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Abstract: Rheumatoid arthritis (RA) is an autoimmune disorder that affects joints and is 
characterized by synovial hyperplasia and bone erosion associated with neovascularization and 
infiltration of proinflammatory cells. The introduction of biological disease-modifying anti- 
rheumatic drugs has dramatically changed the treatment of RA over the last 20 years. However, 
fewer than 50% of RA patients enter remission, and 10–15% are treatment refractory. There is 
currently no cure for RA. Fractalkine (FKN, also known as CX3CL1) is a cell membrane-bound 
chemokine that can be induced on activated vascular endothelial cells. FKN has dual functions as 
a cell adhesion molecule and a chemoattractant. FKN binds specifically to the chemokine receptor 
CX3CR1, which is selectively expressed on subsets of immune cells such as patrolling monocytes 
and killer lymphocytes. The FKN–CX3CR1 axis is thought to play important roles in the initiation 
of the inflammatory cascade and can contribute to exacerbation of tissue injury in inflammatory 
diseases. Accordingly, studies in animal models have shown that inhibition of the FKN–CX3CR1 
axis not only improves rheumatic diseases but also reduces associated complications, such as 
pulmonary fibrosis and cardiovascular disease. Recently, a humanized anti-FKN monoclonal anti-
body, E6011, showed promising efficacy with a dose-dependent clinical response and favorable 
safety profile in a Phase 2 clinical trial in patients with RA (NCT02960438). Taken together, the 
preclinical and clinical results suggest that E6011 may represent a new therapeutic approach for 
rheumatic diseases by suppressing a major contributor to inflammation and mitigating concomitant 
cardiovascular and fibrotic diseases. In this review, we describe the role of the FKN–CX3CR1 axis 
in rheumatic diseases and the therapeutic potential of anti-FKN monoclonal antibodies to fulfill 
unmet clinical needs. 
Keywords: fractalkine, CX3CR1, humanized anti-fractalkine monoclonal antibody (E6011), 
CD16+ monocyte, rheumatic diseases

Introduction
Rheumatoid arthritis (RA) is a chronic autoimmune disorder that primarily affects 
joints. The disease is characterized by synovial hyperplasia and bone erosion 
associated with neovascularization, infiltration of proinflammatory cells, and 
increased cytokine production. These pathological inflammatory features are gen-
erated locally by the selective invasion and accumulation of immune cells in the 
lesion.1 The step-wise process by which immune cells are recruited from the blood, 
extravasate through interactions with vascular endothelial cells, and migrate into 
tissue is a tightly regulated process involving a number of chemotactic factors and 
cell adhesion molecules.2

Chemokines are a family of molecules that play important roles in the migra-
tion of leukocytes through binding to specific cell-surface receptors.3 The 
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approximately 50 members of the chemokine family are 
classified into CC, CXC, CX3C, and C subfamilies,3 

whereas the 19 known chemokine receptors are all mem-
bers of the G protein-coupled 7-transmembrane superfam-
ily of receptors.3,4 The first step of leukocyte migration to 
sites of inflammation involves transient and weak selec-
tin-mediated interactions between rolling leukocytes and 
vascular endothelial cells (Figure 1A). Next, integrins 
expressed by leukocytes are activated by chemokines 
presented on glycosaminoglycans. This is followed by 
firm adhesion of the leukocytes to the endothelium, 

extravasation, and transmigration into the tissue, where 
the cells move along a chemoattractant gradient towards 
the site of inflammation (Figure 1A).5–8 The soluble form 
of macrophage inflammatory protein-1β (MIP-1β) is one 
example of a chemokine that induces firm adhesion of 
T cells to endothelial cells. We reported that MIP-1β 
immobilized by binding to cell-surface proteoglycans 
induces integrin-mediated adhesion of T cells much 
more efficiently than does soluble MIP-1β. At one time, 
chemokines were thought to be exclusively secreted as 
soluble molecules that were indispensable to forming 

Figure 1 Classical and Fractalkine–CX3CR1-Mediated Pathways of Leukocyte Recruitment to Inflamed Tissue. (A) Model of the classical pathway for leukocyte 
extravasation into sites of inflammation via an adhesion and transmigration cascade. Leukocytes adhere to the endothelial layer through selectins (tethering and rolling), 
which is followed by engagement of chemokine receptors and integrin activation (firm adhesion), and transmigration into the underlying tissue. (B) Model of the involvement 
of fractalkine-mediated pathways in the adhesion and transmigration of CX3CR1high leukocytes from the circulation into inflamed tissue. Fractalkine–CX3CR1 engagement 
enhances the transient capture and attachment of leukocytes to endothelial cells, which is followed by crawling/firm adhesion (activation of integrins by chemokines), 
production of inflammatory cytokines, and transmigration through the endothelial layer to the sites of inflammation. 
Abbreviations: TNF-α, tumor necrosis factor-α; IL-6, interleukin-6; KC, keratinocyte chemoattractant; MCP-1, macrophage chemoattractant protein-1.

