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Aim: The aim of the current work was to develop vardenafil hydrochloride (VRD)-loaded

ethosome-derived invasomes as a possible transdermal system which could be used for

patients suffering from pulmonary arterial hypertension.

Methods: VRD-loaded ethosomes were developed at three concentrations of phosphatidyl-

choline (5, 10 and 15 mg/mL) and three percentages of ethanol (20%, 30% and 40%, v/v).

The best achieved VRD-loaded ethosomes (ETH9) were optimized to invasomes via incor-

poration of terpenes (limonene, cineole and a 1:1 mixture) at three concentrations (0.5%, 1%

and 2%, v/v). All systems were evaluated for vesicle size, zeta potential, drug entrapment

efficiency (EE%), cumulative drug permeated percentages after 0.5hrs (Q0.5h) and 12hrs

(Q12h) and steady-state flux (Jss). The optimized system (ETH9-INV8) was further character-

ized for morphology, histopathology and confocal laser scanning microscopy (CLSM).

Physiologically based pharmacokinetic (PBPK) modeling was employed to estimate VRD

pharmacokinetic parameters from the optimized transdermal system and an oral aqueous

drug dispersion, in adults and geriatrics.

Results: The optimized invasomal system (ETH9-INV8) was characterized with spherical

vesicles (159.9 nm) possessing negative zeta potential (−20.3 mV), promising EE% (81.3%),

low Q0.5h (25.4%), high Q12h (85.3%) and the largest steady-state flux (6.4 µg.cm−2h−1).

Following a leave-on period of 12hrs in rats, it showed minor histopathologic changes.

CLSM studies proved its ability to deeply permeate rat skin. Lower Cmax values, delayed

Tmax estimates and greater AUC0-24h folds in adults and geriatrics (≈ 2.18 and 1.69,

respectively) were estimated following the transdermal application of ETH9-INV8 system.

Conclusion: ETH9-INV8 is a promising transdermal system for VRD.

Keywords: vardenafil hydrochloride, ethosomes, invasomes, transdermal, physiologically

based pharmacokinetic modeling

Introduction
Pulmonary arterial hypertension (PAH) is a radical syndrome identified by a raise of

pulmonary artery pressure and pulmonary vascular resistance, eventually causing

right ventricular failure and mortality.1 The pathogenesis of this disease is poorly

inferred. However, the manner of development of PAH has been investigated,
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including, inflammation, an imbalance between vascular

cell proliferation and apoptosis and extreme vasoconstric-

tion. All these stages result in narrowing of the pulmonary

arteriolar lumens and increasing pulmonary vascular

resistance.2,3 Patients suffering from PAH endure breath-

lessness, inability to function and poor quality of life.

Among the risk factors of PAH are old age, hypertension,

diabetes and coronary artery disease.4

PAH is accompanied with defective release of nitric

oxide,5 caused by reduced expression of nitric oxide synthase

in the vascular endothelium of pulmonary arteries.6 Recently,

phosphodiesterase-5 (PDE-5) inhibitors exhibited some poten-

tial in the management of PAH. PDE-5 is an isoenzyme that

metabolizes cyclic guanosine monophosphate resulting in

blood vessel constriction.7 Interestingly, PDE-5 is plentifully

expressed in lung tissue and hence, could be considered as

a promising target for PAH treatment.8 PDE-5 inhibitors, like

sildenafil, enhance the levels of cyclic guanosine monopho-

sphate, which could maintain the antiproliferative9 and

vasodilating10 effects of endogenous nitric oxide. Sildenafil11

and tadalafil12 have demonstrated efficacy in patients suffering

from PAH. Vardenafil (VRD) is more potent than sildenafil or

tadalafil in inhibiting PDE-5.13,14 In a study by Karasu-

Minareci et al,8 the efficiency of VRD in the treatment of

PAH-induced rats was elucidated. According to the rando-

mized, double-blind, placebo-controlled study of Jing et al,15

it was proved that VRD was effective and well tolerated in

patients with PAH at a dose of 5 mg. VRD is formulated as

immediate-release film-coated tablets, at 2.5–20 mg doses.

Unfortunately, the therapeutic efficiency of the drug following

oral administration is hampered by certain limitations, includ-

ing, low aqueous solubility (0.11 mg/mL), short biological

half-life (≈ 4–5hrs) and limited oral bioavailability (15%)

