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Abstract: Ceramic/polymer composites have been considered as third-generation orthopedic 

biomaterials due to their ability to closely match properties (such as surface, chemistry, 

biological, and mechanical) of natural bone. It has already been shown that the addition of 

nanophase compared with conventional (or micron-scale) ceramics to polymers enhances 

bone cell functions. However, in order to fully take advantage of the promising nanometer 

size effects that nanoceramics can provide when added to polymers, it is critical to uniformly 

disperse them in a polymer matrix. This is critical since ceramic nanoparticles inherently have 

a strong tendency to form larger agglomerates in a polymer matrix which may compromise 

their properties. Therefore, in this study, model ceramic nanoparticles, specifically titania and 

hydroxyapatite (HA), were dispersed in a model polymer (PLGA, poly-lactic-co-glycolic acid) 

using high-power ultrasonic energy. The mechanical properties of the resulting PLGA com-

posites with well-dispersed ceramic (either titania or HA) nanoparticles were investigated and 

compared with composites with agglomerated ceramic nanoparticles. Results demonstrated that 

well-dispersed ceramic nanoparticles (titania or HA) in PLGA improved mechanical properties 

compared with agglomerated ceramic nanoparticles even though the weight percentage of the 

ceramics was the same. Specifically, well-dispersed nanoceramics in PLGA enhanced the tensile 

modulus, tensile strength at yield, ultimate tensile strength, and compressive modulus compared 

with the more agglomerated nanoceramics in PLGA. In summary, supplemented by previous 

studies that demonstrated greater osteoblast (bone-forming cell) functions on well-dispersed 

nanophase ceramics in polymers, the present study demonstrated that the combination of PLGA 

with well-dispersed nanoceramics enhanced mechanical properties necessary for load-bearing 

orthopedic/dental applications.

Keywords: nanocomposites, ceramic nanoparticles, titania nanoparticles, hydroxyapatite 

nanoparticles, dispersion, agglomeration, biodegradable polymer, PLGA, mechanical properties, 

orthopedic/dental applications

Introduction
Ceramic/polymer composites have been considered as third-generation orthopedic 

biomaterials due to their ability to closely match properties of natural bone compared 

with first generation (metals or metal alloys) and second (ceramics) generation bone 

substitute materials.1 Ceramic/polymer composites offer a promising approach to com-

bine the advantages of bioactive, mechanically strong ceramics with biodegradable, 

flexible polymers to optimize physicochemical, mechanical, and biological properties 

of synthetic bone substitutes. In the past few years, the development of ceramic/polymer 

composites as orthopedic materials has attracted more and more attention.2–4 Specifi-

cally, from the biological perspective, osteoblast (bone-forming cell) functions have been 
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improved on ceramic/polymer composites due to the greater 

osteoconductivity properties offered by the bioactive ceramic 

phase.5–9 From the point-of-view of physicochemical proper-

ties, ceramic particles (such as titania or hydroxyapatite, HA) 

in a biodegradable polymer (such as poly-lactic-co-glycolic 

acid, PLGA) can provide a pH buffering effect to the poly-

mer to tailor the degradation and resorption kinetics of the 

composite, thus, preventing acceleration of polymer degrada-

tion, avoiding the formation of an unfavorable acidic environ-

ment detrimental for cells, and reducing side-effects (such as 

inflammation) from the acidic degradation by-products of 

polymers.10,11 Thus, due to their smaller size which may further 

exaggerate the benefits of adding ceramics to polymers, nano-

phase ceramic polymer composites have a strong potential for 

improving current orthopedic/dental prostheses.

It is, therefore, intriguing and necessary to examine the 

mechanical properties of these novel nanocomposites for 

orthopedic applications. This is because a mismatch in the 

mechanical properties of metallic implants and physiologi-

cal bone may result in stress-shielding problems leading to 

implant loosening and failure.12 Metallic materials widely 

used in orthopedic applications have much stronger mechani-

cal properties (such as elastic modulus) than natural bone, 

which can weaken the newly formed bone interface due to 

stress-shielding. Because natural bone is under continuous 

physiological stresses (such as compression, tension, torsion, 

and/or bending), the mechanical properties of orthopedic/

dental materials should closely match those of living bone. 