submit your manuscript | www.dovepress.com                                                                                                                                                                                                                    

DovePress                                                                                                                                                         

ImmunoTargets and Therapy 2020:9 242

Tanaka et al                                                                                                                                                           Dovepress

http://www.dovepress.com
http://www.dovepress.com


a local chemokine gradient via binding to proteoglycans;9 

however, it is now known that chemokines are also 
synthesized as membrane-bound molecules that do not 
interact with proteoglycans.4

Fractalkine (FKN, also known as CX3CL1) is the only 
known member of the CX3C chemokine family and is 
a functionally unique membrane-bound chemokine pos-
sessing multiple biological functions.2 Auffray et al 
showed that FKN–CX3CR1 interactions enable a subset 
of monocytes, known as patrolling cells, to crawl along 
the resting endothelium in a manner dependent on both 
FKN and the integrin LFA-1.10 Under inflammatory con-
ditions, binding of FKN to CX3CR1 plays multiple roles 
in maintaining immune homeostasis by supporting the 
movement of patrolling monocytes on vascular endothe-
lial cells, facilitating the rapid migration of circulating 
leukocytes into inflamed tissues (Figure 1B), and contri-
buting to the survival of leukocyte subsets. Considering 
these roles, it is not surprising that the FKN–CX3CR1 axis 
is involved in the pathogenesis of many inflammatory 
diseases.

In this review, we focus on the physiological and 
pathological roles of FKN in various rheumatic diseases. 
We also discuss the therapeutic potential of the anti-FKN 
monoclonal antibody (mAb) E6011 (Eisai Co. Ltd.),11 

which has a distinct mode of action compared with cyto-
kine inhibitors and holds promise as a strategy to meet the 
unmet medical needs of patients with rheumatic diseases.

Physiological Functions of the FKN– 
CX3CR1 Axis
FKN is the sole member of the CX3C-type chemokine 
family and consists of a chemokine domain, a mucin 
domain, and a transmembrane domain with a short cyto-
plasmic tail.12 FKN is also unique compared with other 
classical secreted chemokines in that its membrane-bound 
form is fully functional as an adhesion molecule,4 thereby 
obviating the need for an association with proteoglycans. 
Indeed, cells expressing CX3CR1, the FKN receptor, bind 
rapidly and with high affinity to plate-immobilized FKN as 
well as to FKN-expressing cells.4,13,14 The soluble form of 
FKN is generated by proteolytic cleavage mediated by 
ADAM 10 (a disintegrin-like metalloproteinase 10) or 
ADAM17 (also known as tumor necrosis factor-α convert-
ing enzyme).15,16

Membrane-bound FKN is expressed on endothelial 
cells, fibroblast-like synoviocytes (FLSs), intestinal 

epithelial cells, osteoblasts, neurons, and astrocytes.17 

FKN is upregulated on several of these cell types, espe-
cially endothelial cells, FLSs, and intestinal epithelium, 
upon exposure to inflammatory cytokines such as tumor 
necrosis factor-α (TNF-α), interleukin-1α (IL-1α), and 
interferon-γ (IFN-γ).18

The FKN receptor CX3CR1 is expressed on subsets of 
cytotoxic lymphocytes, including natural killer cells, effec-
tor memory T cells, and γδ+ T cells, all of which express 
the lytic molecules perforin and granzyme B and exhibit 
marked cytotoxicity.4 CX3CR1 is also expressed on mono-
cytes/macrophages, dendritic cells, and osteoclast precur-
sors (OCPs).19,20 Circulating peripheral blood monocytes 
can be classified into three subsets: CD14highCD16− (clas-
sical), CD14highCD16int (intermediate), and 
CD14intCD16high (non-classical monocytes).20–22 Among 
these three subsets, intermediate and non-classical mono-
cytes are known to express high levels of CX3CR1.23,24 

Consequently, FKN preferentially mediates the migration 
of the two CX3CR1high subsets (intermediate and non- 
classical monocytes; hereafter referred to as CD16+ 

monocytes).24

In mice, CX3CR1high monocytes have been shown to 
play a role in monitoring vascular abnormalities by acting 
as patrolling cells, as described above. Haskell et al 
reported that CX3CR1-expressing cells adhere more 
rapidly to immobilized FKN than they do to vascular cell 
adhesion molecule-1 on endothelial cells,25 suggesting that 
the FKN–CX3CR1 interaction may be dominant in vivo.