due to pre-systemic and hepatic first-pass metabolism.16 In

an attempt to surmount such limitations and offer a non-

invasive medication, ethosomes were developed for the trans-

dermal delivery of VRD for the treatment of erectile

dysfunction.17 Herein, VRD-loaded ethosome-derived invaso-

mal systems were designed and optimized as a promising

transdermal drug delivery system which could be used for

the management of PAH. Ethosomes are vesicular systems

containing phospholipids and ethanol. Compared to conven-

tional liposomes, these soft vesicles exhibit improved trans-

dermal permeation capabilities. Ethanol is a well-known

permeation enhancer. It acts by disturbing the ordered multi-

lamellar lipid domain, decreasing its structure density, enhan-

cing the fluidity of stratum corneum (SC) and thus providing

the vesicles with enough flexibility to deeply permeate the skin

layers.18 Recently, invasomes were introduced as vesicular

systems containing phospholipids, ethanol as well as a single

or a mixture of terpenes. Compared to ethosomes, the incor-

poration of terpenes adds extra advantages with respect to

breaking the hydrogen bonds in SC, disrupting their tight

bilayers and lipid packing and promoting drug permeation

through the intercellular lipids.19

The application of physiologically based pharmacoki-

netic (PBPK) modeling had attracted great attention in the

last years as a novel approach to estimate the drug pharma-

cokinetics following administration in one or more popula-

tions via a modeling software.20 PBPK modeling enables the

prediction of drug plasma concentration–time curves based

on the results of the in vitro and ex vivo characterization

studies as well as the physicochemical properties of the drug.

Prior verification of the model with the published clinical

pharmacokinetic data is needed.21 PBPK modeling is cur-

rently investigated in pharmaceutical research and develop-

ment and in health risk assessment as a valuable resource for

decision-making at various drug development stages.21,22

In the current work, the multi-phase multi-layer

mechanistic dermal absorption (MPML-MechDermA)

model was investigated for the estimation of VRD pharma-

cokinetic parameters following the transdermal application

of the optimized ethosome-derived invasomal system in

adults and in geriatrics using Simcyp® Simulator V17.1

software (Certara, Sheffield, UK). According to this

model, a brick and mortar structure was proposed to repre-

sent the SC. The corneocytes (the cuboid bricks) are

immersed in the lipid matrix (the mortar). This structure

illustrates the tight-packing mosaic arrangement of corneo-

cytes with intercellular lipids. It could be used to simulate

the complex pathway for drug diffusion via the SC.23

Materials and Methods
Materials
Vardenafil hydrochloride (VRD) was kindly donated by

Marcyrl Pharmaceutical Industries (Cairo, Egypt). L-α-

phosphatidylcholine (PC, Type IV-S), acetonitrile (HPLC

grade), ethanol (HPLC grade) and Rhodamine B were pur-

chased from Sigma-Aldrich Chemical Co. (St. Louis, MO).

D-Limonene and 1.8-cineole were derived from Thermo

Fisher Scientific GmbH (Karlsruhe, Germany). Sodium

chloride, potassium chloride, di-sodium hydrogen phosphate

and sodium di-hydrogen phosphate were supplied from El-

Nasr Pharmaceutical Chemicals Co. (Cairo, Egypt).
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Preparation of VRD-Loaded Ethosomes

(ETHs)
The ethanol injection technique was adopted for the develop-

ment of VRD-loaded ethosomes, at 25 ± 0.5 ºC, with slight

modifications.24 Briefly, PC and VRD were dissolved in etha-

nol. The alcoholic solution was injected into distilled water at

a flow rate of 1 mL/min with magnetic stirring (1500 rpm).

The ethosomes were formed spontaneously and turned

the resulting hydroalcoholic solution slightly turbid. The

developed ethosomes were finely homogenized (5000 rpm)

(Heidolph Silent Crusher M, Schwabach, Germany) for 3

cycles (1.5 min, each) with 5 min rest in-between. The final

concentration of VRD was 5 mg/mL. The composition of

the investigated VRD-loaded ETHs is shown in Table 1.

Preparation of VRD-Loaded Invasomes

(INVs)
For optimization of the best achieved VRD-loaded ETH,

VRD-loaded invasomes (INVs) were developed following

the incorporation of terpenes (cineole, limonene or a 1:1

mixture of limonene and cineole) into the alcoholic solution

of PC and VRD. The final concentration of VRD was 5 mg/

mL. The composition of the investigated VRD-loaded INVs

is shown in Table 2.

Design of Experiments
For the developed VRD-loaded ETHs, the response sur-

face design was utilized to study the influence of two

independent variables at three levels, viz., (i) PC concen-

tration (5, 15 and 25 mg/mL) and (ii) ethanol percentage

(20%, 30% and 40% v/v). Thirteen sets of experimental

runs were constructed, via the central composite design,

for nine investigated systems using Minitab Statistical

Software (Minitab® 17, State College, PA). The central

point was repeated to minimize the experimental error.

For the optimized VRD-loaded ETH-derived INVs,

the multilevel factorial design was adopted to investigate

the effect of two independent variables at three levels,

viz., (i) terpene type (limonene, cineole and a 1:1 mixture

of limonene and cineole) and (ii) terpene concentration

(0.5%, 1% and 2% v/v).