This is necessary to minimize stress and strain imbalances 

during physiological loading conditions, which will lead 

to implant failure. In terms of the aforementioned ceramic/

polymer composites, the stiffer ceramic phase is important 

for improving mechanical properties of materials used for 

load-bearing applications.12–15 Specifically, Thomson et al 

demonstrated that the compressive yield strength increased 

from 0.95 ± 0.11 MPa for PLGA foams to 2.82 ± 0.63 MPa 

for foams when HA fibers were added at weight ratios of 7:6 

(PLGA:HA).4 Wei et al demonstrated that the compressive 

modulus of HA/PLA scaffolds increased with HA content.16 

Specifically, the modulus increased from 4.3 MPa for plain 

poly(lactide) (PLA) scaffolds to 8.3 MPa when the weight 

ratio of HA to PLA was 50:50.16

More importantly, ceramic/polymer composites can be 

further formulated to mimic many aspects of natural bone 

by utilizing nanoparticles as the ceramic phase. This is 

because natural bone is a nanostructured composite com-

posed of a polymer matrix (mainly collagen) reinforced with 

nanometer-sized ceramic particles (mainly carbonated HA).12 

Ceramic/polymer nanocomposites may be synthesized to 

possess hardness, bending, compressive, and tensile strengths 

that are higher than conventional ceramic composites but are 

more similar to physiological bone. Mechanical deformation 

theory indicates that as grain size is reduced, high-volume 

fractions of interfacial regions compared with bulk leads 

to increased deformation by grain-boundary sliding and 

short-range diffusion-healing events, thus, increased ductil-

ity in nanocrystalline ceramics may be observed.17,18 Indeed, 

greater mechanical properties have been reported for polymer 

composites with a reduction in ceramic grain size into the 

nanometer range.19 For example, McManus et al reported that 

the bending moduli of composites of PLA with 40 and 50 wt% 

nanophase (,100 nm) alumina, titania and HA were signifi-

cantly greater than respective composite formulations with 

conventional coarser grained ceramics.19 Specifically, com-

pared with a bending modulus of 60 ± 3 MPa for plain PLA 

and 870 ± 30 MPa for conventional titania/PLA composites 

with a weight ratio of 50/50, the bending modulus of nano-

phase titania/PLA composites with a weight ratio of 50/50 

was 1960 ± 250 MPa.19 In the paper,19 the ceramic nanopar-

ticles of varying amounts (30, 40, and 50 wt%) were simply 

mixed with the polymers in organic solvents to compare the 

effect of the weight percentage of particles on the mechani-

cal properties of the composites. The dispersion status of the 

nanoparticles was, however, not addressed. Nanoparticles 

tend to agglomerate and such agglomeration significantly 

influences the properties of nanocomposites. Therefore, the 

weight percentage of nanoparticles was kept constant in the 

present study in order to reveal how the dispersion status of 

nanoparticles in a polymer matrix influences the mechanical 

properties of nanocomposites.

In addition, superior cytocompatibility and biodegrada-

tion properties of ceramic/polymer nanocomposites over 

conventional composites have been reported pertinent for 

orthopedic applications.8,10 Specifically, previous studies 

demonstrated that well-dispersed nanoparticulate titania in 

PLGA composites promoted osteoblast adhesion and long-

term functions (such as collagen synthesis and calcium-

containing mineral deposition) compared with pure PLGA 

and more agglomerated titania in PLGA composites.8 The 

controlled dispersion of titania nanoparticles in PLGA also 

further decreased the weight loss of the bone scaffolds, 

reduced the harmful acidic pH changes during PLGA 

degradation, and prolonged the mechanical integrity of the 

scaffolds.10 Due to the ability to tailor such degradation rates, 

these nanocomposites are also good candidates for controlled 

drug delivery applications.20
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The objective of the present study was to investigate the 

mechanical properties of polymer composites with well-

dispersed or agglomerated nanophase ceramics (titania or 

HA) while keeping the percentage of nanophase ceramics 

constant. The research question was whether the mechanical 

properties of nanocomposites could be tailored by controlling 

the dispersion of nanoparticles alone. A biodegradable poly-

ester, PLGA, was chosen as a model polymer matrix since 

it has been widely studied for biomedical applications and 

has been approved by the FDA for certain clinical applica-

tions. Nanophase titania and HA were chosen as the model 

ceramics due to their wide acceptance and use in orthopedics 

and due to their excellent biocompatibility properties for 

promoting bone cell functions.8,9 The dispersion of nano-

titania or nano-HA in PLGA was controlled by sonication 

and was characterized by field emission scanning electron 

microscopy (FESEM) and image analysis techniques. For this 

purpose, two major stresses (compression and tension) that 

natural bone experiences under physiological loading condi-

tions were characterized using an Instron Material Testing 

System. Fracture surfaces were analyzed to understand the 

failure mechanisms of the nanocomposites.

Materials and methods
Specimens for tensile  
and compressive tests
Nanophase titania/PLGA composites  
for mechanical tests
PLGA (poly-lactide-co-glycolide or poly-lactic-co-glycolic 

acid) pellets (50/50 wt% poly[DL-lactide/glycolide]; molecu-

lar weight: 100,000–120,000 g/mol; intrinsic viscosity: 

66–80 cm3/g; polydispersity: 1.8; density: 1.34 g/cm3; glass 

transition temperature Tg: 45–50°C) from Polysciences Inc 

(Warrington, PA, USA) were used in this study. Nanophase 

titania powder (Nanotek®) from Nanophase Technologies 

Corporation (Romeoville, IL, USA) was used as one of the 

ceramic components in the polymer composites. The purity 

of the titania powder was 99.5+%, the particle size was 32 nm 

which was calculated from BET adsorption measurements, 

the particle morphology was nearly spherical according to 

TEM images, and the crystalline phase was 80% anatase/20% 

rutile.8,21 Bulk and true densities of this titania powder were 

0.25 g/cm3 and 3.96 g/cm3, respectively.