FKN–CX3CR1 Signaling Cascades
FKN–CX3CR1 binding also triggers G protein-mediated 
signaling that enhances the avidity of integrin–ligand 
binding.13,26,27 Activation of CX3CR1 by FKN initiates 
a signaling cascade through Gαi/o that involves activation 
of extracellular signal-regulated kinase (a mitogen- 
activated protein kinase), phosphoinositide 3-kinase, Akt/ 
protein kinase B, and mobilization of intracellular Ca2+. 
These signals promote the survival of CX3CR1high 

macrophages.28–31 These events result in firm attachment 
of CX3CR1high monocytes to the vascular endothelium, 
and the cells then produce chemokines and cytokines that 
initiate local inflammation and recruit neutrophils and 
CX3CR1low monocytes to the lesion (Figure 1B).32 

Through these mechanisms, FKN facilitates the rapid 
recruitment and extravasation of circulating leukocytes,26 

thereby amplifying the inflammatory reaction.

ImmunoTargets and Therapy 2020:9                                                                                        submit your manuscript | www.dovepress.com                                                                                                                                                                                                                       

DovePress                                                                                                                         
243

Dovepress                                                                                                                                                          Tanaka et al

Powered by TCPDF (www.tcpdf.org)

http://www.dovepress.com
http://www.dovepress.com


White et al reported that FKN contributes to the survi-
val of macrophages in both mice and humans.29 In 
CX3CR1-deficient mice, macrophage survival is impaired 
under normal physiological conditions as well as during 
liver inflammation and atherosclerosis.

FKN–CX3CR1 Axis Involvement in 
the Pathogenesis of Rheumatic 
Diseases
RA
The synovium is the primary target of immune cells in RA, 
and infiltrated activated macrophages and lymphocytes are 
abundant in the affected synovial tissue. These cells 
secrete a variety of inflammatory cytokines that further 
activate joint-resident cells such as FLSs, chondrocytes, 
and osteoclasts. In turn, the locally amplified tissue inflam-
mation results in hyperproliferation of FLSs and joint 
destruction through activation of osteoclasts and copious 
production of matrix metalloproteinases.33

Joint-infiltrated CX3CR1high T cells strongly adhere to 
FLSs in the synovium in an FKN-dependent manner, and 
they also produce IFN-γ and exhibit cytotoxic activity.34 

The number of circulating CX3CR1high T cell is also 
elevated in the circulation of RA patients.35 A recent glo-
bal transcriptomics study suggested that peripheral 
T helper (Tph) cells express CX3CR1. Tph cells can 
activate B cells and induce antibody production, which 
may contribute to tissue inflammation in RA.36

In mice with type II collagen-induced arthritis, a model 
of RA, administration of an anti-FKN mAb efficiently 
suppresses arthritis, as reflected by a decrease in arthritis 
score and a reduction in cartilage oligomeric matrix pro-
tein and matrix metalloproteinase-3 levels in plasma.37,38 

In contrast, anti-FKN treatment did not affect plasma 
levels of serum amyloid A, anti-type II collagen antibody, 
TNF-α, or IL-6, but it significantly suppressed TNF-α and 
IL-6 mRNA expression in the affected joints.38 Moreover, 
an increase in cell death in the inflamed synovium could 
be detected immediately after the administration of an 
anti-FKN mAb to mice with type II collagen-induced 
arthritis.39 In these studies, histological analysis showed 
suppression of cartilage and bone destruction accompanied 
by a marked decrease in the number of osteoclasts.37,38 

These results establish that an anti-FKN mAb can suppress 
local joint destruction in models of RA.

A study of human TNF transgenic mice, which express 
human TNF-α but are mouse Ccr2-deficient and lack 

classical monocytes, showed that joint destruction is predo-
minantly mediated by osteoclasts differentiated from OCPs, 
which are themselves derived from 
CD115+CX3CR1highLy6clowCCR2low non-classical 
monocytes.40 The interaction between FKN and CX3CR1 
is important for normal osteoclast differentiation and effi-
cient bone resorption in normal mice.41–43 FKN is highly 
expressed on osteoblasts located on the bone surface in 
conditions associated with inflamed joints, such as RA. In 
addition, immobilized FKN is involved in firm adhesion of 
CX3CR1-expressing OCPs to the plate.41,43,44

FKN blockade has been shown to inhibit migration of 
macrophages and OCPs into the inflamed synovium.37,38 

Interestingly, drugs currently used for RA treatment, such 
as etanercept (TNF-α inhibitor) and tofacitinib (Janus 
kinase [JAK] inhibitor), do not directly inhibit OCP 
migration.45 These results suggest that anti-FKN mAbs 
may act through multiple modes of action; namely, an anti- 
inflammatory effect via inhibition of the accumulation of 
inflammatory cells; induction of FLS cell death; and 
a bone-preserving effect via a reduction of osteoclasts in 
the affected joints. These observations further support the 
possible utility of anti-FKN mAbs as an alternative ther-
apy for RA.

