondral bone 
sclerosis and formation of osteophyte with significant clin-
ical signs, such as chronic pain, joint instability, stiffness, 
and radiographic joint space narrowing.72 In 2015, the 
World Health Organization estimated that 9.6% of people 
≥60 years suffered from symptomatic osteoarthritis.73 

MetS is one of the primary risk factors of osteoarthritis, 
apart from age and joint injury.74 Apart from increasing 
mechanical loading to the joint, obesity is associated with 
increased leptin production, which promotes inflammation 
and MMP synthesis.75,76 Cartilage degradation at the joint 
leads to localised inflammation and promote the further 
breakdown of cartilage through MMPs, forming a vicious 
cycle.77

According to Zhou et al, IL-1β-activated proline chon-
drocytes treated with palmatine (10, 25, 50, and 100 mg/L 
for 6 hrs) showed decreased MMP-1, MMP-3, and MMP- 
13, and increased expression of tissue inhibitor of MMP 
(TIMP)-1, collagenase II, aggrecan and Dickkopf-related 
protein 1 (DKK-1).78 These changes were attributable to 
decreased expression of β-catenin, glycogen synthase 
kinase-3β (GSK-3β), Indian hedgehog (Ihh), sonic hedge-
hog (Shh) and Gli-2 caused by palmatine treatment.78 

These effects of palmatine were found similar when 
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Table 2 Health Benefits of Palmatine Related to the Cardiovascular and Musculoskeletal System

Researcher Study Design Findings

Cardioprotective activity

Kim et al 

200931

Cell lines: Human aortic endothelial HAEC and murine 

macrophage RAW 264.7 cells 
Mode of disease induction: LPS-induced inflammation (RAW 

264.7 cells) 

Treatment: 1, 2, 5, 10 µM of palmatine for 8 hrs (HAEC) or 
16 hrs (RAW 264.7 cells) 

NC: Untreated cells 

PC: 1 µg/mL LPS-induced cells (RAW 264.7 cells) 
Negative: no treatment 

PC: n.a.

↑ HO-1 expression in HAEC cells via a concentration-dependent 

manner 
↓ LPS-induced HMGB1 release in RAW264.7 cells via 

a concentration-dependent manner and restore to baseline level at 

10 µM

Kim et al 

200931

Animals: Male Sprague–Dawley rats (200–250 g) 

Mode of disease induction: I/R-mediated acute myocardial 
injury 

Treatment: 25 and 50mg/kg of palmatine 1 hr before ischemia 

NC: Sham with 0.25 mL DMSO 1 hr before ischemia 
DC: 30 mins ischemia followed by either 6h reperfusion 

(biochemical analysis) or 24 hrs reperfusion (infarct size and 

heart function) 
PC: n.a.

Restore I/R-increased LVEDP to baseline 

↑ I/R-reduced ±dp/dt of left ventricular pressure 
↓ infarct size compared to DC 

↓ I/R-upregulated serum MDA, LDH, CK and ↑ I/R-reduced SOD 

and CAT activities 
↓ I/R-upregulated COX-2 and iNOS protein expressions in 

myocardial tissues

Antiarthritic activity

Zhou et al 

201678

Cell line: Primary rabbit chondrocytes 

Mode of disease induction: IL-1β-induced OA 
Treatment: 29.20, 73.01, 146.02, and 292.05 µM palmatine 

for 6 hrs pre-treatment 

NC: Untreated cells 
DC: 24 hrs of 10 ng/mL IL-1β 
PC: n.a.