In all systems, five responses were evaluated, viz., vesicle

size, drug entrapment efficiency percentage (EE%), cumula-

tive drug permeated percentages after 0.5 h (Q0.5h) and 12

h (Q12h) and the steady-state flux (Jss).

Characterization of VRD-Loaded Systems
Assessment of Vesicle Size, Polydispersity Index and

Zeta Potential

The vesicle size, polydispersity index and zeta potential of

the properly diluted aqueous VRD-loaded dispersions

were estimated with Zetasizer (Malvern Zetasizer Nano

series, Worcestershire, UK), at 25 ± 0.5°C. The dynamic

light scattering (DLS) technique investigates the fluctua-

tion in light scattering as a result of the Brownian motion

of the particles as function of time, at an angle of 90º.25

Estimation of Drug Entrapment Efficiency Percentage

(EE%)

The VRD EE% of each system was determined indirectly via

the assessment of the unentrapped drug percentage. The

Table 1 The Composition and the Physicochemical Properties of the Investigated Vardenafil Hydrochloride-Loaded Ethosomes; in

Comparison to an Aqueous Drug Dispersion; Mean ± SD, n = 3

Systems * Composition Physicochemical properties

L-α-

phosphatidylcholine

(mg/mL)

Ethanol

(%)

Water

(%)

Vesicle

Size

(nm)

Zeta

potential

(mV)

a EE

(%)

b Q0.5h

(%)

c Q12h

(%)

d Jss

(µg.

cm−2h−1)

Enhancement

Ratio (mean)

Drug dispersion 100 8.2±1.4 16.2±3.8 0.2±0.01 1

e ETH1 5 20 80 187.5±12.5 -13.5±0.9 70.5±3.0 10.1±0.6 19.6±0.9 0.3±0.02 1.5

ETH2 5 30 70 197.8±21.6 -16.5±0.6 72.3±1.3 12.2±0.7 20.3±1.2 0.6±0.01 3.0

ETH3 5 40 60 192.4±13.5 -14.3±0.5 74.4±0.7 15.1±0.8 25.9±1.8 1.8±0.09 9.0

ETH4 15 20 80 181.3±19.8 -14.3±0.5 73.8±0.3 15.2±0.3 28.2±2.5 1.9±0.07 9.5

ETH5 15 30 70 158.5±17.2 -14.3±0.7 75.3±0.7 17.2±0.7 35.9±2.6 2.7±0.1 13.5

ETH6 15 40 60 172.2±20.9 -15.9±0.7 76.4±1.5 19.8±1.0 46.1±2.4 2.9±0.3 14.5

ETH7 25 20 80 139.1±18.6 -6.34±0.4 74.5±1.6 13.4±0.6 20.5±1.1 1.3±0.05 6.5

ETH8 25 30 70 142.6±15.6 -9.36±0.3 76.9±0.4 15.9±0.4 22.8±1.3 1.2±0.08 6.0

ETH9 25 40 60 137.5±13.3 -17.9±0.8 77.7±1.1 17.6±0.7 43.9±3.2 3.1±0.5 15.5

Note: *All systems contained vardenafil hydrochloride, 5 mg.

Abbreviations: aEE%, drug entrapment efficiency percentage; bQ0.5h, percent drug released after half an hour; cQ12h, percent drug released after 12 hours; dJss, steady-state

drug flux; eETH (1–9), ethosomal systems (1–9).
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VRD-loaded dispersion was centrifuged at 15,000 rpm (1 h;

4°C) (Heraeus Megafuge® 1.0 R; Hanau, Germany) and the

clear supernatant was properly diluted. The free VRD con-

centration was assessed spectrophotometrically at 250 nm.16

The VRD EE% was calculated according to Eq. (1)

%EE ¼
Total theoratical
drug contentðmgÞ � unentrapted drug

contentðmgÞ
Total theoratical
drug contentðmgÞ

X100

(1)

Ex vivo Drug Permeation Studies

The ex vivo drug permeation studies were carried out accord-

ing to the guidelines of Research Ethics Committee of

Faculty of Pharmaceutical Sciences and Pharmaceutical

Industries, Future University in Egypt (FUE) (Approval

No. REC-FPSPI-7/47). Male Wistar rats (200–250 g) were

euthanized with an overdose of sodium thiopental. The dor-

sal hair was removed by shaving with an electric shaver. The

full-thickness skin was extracted and inspected for scratches,

bites or any abnormalities. The subcutaneous fats were care-

fully removed, so that the epidermis layers were kept intact.