Interstitial lung disease (ILD) is a common extraarti-
cular complication of RA that worsens the prognosis and 
increases mortality in refractory cases.46 The role of FKN 
in the pathogenesis of ILD is currently unknown; however, 
the FKN–CX3CR1 axis has been implicated in lung invol-
vement in patients with systemic sclerosis (SSc)47,48 and 
amyopathic dermatomyositis (ADM),49,50 suggesting that 
this mechanism might also be involved in RA-associated 
ILD. In a bleomycin-induced model of pulmonary fibrosis, 
mice lacking Cx3cr1 had reduced levels of pulmonary 
fibrosis, suggesting that FKN contributes to an inflamma-
tory state that exacerbates ILD.51 Thus, further studies 
should investigate anti-FKN therapy as a potential treat-
ment for RA-associated ILD.

SSc
SSc is characterized by fibrosis and vascular alterations that 
affect various organs, including the skin, lungs, esophagus, 
intestines, and heart. Hasegawa et al reported that patients 
with SSc have large numbers of CX3CR1-expressing macro-
phages in the lung and skin tissues compared with healthy 
subjects. SSc patients show strong FKN expression on 
endothelial cells in the skin and on endothelial cells, type II 
pneumocytes, and airway epithelial cells in the lungs.47,48 
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Several studies, including a large cohort study of 292 SSc 
patients, have shown that serum FKN concentrations are 
higher in SSc patients than in healthy subjects, and high 
FKN is associated with a higher titer of anti-topoisomerase 
-I-antibody, the presence of digital ischemia, and more severe 
pulmonary fibrosis.47,48,52 Serum FKN is decreased by glu-
cocorticoid treatment with or without cyclophosphamide.47 

Polymorphisms at positions 249I and 280M of the CX3CR1 
sequence are thought to be associated with pulmonary arter-
ial hypertension, which is a life-threatening complication in 
SSc patients.53 These findings suggest that FKN is 
a biomarker of SSc-related ILD and may contribute to the 
pathogenesis of SSc. Cultured normal human lung fibroblasts 
produce FKN after incubation with IL-1β and IFN-γ,54 which 
are stimulators of pulmonary fibrosis and inflammation.55 

Thus, pulmonary fibrosis might be exacerbated by FKN 
induced in inflammatory conditions.

Studies in mice have demonstrated that the FKN– 
CX3CR1 axis is an important contributor to the accumula-
tion of macrophages and fibroblasts at wound sites.56 In 
the bleomycin-induced skin fibrosis model of SSc, serum 
FKN and lesional FKN expression are increased. 
Administration of an anti-FKN mAb or Cx3cr1 deficiency 
significantly suppresses the dermal thickness, collagen 
content, and capillary loss caused by bleomycin.57 In 
a murine model of SSc induced by transforming growth 
factor-β and connective tissue growth factor, skin fibrosis 
and macrophage infiltration are attenuated by anti-FKN 
mAb treatment or Cx3cr1 deficiency.58 Anti-FKN mAb 
administration to bleomycin-treated mice suppresses skin 
fibrosis and skin infiltration of CX3CR1high cells, mono-
cytes/macrophages, and CD3+ T cells.57 In addition, FKN 
is reportedly involved in liver and kidney fibrosis in mice, 
both of which are attenuated by Cx3cr1 deficiency.59–62 

Although the role of FKN in the pathogenesis of pulmon-
ary fibrosis is not fully understood, increased expression of 
CX3CR1 on fibroblasts and M2 type macrophages, which 
play a pivotal role in fibrosis, is observed in the bleomy-
cin-induced pulmonary fibrosis mouse model. Notably, 
this effect is attenuated in Cx3cr1-deficient mice via 
a reduction in fibrocyte and M2 macrophage infiltration.51