↑ IL-1β-downregulated TIMP, collagenase II, aggrecan and DKK-1 

mRNAs and ↓ IL-1β-upregulated MMP-1, MMP-3, MMP-13, β- 
catenin, GSK-3β, Ihh, Shh and Gli-2 mRNAs in a concentration- 

dependent manner 

↓ β-catenin, Ihh & Shh mRNAs compared to NC 
↑ IL-1β-downregulated TIMP protein expression and ↓ IL-1β- 

upregulated MMP-3, β-catenin, Ihh, Shh and Gli-2 protein levels in 

a concentration-dependent manner

Zhou et al 

201678

Animals: 21 New Zealand rabbits weighing (4-week-old, 

2.0–2.5 kg) 
Mode of disease induction: bilateral ACLTs-induced OA 

Treatment: 0.3 mL articular injection of 100 mg/L/week of 

palmatine for 5 weeks 
NC: 0.3 mL of D-Hanks Balanced Salt Solutions 

DC: OA by ACLTs on knee joints 

PC: n.a.

↑ TIMP-1 mRNA compared to DC and NC groups 

↓ OA-upregulated MMP-3, β-catenin, Ihh, Shh, Gli-2, and TNF-α 
mRNAs ↓ OA-upregulated MMP-3, β-catenin, Ihh, Shh, Gli-2, and 

TNF-α mRNAs 

↓ OA-upregulated β-catenin, Shh and Gli-2 protein expression in 
articular cartilage via immunohistochemical staining 

↓ erosion and osteophyte formation compared to DC 

↓ cartilage degradation compared to DC

Antiosteoporotic activity

Lee et al 

201027

Cell lines: RAW264.7, BMCs, ST2 cells and BMMs NS for RANKL-induced osteoclast formation in mouse BMMs

Lee et al 

201071

Mode of disease induction: 1α,25-dihydroxyvitamin D3- 

induced osteoclastogenesis 

Treatment: 1, 10, 20 and 40 µM of palmatine for 1 hr 
NC: Untreated cells 

DC: RANKL or 1α,25-dihydroxyvitamin D3-treated cells 

PC: n.a.

↓ RANKL (NS for OPG & M-CSF) mRNA expression in ST2 cells 

compared to DC 

Inhibit pit formation and actin ring formation by BMCs and ST2 co- 
culture compared to DC

(Continued)
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chondrocytes co-treated with IL-1β and DKK-1 (the Wnt/ 
β-catenin signalling inhibitor).78 The co-incubation of 
cyclopamine (a Hedgehog signalling inhibitor) further 
enhanced the palmatine-mediated downregulation of 
GSK-3β, Ihh, Shh and Gli-2, suggestive the possibly inhi-
bition of both Wnt/β-catenin and Hedgehog signalling 
pathways upon palmatine treatment.78 These changes 
were validated by Zhou et al in an in vivo model, whereby 
decreased expressions of MMP-3, β-catenin, Ihh, Shh, Gli- 
2 and TNF-α with concomitant increased of TIMP-1 
expression were observed in New Zealand rabbits with 
bilateral anterior cruciate ligament transections (ACLTs)- 
induced osteoarthritis and treated with palmatine (0.3 mL 
articular injection of 100 mg/L/week for five weeks).78 

Histologically, palmatine decreased erosion, osteophyte 
formation and cartilage degradation in the joints of the 
treated osteoarthritic rabbits.78 These results suggest that 
palmatine may possess antiarthritic effects through reduc-
tion/inhibition of inflammatory mediators with the inhibi-
tion of Wnt/β-catenin and Hedgehog signalling 

pathways.78 The effectiveness of palmatine on MetS- 
induced osteoarthritis model remains hypothetical due to 
the absence of animal models mimicking this process.

The detailed health benefits of palmatine have been 
summarised in Table 2. Figure 1 summarises the protective 
effects of palmatine on MetS and its associated diseases.

Safety Evaluations of Palmatine
Similar to other isoquinoline alkaloids, palmatine can bind to 
DNA through groove-binding mechanism by forming hydro-
gen and van der Waals bonds.79 Other studies demonstrated 
that palmatine binds to poly (A) and tRNA,80,81 adenine- 
thymine homo and hetero polymers through the 
intercalation.82 It also binds preferentially to DNAs that 
have a long sequence of AT base pairs.83 Besides, it exerts 
phototoxic effects by generating singlet molecular oxygen 
after forming complexes with DNA in water solution after 
photosensitization. The singlet molecular oxygen causes 
guanine photooxidation, and eventually cleavage of DNA 
structure.84 These phenomena contribute to the anticancer 

Table 2 (Continued). 