PLGA was first dissolved in chloroform (Sigma-Aldrich) 

at 50°C and titania nanoparticles were added into the PLGA 

solution to produce a 30/70 ceramic/polymer weight ratio in 

the nanocomposites. The nanocomposite mixture was then 

processed using a Misonix 3000 sonicator (Misonix Inc, 

Farmingdale, NY, USA) with its microtip immersed in the 

mixture. The dispersion status of the final composites was 

controlled by sonication power. The output power of 3 W and 

9 W were used to obtain agglomerated and dispersed speci-

mens, respectively. The Misonix 3000 sonicator permits the 

application of ultrasonic energy to suspensions on a pulsed 

basis. In this study, the pulse width was set at 50% of the duty 

cycle out of a 1 second cycle time. This intermittent operation 

permitted high intensity sonication while avoiding heat build-

up in the processed suspensions. After sonication for 10 min, 

the composite suspension was immediately cast into a mold 

that was designed for dog-bone shaped tensile specimens or 

a mold for compressive specimens, evaporated in air at room 

temperature for 24 hours and dried in an air vacuum chamber 

at room temperature for 48 hours. According to the titania 

dispersion states in the polymer, these nano-titania/PLGA 

composites (PTC) were termed as PTCa (a = agglomerated) 

and PTCd (d = dispersed). PLGA was used as a control and 

was prepared by the solvent-casting technique described 

PLGA

PTCa

PTCd

PHAa

PHAd

Casting mold for
tensile specimens 

Figure 1 The mold-cast tensile specimens of PLGA, agglomerated nano-titania in PLGA composites (PTCa), well-dispersed nano-titania in PLGA composites (PTCd), agglom-
erated nano-HA in PLGA composites (PHAa), well-dispersed nano-HA in PLGA composites (PHAd) and the casting mold for tensile specimens. The tensile specimen gage 
length × width × thickness = 25 × 10 × 0.5 mm. The depth of the casting mold was designed as 10 mm.
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above except that no ceramics were added. These mold-cast 

tensile specimens had the same dimensions (Figure 1). The 

gage length was 25 mm, the gage width was 10 mm, and the 

thickness was 0.5 mm. The compressive specimens had a 

circular shape. The gage diameter of the compressive speci-

mens was 10 mm and the thickness was 0.5 mm.

Nanophase HA/PLGA composites  
for mechanical tests
Nanophase HA was synthesized using a wet chemistry pre-

cipitation method by mixing solutions of calcium nitrate and 

ammonium phosphate in an alkaline pH solution.22 Specifi-

cally, a 1 M calcium nitrate solution and a 0.6 M ammonium 

phosphate solution were prepared by dissolving their respec-

tive powders in deionized (DI) water separately. The produced 

ammonium phosphate solution was mixed with DI water 

that was adjusted to a pH of 10 by ammonium hydroxide. 

The pre-made 1 M calcium nitrate solution was then added 

into the mixture of ammonium phosphate and ammonium 

hydroxide at a rate of 3.6 mL/min. Precipitation occurred as 

soon as the calcium nitrate was added. Chemically, the HA 

precipitation occurred through the reaction:1

	 10Ca(NO
3
)

2
 + 6(NH

4
)

2
HPO

4
 + 8NH

4
OH 	

	     = Ca
10

(PO
4
)

6
(OH)

2
 + 6H

2
O + 20NH

4
NO

3
� (1)

Precipitation continued for 24 hours at room temperature 

with constant stirring. The supernatant was collected, cen-

trifuged (Eppendorf centrifuge, Model 5810 R) to reduce 

75% of the solution volume and placed into a 125 mL Teflon 

liner (Parr Instrument). The Teflon liner was sealed tightly 

in a Parr acid digestion bomb (Parr Instrument) and treated 

hydrothermally at 200°C for 20 hours to obtain nanocrys-

talline HA. The hydrothermal treatment demonstrated a 

great advantage to prepare a stoichiometric, ultrafine HA 

powder with a homogeneous shape and size distribution due 

to higher applied pressures than the atmosphere.23,24 After 

the hydrothermal treatment, nano-HA particles were rinsed 

with DI water and dried in an oven at 80°C for 12 hours. The 

synthesized HA nanoparticles were thoroughly characterized 

for their size and shape using FESEM and crystalline phase 

using X-Ray Diffraction (XRD).

The HA nanoparticles were then dispersed into the PLGA 

to produce a 30/70 ceramic/polymer weight ratio in the nano-

composites using similar procedures previously described for 

nano-titania/PLGA composites. The sonication time was kept 

constant at 10 min. The dispersion status of the nanocompos-

ites was controlled by the sonication powers: 3 W and 9 W to 

obtain agglomerated and dispersed specimens, respectively. 