Polymyositis and Dermatomyositis (PM 
and DM)
PM and DM are inflammatory diseases involving infiltra-
tion of T cells and macrophages into the muscles, and both 
diseases are often complicated by pulmonary fibrosis. The 

affected muscle tissue of patients with PM or DM and the 
lungs of those with ILD express FKN on infiltrated mono-
nuclear cells and endothelial cells, and infiltrated T cells 
and macrophages in these organs express CX3CR1.63 

Levels of ADAM17, which cleaves FKN to generate 
a soluble form, is significantly higher in the serum of 
patients with inflammatory myositis than in healthy 
subjects,64 suggesting that FKN is secreted into the lung 
tissue. Similarly, serum FKN is higher in PM or DM 
patients than in healthy subjects63,65 and its level corre-
lates with disease activity, as reflected by serum creatine 
kinase, manual muscle tests, and alveolar–arterial oxygen 
pressure difference.63 Notably, in ADM patients who have 
antibodies against CADM-140/MDA5 (clinically amyo-
pathic dermatomyositis-140/melanoma differentiation- 
associated gene 5), serum FKN levels and the anti- 
CADM-1/MDA5 antibody titer not only correlated with 
each other but also both correlated with disease 
activity.49,50 Takada et al also reported that the anti- 
CADM-140/MDA5 antibody titer can predict the course 
of rapidly progressing ADM-related ILD.50

Anti-FKN mAb administration ameliorates myositis in 
mice with experimental autoimmune myositis, a model of 
human PM.66 In these mice, FKN is expressed on infil-
trated mononuclear cells and endothelial cells in the 
affected muscle, and CX3CR1 is expressed on CD4+ and 
CD8+ T cells and macrophages.66

Systemic Lupus Erythematosus (SLE)
SLE is an autoimmune disease that can affect many 
organs, including the skin, joints, central nervous system, 
and kidneys.67 The serum concentration of FKN is higher 
in patients with SLE than in healthy subjects or patients 
with RA or primary Sjogren’s syndrome.68,69 In addition, 
serum FKN correlates significantly with the disease activ-
ity index of SLE patients, as well as with biomarkers such 
as anti-double stranded DNA antibodies, anti-Sm antibo-
dies, immune complexes, and complement hemolytic 
activity (CH50).69

SLE-related lupus nephritis (LN) is a significant cause 
of morbidity and mortality.70 The LN classification pro-
posed by the International Society of Nephrology/Renal 
Pathological Society (ISN/RPS) is used to provide infor-
mation on disease activity and/or chronicity and to guide 
treatment.71 Glomerular expression of FKN and kidney 
infiltration by CX3CR1highCD16+ monocytes are both ele-
vated in patients with ISN/RPS class III or IV LN who 
present with proliferative glomerulonephritis.72 Reflecting 
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the local pathology, FKN levels in serum and urine are 
also higher in patients with class III or IV LN than in 
patients with other classes.73 Similarly, in MRL/lpr mice, 
which spontaneously develop a form of glomerulonephritis 
that resembles class IV LN, FKN expression and CD16+ 

monocyte infiltration in glomeruli both increase in parallel 
with LN progression.74 Moreover, the mononuclear cell 
infiltration and glomerular damage in these mice are 
reduced by administration of an FKN antagonist.74,75 

These findings therefore support the involvement of FKN 
in the pathogenesis of LN via recruitment of monocytes 
into the kidney.

FKN levels are significantly higher in cerebrospinal 
fluid samples from patients with SLE-associated involve-
ment of the central nervous system (termed neuropsychia-
tric SLE) than from healthy subjects, and the FKN levels 
correlate with treatment effects.76 Similarly, both cere-
brospinal fluid and serum levels of FKN are significantly 
higher in patients with diffuse neuropsychiatric SLE than 
in patients with other SLE subtypes or in healthy 
subjects.76 These results further support a role for FKN 
in the pathogenesis of SLE, at least neuropsychiatric SLE, 
and suggest that FKN could serve as a therapeutic target 
and/or a biomarker for SLE disease activity.

IgG4-Related Disease (IgG4-RD)
IgG4-RD is a relatively recently recognized immunologi-
cal disease characterized by an elevated serum IgG4 con-
centration and immune-mediated fibroinflammatory 
processes. Infiltration of IgG4-positive plasma cells is 
observed in various organs, including the lacrimal glands, 
salivary glands, pancreas, kidneys, lungs, and 
retroperitoneum.77 The main histopathological findings of 
the involved organs are storiform fibrosis formed by spin-
dle cells that resemble fibroblasts, obliterative phlebitis, 
and ectopic lymphoid structures.