Researcher Study Design Findings

Ishikawa 

et al 201570

Cell line: MC3T3-E1 cells 

Mode of disease induction: LPS induction 

Treatment: 1, 5, 10, 40, 100, and 200 μM of palmatine for 3 
days 

Negative: no treatment 

NC: Untreated cells 
DC: 1 µg/mL LPS for 24 hrs 

PC: n.a.

↓ LPS-upregulated RANKL and OPG levels in culture supernatants 

and their mRNAs expression

Ishikawa 

et al 201669

Cell lines: RAW 264.7 and MC3T3-E1 cells 

Treatment: 1, 5, 10, 40 and 100 μM of palmatine for 5 days 

NC: Untreated co-culture 
DC: no 

PC: n.a.

↓ osteoclast number compared to NC 

↓ bone resorption activity with the reduced total pit formation and 

fluorescent intensity of conditioned media compared to NC

Ishikawa 

et al 201570

Animals: Pathogen-free ICR female mice (7-week-old) 

Mode of disease induction: OVX-induced OP model 

Treatment: Daily gavage of 1 and 10 mg/kg/day of palmatine 
for 13 weeks 

NC: Sham operation mice 

DC: Bilaterally ovariectomised mice 
PC: n.a.

↓ OVX-mediated upregulation of osteoclast number, serum 

RANKL, OPG and RANKL/OPG ratio in a dose-dependent 

manner

Abbreviations: ↓, decrease or downregulate; ↑, increase or upregulate; ±dp/dt, first derivative; ACLTs, anterior cruciate ligament transections; BMMs, bone marrow 
macrophages; CAT, catalase; CK, creatine phosphokinase; COX-2, cyclooxygenase-2; DC, disease control/model; DKK-1, Dickkopf-related protein 1; DMSO, dimethyl 
sulfoxide; GSK-3β, glycogen synthase kinase-3β; HEAC, human aortic endothelial cells; HMGB1, high mobility group box 1; HO-1, heme oxygenase-1; Ihh, Indian hedgehog, 
IL-1β, interleukin-1β; iNOS, inducible NO synthase; I/R, ischemia/reperfusion; LDH, lactate dehydrogenase; LPS, lipopolysaccharride; MDA, malonaldehyde; MMP-3, matrix 
metalloproteinases-3; n.a., not available; NC, negative control; NS, not significant; OA, osteoarthritis; OP, osteoporosis; OPG, osteoprotegerin; OVX, ovariectomy; PC, 
positive control; RANKL, receptor activator of nuclear factor-kB ligand; Shh, Sonic hedgehog; SOD, superoxide dismutase; ST2, mouse stromal cells from bone marrow; 
TIMP-1, tissue inhibitors of metalloproteinases; TNF-α, tumor necrosis factor-α.

Drug Design, Development and Therapy 2020:14                                                                       submit your manuscript | www.dovepress.com                                                                                                                                                                                                                       

DovePress                                                                                                                       
4969

Dovepress                                                                                                                                                          Ekeuku et al

Powered by TCPDF (www.tcpdf.org)

http://www.dovepress.com
http://www.dovepress.com


activity of palmatine. As evidence, palmatine is reported to 
cause singlet oxygen generation and DNA fragmentation in 
human skin epithelial carcinoma cells in a dose- and time- 
depend manner.85 Similar to cisplatin, a DNA-intercalating 
agent,86 the mutagenic potential of palmatine can cause 
cellular damage in normal cells and induce secondary malig-
nancy. However, this safety aspect of palmatine has not been 
explored using normal cells/animal models.