These nano-HA/PLGA composites (PHA) were termed PHAa 

(a = agglomerated) and PHAd (d = dispersed) according to 

their nano-HA dispersion states. PLGA was used as a control 

and was prepared by the solvent-casting technique previously 

described. The tensile specimen gage length was 25 mm, the 

gage width was 10 mm, and the thickness was 0.5 mm (Figure 

1). The compressive specimens were prepared similarly and 

had the same dimensions as the PTC.

Design of casting molds  
for tensile specimens
The casting molds for tensile specimens were designed 

based on the requirements of ASTM (American Society 

for Testing and Materials) standards D638, D882, D3039, 

and ISO (International Organization for Standardization) 

standard 37.25–28 Figure 1 shows an example of the casting 

molds used for preparing tensile specimens.

Characterization of materials  
before mechanical tests
Surface properties of the titania/PLGA nanocomposites 

and HA/PLGA nanocomposites were characterized before 

mechanical tests using a Field Emission Scanning Electron 

Microscope (FESEM, LEO 1530) at a 3 kV accelerating 

voltage. SEM images were used to determine the differ-

ences in topography and the surface area occupied by the 

nanoparticles. The surface area occupied by the nanoparticles 

was highlighted in the SEM images and measured using the 

ImageJ software. Before SEM imaging, the nanocomposites 

and PLGA were sputter-coated with a thin layer of gold-

palladium, using a Hummer I Sputter Coater (Technics) in 

a 100 mTorr vacuum argon environment for 3 min at 10 mA 

of current.

Mechanical tests: tensile  
and compressive tests
All composites and PLGA were subjected to tensile and 

compressive tests using an Instron 5882 Mechanical Testing 

System. A 50 kN load cell was used to measure the load. 

All samples were pulled at a constant crosshead speed until 

failure. The extension and compression rate were fixed at 

10 mm/min. Load/displacement curves were obtained using 

a LabTech software program. The tensile stress-strain curves 

were calculated from the load-displacement data from tensile 

tests. The stress was the load divided by cross-section area of 

tensile specimens. The strain was the extension divided by the 

gage length of tensile specimens. The tensile modulus, tensile 
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strength at yield, ultimate tensile strength (UTS), elongation 

at yield and elongation at break were calculated from the 

stress-strain curves according to the established equations.29 

The compressive modulus was calculated similarly based on 

compressive tests.

Fracture analysis after tensile tests
After tensile tests, fracture surfaces, and cross-sections of 

the titania/PLGA nanocomposites and PLGA were exam-

ined using a Field Emission Scanning Electron Microscope 

(FESEM, LEO 1530) at a 3 kV accelerating voltage. In order 

to observe fracture cross-sections, specimens were mounted 

on specially designed 45°/90° holders. The nanocomposites 

and PLGA were sputter-coated with a thin layer of gold-

palladium before SEM imaging, using a Hummer I Sputter 

Coater (Technics) in a 100 mTorr vacuum argon environment 

for 3 min with 10 mA of current.

Statistical analyses
All mechanical tests were repeated three times (three speci-

mens each time) for each type of specimen. Numerical data 

were analyzed using standard analysis of variance (ANOVA) 

techniques and standard pair-wised comparison tests; 

statistical significance was considered at P  0.05.

Results
Material characterization  
before mechanical tests
Nanophase titania/PLGA composites  
before mechanical tests
Scanning electron micrographs suggested that the distribu-

tion of nano-titania particles was much different in the PTCa 

and PTCd samples although both of them had the same 

weight percentage of titania (that is, 30 wt%) in PLGA, 

as shown in Figure 2. Specifically, there were less titania 

particles on the top surface of PTCa than PTCd because 

the ceramic agglomerates larger than 100 nm descended 

faster than the solvent evaporation rate according to the 

established Stoke’s Equation. The amount of surface area 

occupied by titania increased on the top surface of PTCd 

(10.1%, Figure 2d) compared with PTCa (5.7%, Figure 2b) 

because the solvent evaporation was much faster than the 

sedimentation of the well-dispersed titania particles less than 

100 nm. Moreover, for the PTCa, the top surface was much 

different from the bottom surface, which indicated differ-

ences in the distribution of the nano-titania agglomerates. 

More agglomerates were concentrated on the bottom side 

of the PTCa non-uniformly. For the PTCd, however, there 

was no significant difference between the top and bottom 

surfaces and, thus, the distribution of nano-titania in PLGA 

was more uniform.