The skin samples were stored at –20°C and were used within

3 days of skin harvest. Prior to testing, the skin samples were

allowed to thaw and were left to equilibrate at room tem-

perature in phosphate buffer saline (pH 7.4, 24 h) to maintain

a trans-epidermal hydration gradient. Following, the samples

were carefully mounted between the donor and the receptor

compartments of the Franz diffusion cells (Hanson research,

Vision® MicroetteTM automated diffusion test system,

Chatsworth, CA) with the stratum corneum side up. The

permeation surface area was 1.767 cm2 and the stirring rate

was adjusted at 600 rpm. The receptor medium was loaded

with phosphate buffer saline (pH 7.4, 7.2 mL) and the tem-

perature was maintained at 32 ± 0.5°C.26,27 One-mL samples

of the investigated system dispersions, containing the equiva-

lent of 5 mg of VRD, were loaded into the donor compart-

ments. Aliquots of the receptor compartments were collected

and replenished with fresh medium via the autosampler at

0.5, 1, 2, 4, 8 and 12 hrs. The cumulative drug permeated

percentages per unit surface area were plotted as a function of

time. Control experiments were similarly conducted using an

aqueous drug dispersion; 5 mg/mL. For comparison, the

cumulative drug permeated percentages after 0.5hrs (Q0.5h)

and 12hrs (Q12h)
28 as well as the steady-state flux (Jss) of

each system were estimated. Jss was calculated from the

linear portion of each curve, according to Eq. 2.

Jss ¼ Amount of drug permeated

Time � Areaofskin
(2)

The enhancement ratio (Er) was calculated by dividing Jss

of each test treatment by that of the control treatment.

Statistical comparison was performed using one-way ana-

lysis of variance (ANOVA) test at a P value of 0.05.

The aliquots were analyzed via HPLC, at 250 nm, accord-

ing to the method of Carlucci et al,29 with a slight modifica-

tion. The mobile phase, consisting of phosphate buffer saline

(pH 7.4) and acetonitrile (70:30), was adjusted to flow at a rate

of 1 mL/min in an isocratic elution mode. The HPLC system

consisted of Shimadzu chromatographic system (Kyoto,

Table 2 The Composition and the Physicochemical Properties of the Investigated Vardenafil Hydrochloride-Loaded Invasomes; in

Comparison to the Best Achieved Vardenafil Hydrochloride-Loaded Ethosomes; Mean ± SD, n = 3

Systems * Composition Physicochemical Properties

Limonene

(%, v/v)

Cineole

(%, v/v)

Vesicle

Size

(nm)

Zeta

Potential

(mV)

aEE

(%)

bQ0.5h

(%)

cQ12h

(%)

d Jss

(µg.cm−2h−1)

Enhancement Ratio

(Mean)

eETH9 – – 137.5±13.3 −17.9±0.8 77.7±1.1 17.6±0.7 43.9±3.2 3.1±0.5 15.5

fETH9-INV1 0.5 144.5±12.8 −18.3±0.9 79.2±2.6 18.7±0.9 51.6±2.5 3.2±0.2 16.0

ETH9-INV2 1 148.6±19.6 −18.8±0.7 82.3±5.9 16.7±0.7 44.1±2.1 3.5±0.07 17.5

ETH9-INV3 2 155.8±22.6 −19.1±1.3 85.7±9.7 15.3±1.0 47.5±2.3 3.3±0.2 16.5

ETH9-INV4 0.5 139.3±10.9 −18.7±0.8 78.5±7.1 18.5±1.1 36.8±1.8 4.1±0.1 20.5

ETH9-INV5 1 151.1±21.6 −19.5±1.7 88.6±1.9 21.4±0.9 45.8±2.2 4.5±0.5 22.2

ETH9-INV6 2 163.8±13.9 −21.3±1.9 89.4±4.5 9.5±0.4 42.6±1.2 4.8±0.1 24.0

ETH9-INV7 0.25 0.25 140.7±12.4 −18.8±0.9 79.7±1.6 27.6±1.3 72.1±3.6 5.7±0.2 28.5

ETH9-INV8 0.5 0.5 159.9±24.9 −20.3±1.1 81.3±3.7 25.4±1.2 85.3±4.2 6.4±0.3 32.0

ETH9-INV9 1 1 172.5±30.8 −20.9±1.8 88.5±2.8 22.2±1.1 72.9±3.6 5±0.1 25

Note: *In addition, all systems contained vardenafil hydrochloride (5 mg), L-α-phosphatidylcholine (25 mg), ethanol (40%) and water (60%).

Abbreviations: aEE%, drug entrapment efficiency percentage; bQ0.5h, percent drug released after half an hour; cQ12h, percent drug released after 12 hours; dJss steady-state

drug flux; eETH9, ethosomal system 9; fETH9-INV (1–9), ethosomal system 9-derived invasomal systems (1–9).
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Japan) equipped with Shimadzu LC-10 AD VP pump, DGU-

12A degasser and SCL-10A VP system controller. Samples

were injected using Spectra System Auto sampler AS4000 at

an injection volume of 20 μL. The chromatographic separation

was performed on Waters C18 column (μBondpak, 125A°, 10
µm, 4.6 mm ×250 mm). A calibration curve (R2 = 0.995) was

constructed by plotting the peak area against drug concentra-

tion. The procedural constant was calculated from the slope of

the curve.