A recent study indicated that CX3CR1-expressing Tph- 
like cells, which can recruit B cells and T follicular helper 
cells, contribute to the typical pathological findings of 
tissue injury and ectopic lymphoid structure formation in 
IgG4-RD. Patients with this disorder have elevated levels 
of CX3CR1high Tph-like cells in the blood, and the per-
centage of these cells correlates positively with the number 
of involved organs and the IgG4-RD Responder Index 
score. CX3CR1high Tph-like cells express abundant levels 
of cytotoxic mediators such as granzyme A and perforin, 
leading to pathological tissue damage in IgG4-RD lesions. 
Thus, CX3CR1high Tph-like cells could be a potential 

clinical biomarker and/or a therapeutic target for inhibiting 
the progression of IgG4-RD.78

Cardiovascular Disease (CVD)
Epidemiological studies have shown that RA is associated 
with a significantly increased risk of CVD-related morbid-
ity and mortality.79 Numerous reports have documented 
the involvement of the FKN–CX3CR1 axis in athero-
sclerosis and cardiovascular events.80,81 The FKN– 
CX3CR1 axis participates in the atherosclerotic patholo-
gical process by mediating the recruitment of leukocytes 
and their interaction with vascular cells.82 Interestingly, 
polymorphisms in the human CX3CR1 gene are genetic 
risk factors for coronary artery disease and atherosclerosis. 
These polymorphisms are associated with a significant 
decrease in the number of FKN-binding sites per cell.83

Clinical research has shown that elevated CD16+ 

monocyte counts are associated with an increased risk of 
cardiovascular events.84 CD14lowCD16high monocytes are 
associated with more advanced vascular dysfunction, as 
measured by nitric oxide bioavailability and vascular pro-
duction of reactive oxygen species.85 Plasma FKN levels 
are significantly increased in patients with unstable angina 
pectoris and plaque rupture compared with healthy 
subjects.86 These studies, supported by a growing body 
of evidence demonstrating the significant role of CD16+ 

monocytes in atherosclerosis development, suggest that 
CD16+ monocytes are a potential target for the develop-
ment of new therapeutic strategies in atherosclerosis.84

Cx3cr1 deficiency has been shown to prevent the devel-
opment of arteriosclerosis in apolipoprotein E-deficient 
(Apoe−/−) mice.87,88 CX3CR1 is expressed on intimal den-
dritic cells, and these cells are less abundant in the aortas of 
Cx3cr1−/−/Apoe−/− mice compared with Apoe−/− mice.89 In 
this study, Cx3cr1 deficiency was found to impair the accu-
mulation of dendritic cells in the aortic wall and markedly 
reduce the atherosclerotic burden.89

Clinical Development of E6011, 
a Humanized Anti-FKN mAb, in RA
Insufficiently treated RA leads to severe joint damage, dis-
ability, decreased quality of life, and other comorbidities. At 
present, the predominant treatments are disease-modifying 
anti-rheumatic drugs (DMARDs). They include conven-
tional synthetic DMARDs, of which methotrexate is the 
anchor drug, as well as biological and synthetic DMARDs 
that target TNF-α, the IL-6 receptor, T cell costimulatory 
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molecules, CD20 on B cells, and intracellular signaling 
molecules such as JAKs. Recent guidelines for the manage-
ment of RA recommended that sustained remission or low 
disease activity should be rapidly attained in every 
patient.90–92 However, about 50–70% of patients fail to 
achieve remission or to maintain low disease activity, even 
if they initially respond well to current therapies.93,94

We recently conducted a phase 2, multicenter, rando-
mized, double-blind, placebo-controlled study of the 
humanized anti-FKN mAb E6011 to evaluate its safety 
and efficacy in Japanese RA patients inadequately 
responding to methotrexate (NCT02960438).95 Patients 
were randomly assigned to receive placebo or E6011 at 
100 mg, 200 mg, or 400/200 mg in a 2:1:2:2 ratio. 
Subjects in the 100 mg, 200 mg, and placebo groups 
were dosed at Weeks 0, 1, and 2, and every 2 weeks 
subsequently; subjects in the 400/200 mg group received 
400 mg at Weeks 0, 1, 2, 4, 6, 8, and 10 and then received 
200 mg every 2 weeks subsequently. During the 24-week 
double-blind period, patients received the study drug sub-
cutaneously at Weeks 0, 1, and 2, and then every 2 weeks 
thereafter. The primary endpoint was the American 
College of Rheumatology 20 (ACR20) response rate at 
Week 12. Using a non-responder imputation (NRI) 
method, the response rates were 37.0%, 39.3%, 48.1%, 
and 46.3% in the placebo, 100 mg, 200 mg, and 400/ 
200 mg groups, respectively (not statistically significant). 
However, the secondary endpoint (ACR20 response rate at 