Nanophase HA/PLGA composites before  
mechanical tests
Nanophase HA synthesized by the aforementioned wet 

chemistry method demonstrated a relative uniform particle 

size, as shown in Figure 3a. The SEM images were analyzed 

using the ImageJ software and the results showed that the 

nano-HA had an average particle size of 36 nm. A more 

detailed analysis on the nanocrystalline HA has been pub-

lished previously.30

Scanning electron micrographs suggested that the 

distribution of nano-HA particles was much different in 

the PHAa (Figure 3b,c) and PHAd (Figure 3d,e) samples 

although both of them had the same weight percentage of HA 

(that is, 30 wt%) in PLGA. Compared with PTC, a similar 

microstructural trend was observed for PHA. The amount 

of surface area occupied by HA increased on the top surface 

of PHAd (11.2%, Figure 3d) compared with PHAa (7.1%, 

Figure 3b) because the solvent evaporation was much faster 

than the sedimentation of well-dispersed HA nanoparticles 

smaller than 100 nm according to the Stoke’s Equation 

calculation. For the PHAa, the top surface appeared much 

different from the bottom surface, which suggested the 

non-uniform distribution of nano-HA agglomerates. More 

agglomerates were concentrated on the bottom side of PHAa. 

For the PHAd, however, there was no significant difference 

between the top and bottom surfaces and the distribution of 

nano-HA in PLGA composites appeared more uniform.

Mechanical properties
Mechanical properties of nanophase  
titania/PLGA composites
These nanophase titania/PLGA composites enhanced 

mechanical strength compared with the pure polymer control 

according to the tensile and compressive test results.

A typical tensile stress-strain curve obtained in the study 

is shown in Figure 4a. The tensile moduli were calculated 

from the stress-strain curves and illustrated in Figure 4b. The 

tensile modulus of the PTCd was about 2 times greater than 

the PTCa and the tensile modulus of the PTCa was about 3 

times greater than the PLGA. Tensile strength at yield, UTS, 

elongation at yield and elongation at fracture were calculated 

from the stress-strain curves and illustrated in Figure 4(c–e). 

PTCd had a greater elastic modulus, tensile strength at 
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Figure 2 SEM micrographs of nano-titania and nano-titania/PLGA composites: (a) nano-titania, (b,c) PTCa (the agglomerated nano-titania in PLGA composites), (d,e) PTCd 
(the well-dispersed nano-titania in PLGA composites). (b,d) the top surface, (c,e) the bottom surface. Magnification bars: 1 µm.

yield, and UTS than PTCa and PLGA, while PTCd had less 

elongation at yield and elongation at break than PTCa and 

PLGA. The compressive moduli were calculated from the 

compressive test data and are illustrated in Figure 4f. The 

compressive modulus of the PTCd was about 2 times greater 

than the PTCa and the compressive modulus of the PTCa was 

about 2 times greater than the PLGA.

Mechanical properties of nanophase  
HA/PLGA composites
According to the results of tensile and compressive tests, 

these nanophase HA/PLGA composites demonstrated better 

mechanical properties than the polymer control.

The tensile stress-strain curves are shown in Figure 5. 

The tensile moduli, tensile strength at yield, UTS, elongation 

at yield, and elongation at break were calculated from the 

stress-strain curves and illustrated in Figure 6(a–d). PHAa 

and PHAd had a greater elastic modulus, tensile strength 

at yield and UTS than the PLGA, while PHAa and PHAd 

had less elongation at yield and elongation at break than 

the PLGA. It is speculated that, at the microstructural level, 

the volume of the ductile PLGA phase may be confined by 

the surrounding brittle nano-HA phase, which may restrict 

the local deformation under stress, thus impairing the elon-

gation at yield and at break. The compressive moduli were 

calculated and plotted in Figure 6e. In comparison to natural 
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bone, the compressive moduli of the PHAa and PHAd were 

greater and closer to low-density cancellous bone (∼10 MPa) 

than the PLGA, although further improvement will still be 

needed to match the mechanical properties of high-density 

compact bone (∼10 GPa).31,32

Fracture analysis
The stress-strain behaviors were different between nano-

titania/PLGA composites, nano-HA/PLGA composites, 

and single-phase PLGA. The stress-strain relationship for 

the nanophase ceramic/PLGA composites demonstrated 

an initial linear and following nonlinear deformation until 

fracture. The differences in tensile behaviors clearly influ-

enced the fracture appearance of the nanocomposites even 

at the macroscopic level (image not shown). This difference 

in fracture surfaces clearly demonstrated that variations in 

the ceramic phases (nano-titania or nano-HA), their size and 

shape, their dispersion states in the polymer matrix, and their 

interactions with the matrix influenced the fracture behavior 

of the composites and altered the mechanical performance 

of the composites.

The site of fracture for the tensile specimens was visu-

alized in Figures 7–11 to understand the different fracture 

mechanisms of the materials of interest to this study. 