Selection of the Best Achieved VRD-Loaded

Ethosomal System

The data were statistically analyzed to select the best

achieved ethosomal system which possesses the highest

desirability value; with respect to five constraints. The

vesicle size and Q0.5h were targeted to be at minimum

while the EE%, Q12h and Jss values were aimed to achieve

maximum values. The best achieved ethosomal system

was further optimized to various invasomal systems via

the incorporation of terpenes.

Morphologic Examination

The morphologic examination of the optimized VRD-loaded

ethosome-derived invasomes (ETH9-INV8) was conducted

to examine the vesicular structural attributes like the unifor-

mity of shape and size and explore the presence of aggre-

gates. Briefly, one drop of the properly diluted aqueous

dispersion was deposited onto the surface of a 300-mesh

carbon-coated copper grid and was allowed to settle for 3–5

min. The excess fluid was removed and left to dry, at room

temperature, prior to investigation via Transmission Electron

Microscope (JEM 1230, Tokyo, Japan) at 80 kV under

a magnification power of 80,000 X.

Skin Irritation Studies

The histopathologic studies of the optimized VRD-loaded

ethosome-derived invasomes (ETH9-INV8) were evalu-

ated in rats to explore their possible skin irritation poten-

tial. Six rats were enrolled in the studies and were divided

into two equal groups. The first group were treated with

saline solution (control treatment), while the second group

were treated with the optimized system (test treatment).

Twenty-four hours prior to testing, the animals’ backs

were shaved and were allowed to rest overnight. On the

study day, one-mL samples were carefully rubbed on each

rat. Following a leave-on period of 12 h, the animals were

sacrificed. Skin biopsies were derived, fixed in 10% (v/v)

formol saline solution for 24 h, washed in warm water and

finally treated with methyl alcohol, ethyl alcohol and

absolute ethyl alcohol for dehydration. Tissue specimens

were embedded in paraffin, sectioned, loaded onto glass

slides, deparaffinized, stained (hematoxylin and eosin) and

finally examined microscopically.30

Confocal Laser Scanning Microscopy (CLSM) Studies

CLSM examination was conducted using a fluorescent dye,

rhodamine B. The dye was incorporated (0.1% w/v) into the

optimized VRD-loaded ethosome-derived invasomes

(ETH9-INV8). For the control treatment, the dye was loaded,

at a similar concentration, into VRD-loaded hydroalcoholic

solution (40%, v/v). The investigated treatments were added

to the donor compartments of the Franz diffusion cells over

the epidermal skin surfaces for 4 h. Following, the skin

samples were removed, rinsed with distilled water, and

fixed for 24 h.17,31 The samples were vertically cross-

sectioned into pieces and were examined via Zeiss LSM 510-

META inverted confocal laser scanning microscope (Carl

Zeiss, Jena, Germany).

PBPK Modeling Approach

For verification of the investigated modeling software, the

pharmacokinetic parameters of VRD (Cmax, Tmax and

AUC0-24h) following the oral administration of a single

20 mg dose, after over-night fasting, were predicted and

compared to the reported clinical data by Stark et al.32

The estimation of the pharmacokinetics of VRD following

the transdermal application of the best achieved ETH9-INV8

system, relative to an aqueous drug dispersion, in adults and

geriatrics was based on the current ex vivo drug permeation

data as well as the input data, listed in Table 3, for VRD.33–36

The drug dose in both treatments was fixed at 5 mg.

Results and Discussion
Development of VRD-Loaded Ethosomes
The current work aimed to develop and optimize a promising

VRD-loaded vesicular systems which are able to overcome

the limitations associated with oral drug administration,

enhance its bioavailability and offer a non-invasive transder-

mal delivery system which could be used for patients suffer-

ing from PAH. As reported by Abdulbaqi et al,37 for

ethosomes, the optimum ethanol concentrations vary from

20 - 40% (v/v). At lower concentrations, the drug EE% will

be minimal. Whereas, ethosomal membranes will be more

permeable at very high concentrations because PC can easily

be dissolved in ethanol, leading to a significant reduction in

drug EE%. In our preliminary studies, it was proved that

higher PC concentrations (beyond 25 mg/mL; 2.5% w/v) had
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no significant influence on drug EE%. Therefore, the

response surface design was employed to study the influence

of PC concentration (5, 15 and 25 mg/mL) and ethanol

percentage (20%, 30% and 40% v/v) on the characteristics

of VRD-loaded ETHs. Nine systems were simply developed

via the ethanol injection technique. This was followed by

homogenization to promote the development of finer

dispersions.

Characterization of VRD-Loaded

Ethosomes
Assessment of Vesicle Size, Polydispersity Index and

Zeta Potential

The vesicle size of the investigated ETHs ranged from

137.5 ± 13.3 nm (ETH9) to 197.8 ± 21.6 nm (ETH2).