In a study by Yi et al, half-maximal inhibitory concentra-
tions of palmatine on 3T3-L1 and HepG2 cells were 84.32 
and 112.80 µg/mL, respectively.87 An acute toxicity study 
showed a median lethal dose (LD50) of 1533.68 mg/kg in 
mice.87 In the subchronic toxicity study, no irregularities in 
clinical signs, body and organ weight, haematological para-
meters, gross necropsy and histopathology were observed 

following oral administration of palmatine in rats (156 mg/ 
kg; 5 female/5 male for 90 days).87 All pharmacological 
studies reviewed in previous sections did not report mortality 
following palmatine supplementation.87 Thus, palmatine is 
safe within the therapeutic range but this speculation needs to 
be validated in human studies. One of the highest doses used 
for MetS prevention in the reviewed studies is 100 mg/kg in 
mice.51,52 After translation using Reagan-Shaw formula,88 

this dose is equivalent to 486.5 mg for a 60-kg human, which 
is feasible for supplementation in humans.

Berberine, an isoquinoline alkaloid belonging to the 
same group as palmatine, has been demonstrated to have 
the potential to treat MetS and osteoporosis.89–91 

Comparison of the therapeutic potential between berberine 
and palmatine against MetS and its complications is 

Figure 1 The protective effects of palmatine on MetS and the associated diseases. 
Abbreviations: ↓, decrease or downregulate; ↑, increase or upregulate; ┬, inhibit or suppress; AGEs, advanced glycosylation end products; ASBT, apical sodium-dependent 
bile acid transporter; CAT, catalase; COX, cyclooxygenase; C/EBP-α, CCAAT/enhancer-binding protein-α; HDL-c, high-density lipoprotein cholesterol; HFD, high fat diet; 
HMGB1, high mobility group box 1; HMGCR, 3-hydroxy-3-methyl glutaryl coenzyme A reductase; HO-1, heme oxygenase −1; iNOS, inducible NO synthase; Ihh, Indian 
hedgehog; LDL-c, low-density lipoprotein cholesterol; LDLR, low-density lipoprotein receptor; MAPKs, mitogen-activated protein kinases; MI, myocardial infarction; MMP, 
matrix metalloproteinases; NFκB, nuclear factor kappa B; O2, oxygen; OA, osteoarthritis; OP, osteoporosis; OPG, osteoprotegerin; PAL, palmatine; PPAR-γ, proliferator- 
activated receptor-γ; RANKL, receptor activator of nuclear factor-kB ligand; Shh, Sonic hedgehog; SOD, superoxide dismutase; TG, triglyceride; TIMP-1, tissue inhibitors of 
metalloproteinases 1; TNF-α, tumor necrosis factor-α; UCP-2, uncoupling protein-2.
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limited, thus it is unsure which compound is more effica-
cious. In term of toxicity, the LD50 of berberine (oral 
administration) in mice is 329 mg/kg,92 and a dose as 
low as 10 mg/kg (intraperitoneal administration) sup-
pressed cellular and humoral immune functions in 
BALB/c mice.93 Therefore, it could be more toxic than 
palmatine.

Palmatine is a substrate for P-glycoprotein (P-gp; an 
excretion transporter/efflux pump), but not for multidrug 
resistance-associated protein-2, which may justify its rela-
tive poor bioavailability.94 Consequently, combining pal-
matine with P-gp substrates at this particular concentration 
range did not affect its intestinal absorption.94,95 In dia-
betic rats, the level of P-gp protein decrease in the small 
intestine, which could significantly improve palmatine’s 
intestinal permeability.96,97 This effect can help patients 
with insulin resistance in absorbing palmatine. However, 
delivering this drug in sufficient concentration to exert its 
systemic effects remains a challenge.

Conclusion
The evidence reviewed suggests that palmatine possesses 
therapeutic effect against MetS and its related disorders 
like cardiovascular disease, osteoporosis and osteoarthritis. 
Despite the generally positive effects derived from preclini-
cal studies, there is a lack of human clinical trial to validate 
these findings. For this reason, well-planned human clinical 
trials should be conducted to bridge this research gap.
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