Week 24) was significantly different for the 200 mg group 
(53.7%, P < 0.025) and 400/200 mg group (57.4%, P < 
0.025) compared with the placebo group (35.2%). In the 
biomarker analysis, we focused on CD16+ monocytes due 
to their importance in RA pathophysiology and their high 
expression of the FKN receptor CX3CR1. The full patient 
population was dichotomized into “high” and “low” 
CD16+ monocyte subgroups using a cutoff value of 
10.35%, the median percentage of CD16+ monocytes at 
baseline. Subjects in the high group (>10.35% CD16+ 

monocytes at baseline) showed a greater dose-dependent 
ACR20 response compared with subjects in the low group 
at Week 24: the response rates were 30.0% vs 43.3%, 
46.7% vs 20.0%, 57.7% vs 54.5%, and 69.6% vs 45.5% 
for the placebo, 100, 200, and 400/20 mg groups, respec-
tively [NRI method]; Figure 2). These results indicated 
that the baseline percentage of CD16+ monocytes could 
predict the response to E6011, and additionally suggest the 
possibility of a precision medicine approach to E6011 
therapy, although further research in this area will be 
needed.

In this clinical study, adverse events that occurred in 
≥5% of subjects in any E6011 group were nasopharyngitis, 
upper respiratory tract infection, stomatitis, bronchitis, 
back pain, pharyngitis, and dental caries. Thus, E6011 
was well tolerated with no notable safety concerns at 
doses of 100, 200, and 400/200 mg when administered 
subcutaneously for 24 weeks.

Figure 2 Results of a Phase 2 Clinical Trial of E6011, a Humanized Anti- FKN mAb, in Subjects with RA (NCT02960438). (A) ACR20 response rate of the full cohort at 
Week 24 (NRI). (B) ACR20 response rate at Week 24 in the patient subset with a high percentage of CD16+ monocytes at baseline. Subjects were divided into high and low 
groups using the median percentage of CD16+ monocytes at baseline (10.35%). Reproduced from ACR/ARP Annu Meet, A Phase 2 Study of E6011, an Anti-Fractalkine 
Monoclonal Antibody, in Patients with Rheumatoid Arthritis Inadequately Responding to Biologics, Tanaka T, Takeuchi T, Yamanaka H, et al. 9(Supplement 70):1-3553, 
copyright 2018, with permission from BMJ Publishing Group Ltd.45 

Abbreviations: ACR20, American College of Rheumatology 20% response criteria; FKN, fractalkine; mAb, monoclonal antibody; NRI, non-responder imputation; RA, 
rheumatoid arthritis.
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In a second study of E6011 in RA patients with an 
inadequate response to biologics, subcutaneous adminis-
tration of E6011 at 400 mg was well tolerated but did not 
show significant efficacy compared with placebo at Week 
12 (NCT02960490).96 However, an exploratory pharma-
cokinetic exposure analysis indicated that subjects with 
higher serum trough concentrations of E6011 showed 
a trend towards efficacy, albeit not significant. Based on 
these results, further investigation of E6011 is warranted to 
determine the optimal clinical dose and evaluation period 
in RA.

Future Perspectives for the 
Treatment of RA with E6011
Despite considerable advances in RA treatments and stra-
tegies, some patients fail to achieve and/or sustain remis-
sion. Those patients require new treatment options with 
novel mechanisms of action. Several therapeutic antibo-
dies are in clinical development for RA, including mod-
ulators of inflammatory cytokines (IL-6, IL-10), 
inflammatory growth factors (granulocyte-macrophage 
colony-stimulating factor), and adhesion molecules (cad-
herin-11) (Table 1).97 Among these investigational drugs, 
inhibition of cadherin-11 is a particularly novel approach 
that targets synovial fibroblasts in RA.98 Although it will 
be interesting to evaluate the efficacy of adding anti- 
cadherin-11 mAb (RG6125) on top of anti-TNF therapy 
in RA patients with an inadequate response to anti-TNF 
alone, unfortunately, no discernable therapeutic effect of 

RG6125 in combination with TNF blockers has been 
demonstrated to date.98

In addition to monotherapy with new drugs, there is 
a pressing need to investigate novel combinations or 
sequential treatments with targeted therapies for patients 
refractory to currently available therapies,97,99 who are 
arguably the patient population with the most urgent 
unmet medical needs.100 It should be emphasized that 
patients with a history of treatment with multiple biologics 
and/or small molecules should not be excluded from clin-
ical trials. Of particular interest is the testing of combina-
tion therapies in refractory patients, which should also be 
studied alongside novel targeted therapies. E6011 is 
a biologic classified as a cell trafficking inhibitor but it is 
not a direct cytokine inhibitor. Theoretically, adding E6011 
on top of anti-cytokine therapy may be a feasible option 
for treatment-refractory RA patients.