The PDI values (not shown) were in the range of 0.174 to

0.258. This could reveal the development of uniform

nanovesicles which are characterized by narrow size dis-

tributions; Table 1.

At a constant ethanol%, an indirect correlation was

statistically (P< 0.05) revealed between the PC concentra-

tion and the mean vesicle size. The decrease in mean vesicle

size at high PC concentrations could be related to the

reduction in the interfacial tension between the water and

lipid phases, resulting in the formation of vesicles of lower

size. Furthermore, high PC concentrations could adequately

stabilize the vesicles by establishing steric barriers on their

surfaces and thereby, protect them from coagulation. These

results agree with Vikbjerg et al,38 who studied the emulsi-

fying properties of different phospholipids and reported

a negative correlation between PC concentration and the

vesicle size. At a fixed PC concentration, ethanol showed

a non-significant (P< 0.05) influence on the mean vesicle

size. It is worth noting that the smallest vesicle size (137.5

nm) was revealed with ETH9 system containing the highest

PC concentration and the largest ethanol percentage.

Ethanol was suggested to considerably decrease the thick-

ness of the vesicle membrane due to the interpenetration of

its hydrocarbon chain into the vesicular lipid bilayers.

Moreover, it provides a steric stabilization which could

result in a vesicular size reduction.39

The zeta potential values of ETHs are listed in Table 1. All

systems showed negative values ranging from −6.34 ± 0.4 mV

(ETH7) to −17.9 ± 0.8 mV (ETH9). These results were in line

with those reported by Iizhar et al,40 who developed terbina-

fine hydrochloride-loaded ethosomes possessing negative zeta

potential values varying from −7.10 mV to −7.96 mV. The

synergistic influence of ethanol and PC on the magnitude of

the negative charge of ETH9 system should be considered.

According to Limsuwan et al,41 the incorporation of a high

ethanol percentage (40%, v/v) in the system would augment

the negative charge stabilization on the vesicles due to the

electrostatic repulsions and the subsequent de-aggregation. In

a parallel line, the enrollment of PC at a high concentration

(25 mg/mL) would add to the zeta potential value.42 It was

postulated that in a medium of low ionic strength, the polar

head group is directed in a manner that the negatively charged

phosphatidyl group is oriented to the outside while the posi-

tively charged choline group is positioned to the inside, lead-

ing to a net negative charge on the surface.43,44

Estimation of VRD Entrapment Efficiency%

The drug EE% of VRD varied from 70.5 ± 3.0% (ETH1)

to 77.7 ± 1.1% (ETH9); Table 1. These promising drug

entrapment efficiency percentages could be attributed to

the capability of ETHs to accommodate the drug.45 At

a fixed ethanol%, a direct correlation was revealed

between PC concentration and VRD EE%. According to

Tadros and Al-mahallawi,46 this could be explained with

respect to the surface-active properties of lecithin which

would promote the development of strong coherent layers

surrounding the individual vesicles, and thus can minimize

the escape of the drug. At a constant system volume,

a higher system viscosity would be expected at a higher

PC concentration. This could be expected to retard the

external diffusion of the drug.47 The positive contribution

of ethanol% on VRD EE% could be related to the

enhanced solubility of VRD in ethanol.48

Table 3 The Input Data Required for Building a Physiologically

Based Pharmacokinetic Model for Predicting the Transdermal

Delivery of Vardenafil Hydrochloride

Parameters Value Reference

Molecular weight (g/mol) 579.1 [33]
apKa1 3.4 [33]
apKa2 6.7 [33]
apKa3 8.8 [33]
bCl (L/h) 56 [33]
cLog P 2.65 [34]
dRb 0.81 [35]
eClint rCYP3A4 (mL/min/pmol) 2.8 [36]
fClint rCYP3A5 (mL/min/pmol) 18 [36]

Notes: aDissociation constants of drug; btotal body clearance; cpartition coeffi-

cient; dblood to plasma concentration ratio; eintrinsic clearance of cytochrome

P450 CYP3A metabolized drug measured in recombinant CYP3A4; fintrinsic clear-

ance of cytochrome P450 CYP3A metabolized drug measured in recombinant

CYP3A5.
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Ex vivo Drug Permeation Studies

The ex vivo drug permeation data from VRD-loaded

ETHs, in comparison to an aqueous VRD dispersion, are

summarized in Table 1 and are graphically represented in

Figure 1. All systems showed significantly (P< 0.05)

higher Q0.5h, Q12h and Jss values compared to VRD dis-

persion, suggesting their enhanced transdermal abilities.

The Q0.5h percentages ranged from 10.1 ± 0.6% (ETH1)

to 19.8 ± 1.0% (ETH6), while the Q12h percentages varied

between 20.3 ± 1.2% (ETH2) and 46.1 ± 2.4% (ETH6). As

for Jss, the highest value (3.1 ± 0.5 µg.cm−2h−1) and con-

sequently, the highest enhancement ratio (15.5) was

achieved with ETH9 system (Table 1).