Figure 7 shows the representative microscopic appear-

ance of the PLGA fracture surfaces after tensile tests. The 

river-like bands appeared in Figure 7(a,c,d) were termed as 

‘sliver streaks’. These silver streaks were very different from 

microcracks that appeared in Figure 7(b,d) and nanopores that 

appeared in Figure 7(e,f) due to their unique characteristics. 

b c

d e

a

Figure 3 a SEM micrograph of particulate nano-HA synthesized by the wet chemistry method. (b,e) SEM micrographs of nano-HA/PLGA composites: (b,c) PHAa (the 
agglomerated nano-HA in PLGA composites); (d,e) PHAd (the well-dispersed nano-HA in PLGA composites). (b,d) the top surface, (c,e) the bottom surface. Original mag-
nification: 100 kX. Magnification bars: 200 nm.
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Figure 4 (a) The typical tensile stress-strain curves of PLGA, PTCa (the agglomerated nano-titania in PLGA composites) and PTCd (the well-dispersed nano-titania in PLGA 
composites) that were calculated from the load-extension data of tensile tests. (b) The tensile moduli of PLGA, PTCa and PTCd. (c) The tensile strength at yield and the 
ultimate tensile strength (UTS) of PLGA, PTCa and PTCd. (d) The elongation (unitless) at yield and (e) the elongation at break of PLGA, PTCa and PTCd. (f) The compressive 
moduli of PLGA, PTCa and PTCd. Values are mean ± SEM; n = 3; *p  0.05 compared with PLGA; and **p  0.05 compared with PTCa.

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


International Journal of Nanomedicine 2010:5 307

Dispersed ceramic nanoparticlesDovepress

submit your manuscript | www.dovepress.com

Dovepress 

0
0 2 4 6 8 1210

0 0.5 1 1.5 2 2.5

14

0.2

0.4

0.6

0.8

1

1.2

1.4 PLGA PHAa PHAd

0

0.2

0.4

0.6

0.8

1

1.2

1.4

PLGA PHAa PHAd

S
tr

es
s 

(σ
, M

P
a)

 

Strain (ε, unitless) 

Magnified this region 

Figure 5 The typical tensile stress-strain curves of PLGA, PHAa (the agglomerated nano-HA in PLGA composites) and PHAd (the well-dispersed nano-HA in PLGA com-
posites) that were calculated from the load-extension data of tensile tests.

First, the silver streaks contained 30–50 vol% of polymers 

while there were no polymers observed inside the micro-

cracks or the nanopores. Second, these silver streaks main-

tained certain strength compared with the microcracks and 

the nanopores. Third, the silver streaks were reversible while 

the microcracks and nanopores were irreversible. The silver 

streaks could be reduced or even removed under compressive 

stress or heat (temperatures above T
g
). Moreover, the density 

and refractive index of the silver streak region decreased 

compared with the original non-deformed polymers due to 

void formation. When the volume gain induced by the exten-

sion along the direction of the load could not compensate for 

the volume loss due to the contraction along the direction 

perpendicular to the load, the silver streaks and voids would 

begin to form. The orientation of the silver streaks was per-

pendicular to the direction of load, as shown in Figure 7.

Figures 8 and 9 show microscopic fractures on the 

PTCa (agglomerated nano-titania/PLGA composites) after 

tensile tests. Figure 8a shows the fracture cross-section of 

the PTCa. Figure 8(b,c,d) shows the top surfaces of PTCa 

near the fracture cross-section. Figure 9 shows the bottom 

surfaces of the PTCa near the fracture cross-sections. The 

de-bonding of the ceramic phase from the polymer matrix 

was evident for PTCa, as shown in Figure 9(b,c,d). The sil-

ver streaks were observed on the top surface in Figure 8b. 

The microcracks and nanopores were observed on the top 

surfaces in Figure 8d. Crack initiation and propagation were 

observed in Figure 8c.

Figures 10 and 11 shows microscopic fractures on the 

PTCd (well-dispersed nano-titania/PLGA composites) after 

tensile tests. Figure 10a shows the fracture cross-section of the 

PTCd. Figure 10(b,c,d) shows the top surfaces of PTCd near the 

fracture cross-section. Figure 11 shows the bottom surfaces of 

the PTCd near the fracture cross-sections. The de-bonding of 

the ceramic phase from the polymer matrix was also observed 

for PTCd, as shown in Figures 10(b,c) and 11(b,c,d). The 

silver streaks, however, were not observed on the top surface 

of PTCd. The microcracks and nanopores were present on the 

top surfaces in Figures 10(b,d). Crack initiation, propagation, 

and branching were observed in Figures 10d and 11a.

Microcracks and nanopores were also observed on both 

PTCa and PTCd. However, the amount of microcracks and 

the size of microcracks were very different on PTCa and 

PTCd. As observed, there were smaller and less amounts 

of microcracks on PTCd than on PTCa. Cracks propagated 

along the interface of the ceramic and the polymer matrix. 

There were also instances when the crack did not initiate 

at the interface, but at the polymer phase (Figure 8d). In 

these rare cases, it was speculated that the high local stress 

concentrations were created due to the poor distribution of 

ceramic particles.