Presentations at the 2019 Advances in Targeted 
Therapies meeting emphasized the need to better define 
“refractory” states both phenotypically and molecularly. 
Recently, Tasaki et al reported a longitudinal study that 
monitored the drug response of RA patients using multi- 
omics analysis of peripheral blood constituents.101 Even 
RA patients who achieved clinical remission by treatment 
with tocilizumab or infliximab may not reach molecular 
remission, which is defined as a molecular profile similar 
to that of healthy individuals. Interestingly, that study 
found that the transcriptional residual molecular signature 
(RMS) of CD16+ monocytes is upregulated in RA patients 

Table 1 Cytokine-Targeting Therapies in Development for RA

Target Drug Name/Code Company Clinical Trial Phase

IL-6 Sirukumab (CNTO-136, Plivensia) GSK, Janssen III

GM-CSF Otilimab (GSK 3,196,165) GSK III

TNF-α Ozoralizumab (ATN-103, TS-152) Ablynx, Taisho III
IL-6 Olokizumab (OKZ) R-Pharm III

IL-6 Clazakizumab (BMS-945,429, ALD518) CSL Behring IIb

IL-6 receptor Vobarilizumab (ALX0061) Ablynx IIb
IL-10 Dekavil (F8IL10) Philogen II

GM-CSF Namilumab (MT203) Takeda II

GM-CSF receptor-α Mavrilimumab (CAM-3001) MedImmune II
TNF-α, IL-17A Remtolumab (ABT-122) AbbVie II

GM-CSF Gimsilumab (MORAb-022) Morphotek I

GM-CSF Lenzilumab (KB003) Humanigen Terminated
Cadherin-11 RG6125 Roche Terminated

Notes: Compiled from information in reference97 and ClinicalTrials.gov (https://clinicaltrials.gov). 
Abbreviations: IL, interleukin; GM-CSF, granulocyte-macrophage colony-stimulating factor; TNF-α, tumor necrosis factor-α; mAb, monoclonal antibody; GSK, 
GlaxoSmithKline.
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compared with healthy individuals,101 suggesting the pos-
sibility that the CD16+ monocyte RMS may be indicative 
of incomplete response to treatment. Moreover, the CD16+ 

monocyte RMS observed in RA patients was also found in 
patients with inflammatory bowel disease and obesity.101 

Thus, these results suggest that the clinical importance of 
the transcriptional RMS may not be limited to RA, and 
that CD16+ monocytes could be a biomarker to identify 
molecular remission in patients with diseases other than 
RA. Based on these observations, we speculate that E6011 
monotherapy or combination therapy with other biologics 
or JAK inhibitors could be an option to achieve molecular 
remission in refractory RA patients.

Conclusion
The preceding discussion highlighted the need to study 
novel targeted therapies, novel combinations, and new 
sequential treatment strategies with existing therapies for 
the treatment of refractory RA.100 By blocking cell adhe-
sion and signaling, the anti-FKN mAb E6011 has a distinct 
mode of action from other drugs currently under investi-
gation for RA, which include cytokine/cytokine receptor 
inhibitors (eg, infliximab, tocilizumab), modulators of 
T cell costimulation (eg, abatacept), and JAK inhibitors 
(eg, tofacitinib, baricitinib). This unique feature may allow 
E6011 to be used not only for monotherapy but also for 
combination therapy with other drugs for patients with 
refractory RA. E6011 may also reduce the risk of CVD 
in RA patients by decreasing the abundance of CD16+ 

monocytes, thereby acting as a cardioprotective drug. As 
noted above, recent studies have shown that the CD16+ 

monocytes transcriptional RMS may be useful as 
a hallmark for molecular remission in RA. The results of 
clinical and preclinical studies indicate that E6011 also has 
the potential to promote “total health care” in patients with 
rheumatic and other diseases involving CD16+ monocytes, 
and could present a new therapeutic strategy for the treat-
ment of patients with refractory RA.

Abbreviations
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CADM-140/MDA5, clinically amyopathic dermatomyositis- 
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dermatomyositis; DMARDs, disease-modifying anti- 
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ILD, interstitial lung disease; ISN/RPS, International Society 
of Nephrology/Renal Pathological Society; JAK, Janus kinase; 
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