At a constant ethanol%, a direct correlationwas statistically

(P< 0.05) revealed between PC concentration and drug per-

meation parameters (Q0.5h, Q12h and Jss). The penetration

enhancing effect of PC is initiated by its high affinity to the

epidermis and by its ability to fluidize the lipid components of

the skin.49–51 This correlation held true till a PC concentration

of 15 mg/mL. Except for ETH9, a further increase in PC

concentration had significantly (P< 0.05) reduced the values

of the drug permeation parameters. This could be attributed to

the firmer state of the lipid membrane at higher PC concentra-

tions. According to Kriwet and Müller-Goymann,52 the low-

ering in drug release percentages with higher PC

concentrations could be related to the higher affinity of

hydrophobic drugs, like VRD, to the vesicles’ bilayers.

Furthermore, the lowering in the thermodynamic activity of

VRD and the subsequent higher drug EE% within vesicles

which possess higher PC concentrations should also be

considered.

At a fixed PC concentration, a direct correlation was

statistically (P< 0.05) revealed between ethanol% and the

drug permeation parameters. This correlation may be traced

to the dual effect of ethanol on the lipid bilayers in the stratum

corneum as well as in the ETHs. Ethanol fluidizes PC bilayers

forming compact, deformable, and soft ethosomes. In

a parallel line, it interacts with the polar head in the lipid

region of SC, allowing for a possible reduction in the transi-

tion temperature and an increase in the membrane fluidity.53,54

Based on the set constraints for vesicle size, drug EE%,

Q0.5h, Q12h and Jss values, one system (ETH9), which pos-

sessed the highest desirability value (0.91), was promoted for

further optimization studies.

Development of VRD-Loaded Invasomes

In the last years, several reports demonstrated the advan-

tages of invasomes as a promising vesicular system; with

regards to ease of formulation, high flexibility and stabi-

lity, enhanced drug permeation capability as well as

improved drug bioavailability.55–58 In the present work,

the best achieved VRD-loaded ETH9 system was

Figure 1 The ex vivo drug permeation profiles from vardenafil hydrochloride-loaded ethosomal systems, in comparison to an aqueous vardenafil dispersion.
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optimized to various invasomal systems via incorporation

of limonene, cineole or a 1:1 mixture of limonene and

cineole at 0.5%, 1% or 2% v/v.

Characterization of VRD-Loaded Invasomes

The vesicle size distribution of VRD-loaded INVs varied

from 139.3 ± 10.9 nm (ETH9-INV4) to 172.5 ± 30.8 nm

(ETH9-INV9); Table 2. Compared to ETH9, the incor-

poration of terpenes led to an increase in the size of the

vesicles. This finding agreed with that reported by

Dragicevic-Curic et al,55 for the presence of a direct cor-

relation between the terpene concentration and the vesicle

size.

The PDI of the investigated VRD-loaded INVs was in

the range from 0.291 to 0.410 (data not shown), indicating

the development of partially homogeneous vesicular

systems.

Compared to the zeta potential value of VRD-loaded

ETH 9 (−17.9±0.8), the zeta potential values of VRD-

loaded INVs were higher, ranging from −18.3 ± 0.9 mV

(ETH9-INV1) to −21.3 ± 1.9 mV (ETH9-INV6); Table 2.

It could be inferred that the incorporation of terpenes in

VRD-loaded INVs would potentiate the effect of ethanol

and hence, increase the magnitude of negative charge. This

influence is expected to promote the electrostatic

repulsion, prevent the aggregation of vesicles and promote

the physical stability of the developed INVs.55

Compared to the EE% of VRD-loaded ETH9 (77.7

±1.1%), the EE% of the developed VRD-loaded INVs were

larger, varying from 78.5±7.1% (NE9-INV4) to 89.4±4.5%

(NE9-INV6); Table 2. The existence of a direct correlation

between the terpene concentration and VRD EE% was eluci-

dated. During the development of INVs, the lipophilic terpene

was dissolved, along with PC, in ethanol. The acyl chains of

PC would produce a good environment for the incorporation

of terpene and VRD within the vesicular bilayers. The higher

the terpene concentration, the greater the lipophilicity. This

would promote higher solubilization of VRD in the bilayers

and hence, higher VRD EE% would be expected.59 The ex

vivo permeation data of VRD from VRD-loaded INVs, in

comparison to VRD-loaded ETH9, are summarized in

Table 2 and are graphically illustrated in Figure 2. Higher

transdermal flux values, ranging from 3.2 ± 0.2 µg.cm−2h−1

(ETH9-INV1) to 6.4 ± 0.3 µg.cm−2h−1 (ETH9-INV8), were

revealed with VRD-loaded INVs. Statistical analysis of the Jss
values revealed the superiority of the systems containing

a mixture of limonene and cineole over their corresponding

systems prepared using either cineole or limonene.