Discussion
Many factors contribute to the mechanical properties of 

nano-ceramic/polymer composites, including size and 

shape of ceramic nanoparticles, ceramic/polymer phase 
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composition, dispersion of nanoparticles, physical or 

chemical interactions between the ceramic and polymer 

phase, and inherent properties of the polymer matrix. It is 

intriguing to speculate why well-dispersed nanoceramics in 

polymer composites improved the mechanical properties of 

the composites and how the fracture behavior of nanocom-

posites could be modified through controlling the dispersion. 

The interfacial PLGA-ceramic structure played a critical role 

in determining the mechanical properties of the composites. 
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Figure 6 (a) The tensile moduli of PLGA, PHAa (the agglomerated nano-HA in PLGA composites) and PHAd (the well-dispersed nano-HA in PLGA composites). (b) The 
tensile strength at yield and the ultimate tensile strength (UTS) of PLGA, PHAa and PHAd. (c) The elongation (unitless) at yield and (d) the elongation at break of PLGA, PHAa 
and PHAd. (e) The compressive moduli of PLGA, PHAa, and PHAd. Values are mean ± SEM; n = 3; *p < 0.05 compared with PLGA; and **p < 0.05 compared with PHAa.

For example, it was reported that a better bonding between 

the polymer matrix and the reinforcing phase resulted in a 

higher elastic modulus and a higher strength.33,34 Since the 

predominant feature of the nanoparticles lies in their ultra-

fine dimension, a large fraction of filler atoms can reside at 

the PLGA-ceramic interface which can lead to a stronger 

interfacial interaction, but only if the nanoparticles are 

well-dispersed at the nanoscale in the surrounding polymer 

matrix. Nanocomposites with a greater number of smaller 
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Figure 7 Microscopic fracture appearances of PLGA after tensile tests. Original magnifications are 1 kX for (a,b), 5 kX for (c,d) and 50 kX for (e,f). Magnification bars are 
10 μm for (a,b), 2 μm for (c,d) and 200 nm for (e,f). F shows the direction of the load.

interfaces could be expected to provide unusual properties, 

and the shortcomings induced by the heterogeneity of con-

ventional (or micron) particle filled composites would also 

be decreased or even eliminated.

Scientifically, it is a great challenge to transfer the desir-

able mechanical properties (such as Young’s modulus (E), 

compressive strength, and hardness) of nanoscale ceram-

ics into macroscale ceramic/polymer nanocomposites, 

although single-phase nanoceramics possess exceptional 

compressive strength, stiffness, and hardness. Mechanical 

properties of nanoparticle-filled polymer composites have 

been significantly improved compared with conventional 

larger particle-filled polymer composites, but they are still far 

below the predicted theoretical values which were determined 

based on the assumption that nanoscale building blocks were 

individually dispersed in the matrix, except in the case of very 

low volume fractions of the reinforcing phase.35–38 Non-ideal 

mechanical properties of ceramic/polymer nanocomposites 

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


International Journal of Nanomedicine 2010:5310

Liu and Webster Dovepress

submit your manuscript | www.dovepress.com

Dovepress 

a

c

b

d

F

F

Silver streak Microcrack

Crack growth Crack tip 

 Nanopore 

Figure 8 Microscopic fracture appearances of PTCa (agglomerated nano-titania in PLGA composites) after tensile tests. The fracture cross-section is shown in (a). The top 
surfaces of PTCa near the fracture cross-section are shown in (b,c,d). Original magnifications are 1 kX for (a), 5 kX for (b), 20 kX for c and 50 kX for (d). Magnification bars 
are 10 μm for (a), 2 μm for (b), 1 μm for (c) and 200 nm for (d). F shows the direction of the load.

are largely related to the difficulties in dispersing large 

volume fractions of the reinforcing nanoceramics in polymer 

composites. As mentioned, nanoparticles have a strong ten-

dency to agglomerate in the composites, especially when 

they take up more than 2 wt% of the composites. In addition, 

it is important to control an effective load transfer from the 

polymeric matrix to the nanoscale ceramic components (that 

is, particle/matrix bonding) and understand the respective 

mechanical properties of the particles and matrix as well as 

the interactions of the two constituents at the nanoscale.

For loading-bearing orthopedic applications, it is 

important to produce a nanocomposite with mechanical 

properties closer to their theoretical values. Approaches 

include controlling spatial distribution and orientation of 

nanoparticles in a polymer matrix at the nanoscale, and 

retaining this order at the macroscale. For example, Podsi-

adlo et al assembled a homogeneous, optically transparent 

clay (montmorillonite, MTM)/polymer (poly[vinyl alcohol], 

PVA) nanocomposite with planar orientation of alumosilicate 

nanosheets using a bottom-up layer-by-layer (LBL) assembly 

process.35 The tensile strength (UTS) of these multilayer 

MTM/PVA composites reached 400 ± 40 MPa and the 

Young’s modulus reached 106 ± 11 GPa, one order of mag-

nitude greater than that of PVA. The nanoscale dimension of 

the inorganic MTM phase and the nearly perfect orientation 

and fine dispersion of the MTM nanoplatelets may contrib-

ute to the exceptional mechanical properties.35 A highly 

effective load transfer between nanosheets and the polymer 

was, thus, achieved by combining highly ordered nanoscale 

building blocks with dense covalent and hydrogen bonding 

that stiffened the polymer chains. The greater mechanical 

properties of PVA/MTM nanocomposites resulted from 

several mechanisms at the nanoscale. The degree of struc-

tural organization (afforded by the LBL process) of the clay 

platelets in the composite maximizes the number of polymer/

MTM interactions and constrains the polymer-chain motion, 

which resulted in a highly efficient load transfer between the 

polymer phase and the stiff MTM platelets.

In this study, nano-HA/PLGA composites demonstrated 

different mechanical properties (Figures 5 and 6) from nano-
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titania/PLGA composites (Figure 4). The potential explana-

tion is believed to mainly lie in the different chemistry and 

geometry of nano-HA versus nano-titana particles. It is specu-

lated that the interactions between nano-HA and PLGA would 

be very different from the interactions between nano-titania 

and PLGA due to the different particle surface chemistry. 

Moreover, different particle geometry of nano-HA and titania 

also plays an important role in the particle distribution and 

interactions with the polymer, thus responsible for the differ-

ences in their mechanical properties. The more uniform the 

nanoparticle dispersion in the polymer and the stronger interac-

tion between the nanoparticles and polymer matrix, the more 

improved the mechanical properties. One of the approaches to 

improve dispersion of nanoparticles in a polymer matrix and 

enhance particle-polymer bonding is surface functionalization 

of particles. For example, Guo et al functionalized iron oxide 

(Fe
2
O

3
) nanoparticles with a bi-functional coupling agent 

methacryloxypropyl-trimethoxysilane (MPS) and observed 

better dispersion of nanoparticles in resin composites and, 

thus, greater tensile strength as compared to the as-received 

nanoparticle filled vinyl ester resin nanocomposites.39 What 

Figure 9 Microscopic fracture appearances of PTCa (agglomerated nano-titania in PLGA composites) after tensile tests. The bottom surfaces of the PTCa near the fracture 
cross-sections. Original magnifications are 10 kX for (a,b,c) and 50 kX for (d). Magnification bars are 2 μm for (a), 1 μm for (b,c) and 200 nm for (d). F shows the direction 
of the load.

features in the functionalized nanoparticle filled composites 

led to an increase in mechanical properties? It was speculated 

that well-dispersed nanoparticles were strongly bound with the 

polymer matrix through the bridging effect of MPS between 

the nanoparticles and polymer matrix. Therefore, in the vinyl 

ester resin composites reinforced with MPS-functionalized 

iron oxide nanoparticles, the stresses can be more easily trans-

ferred from the matrix to the particles, thus, decreasing stress 

concentration. The intimate contact between the particles and 

the matrix also ensured a reduction in crack propagation.

In order to further match the mechanical properties 

of ceramic/polymer nanocomposites with natural bone, 

additional efforts should be made to explore the theories 

and postulations discussed above to continue to optimize 

the dispersion of nanoparticles, which is the key to greater 

mechanical properties.

Conclusions
The dispersion of ceramic nanoparticles (titania or HA) 

in PLGA promoted mechanical properties of orthope-

dic materials as compared to PLGA and agglomerated 
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Figure 10 Microscopic fracture appearances of PTCd (well-dispersed nano-titania in PLGA composites) after tensile tests. The fracture cross-section is shown in (a). The 
top surfaces of PTCd near the fracture cross-section are shown in (b,c,d). Original magnifications are 400 X for (a) and 50 kX for (b,c,d). Magnification bars are 100 μm 
for (a) and 200 nm for (b,c,d).

ceramic/PLGA composites. For example, well-dispersed 

nano-titania/PLGA composites improved the tensile modulus, 

tensile strength at yield, ultimate tensile strength and com-

pressive modulus as compared with PLGA and the more 

agglomerated nano-titania/PLGA composites. As expected, 

nano-HA/PLGA nanocomposites also demonstrated a greater 

tensile modulus, tensile strength, and compressive modulus 

than the PLGA. Although the well-dispersed nano-HA/PLGA 

composites (PHAd) had a slightly lower tensile modulus, 

tensile strength, and compressive modulus compared with 

PHAa, PHAd had much better ductility (greater elongation 

at yield and greater elongation at break) than PHAa.

In conclusion, when collectively considering these results, 

the combination of the ductile PLGA with a strong, biocom-

patible, and well-dispersed nanoceramic phase can be very 

promising for customizing mechanical properties of the next-

generation orthopedic biomaterials. Coupled with prior studies 

demonstrating greater osteoblast functions,40 the combination 

of PLGA with nanoceramics may provide better candidate 

materials for more effective orthopedic/dental applications, 

from both a biological and mechanical perspective.
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