A direct correlation was observed between the concen-

tration of limonene and Jss values. This correlation was held

Figure 2 The ex vivo drug permeation profiles from vardenafil hydrochloride-loaded invasomal systems, in comparison to the best-achieved vardenafil hydrochloride-loaded

ethosomal system.
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true till a limonene concentration of 1%. Beyond which, the

Jss value decreased. A similar pattern was reported for

estradiol following the incorporation of limonene into PC-

based liposomes. A subsequent lowering in the transdermal

flux was revealed with the further increase in limonene

concentration. This pattern was attributed to the develop-

ment of one or more new species at high limonene concen-

trations, as revealed via a highly sensitive differential

scanning calorimetry study.60 According to Zhao and

Singh,61 the permeation enhancing effect of a mixture of

limonene/ethanol on propranolol hydrochloride could be

related to macroscopic barrier perturbation, lipid extraction

from SC and the enhancement in the drug partitioning to SC.

Many ceramides are arranged in a tight manner via

hydrogen bonding within SC lipid bilayers. The hydrogen

bonding makes the lipid bilayers stable, strong and be able to

maintain the barrier merit of SC. In the current work, the

concentration-dependent enhancement effect of cineole on

Jss could be related to its ability to lower the amide-I stretch-

ing frequency and break the intra- and inter-lamellar hydro-

gen-bonding networks. The structure of cineole contains an

ether group which could facilitate the formation of hydrogen

bonding in skin ceramides via the free oxygen.62,63

Of the investigated systems, significantly (P< 0.05) higher

Q12h (85.3 ± 4.2%) and higher flux (6.4 ± 0.3 µg.cm−2h−1)

were achieved with ETH9-INV8 system which contains a 1%

terpene mixture of limonene and cineole. Interestingly, sig-

nificantly (P< 0.05) lower Q12h (72.9 ± 3.6%) and lower flux

(5 ± 0.1 µg.cm−2h−1) were attained upon increasing the con-

centration of the terpenemixture. This could be ascribed to the

greater solubilization of VRD. The subsequent lowering in the

thermodynamic activity of the drug would be expected to

reduce the values of drug permeation parameters. One should

consider that the increase of terpene concentration might lead

to dehydration of the SC.64 These findings match with those

reported by Kunta et al,65 for the enhanced transdermal per-

meation of propranolol up to a certain terpene concentration

with no added value at higher concentrations.

Based on the achieved values of particle size, EE%,

Q0.5h, Q12h and Jss for the investigated systems and the

subsequent estimation of their desirability values, one

optimized invasomal system (ETH9-INV8) was promoted

for further characterization studies.

Characterization of the Optimized VRD-Loaded

Invasomes

A representative TEM micrograph of ETH9-INV8 is illu-

strated in Figure 3. The development of spherical vesicles

was revealed. They appear to have a lower vesicle size

than that revealed via DLS (Table 2). This could be

explained with respect to the possible aggregation of

some vesicles during DLS measurements.

The light microscopic examination of rat skin samples

which were treated with normal saline solution revealed

the presence of normal skin architecture which is charac-

terized with well-defined epidermis, dermis, and subcuta-

neous tissue with sebaceous glands and hair follicles

(Figure 4A). In a parallel line, no signs of skin irritation

(like erythema or edema) were visually observed during

the application of the optimized ETH9-INV8 system for

12hrs. Microscopically, minor histopathologic changes

were revealed. This could indicate a promising safety

and good skin biocompatibility (Figure 4B).

The CLSM studies were conducted to explore the skin

permeation ability of the optimized invasomal system

(ETH9-INV8) after 12hrs, compared to VRD-loaded

hydroalcoholic solution. The control treatment showed

slight distribution of the dye (green fluorescence) over

the SC. Very low intensities were revealed at the subse-

quent skin layers (Figure 5A). On the other hand, the

invasomal system was deposited over the SC, the epider-

mis and the hypodermis layers with higher fluorescence

intensities (Figure 5B). It could be inferred that the incor-

poration of ethanol was not the only driving force for

promoting effective drug permeation via skin. One could

speculate the synergistic effect of PC, ethanol and ter-

penes. Traditionally, three skin permeation pathways are

identified viz., through-corneocytes as a transcellular

route, between-corneocytes as a paracellular route, and

through appendages.66 Dragicevic-Curic et al55 suggested

that some invasomes might break up during permeation in

the upper skin layers. Hence, PC and terpenes are retained

where they can change the transition temperature, fluidize

the intercellular lipids and allow the drug to permeate into

deeper skin layers. In parallel, the ethanol content in

smaller invasomes can similarly fluidize the intercellular

lipids and enhance their flexible intact permeation via the

hair-follicles and/or the narrow hydrophilic channels dis-

tributed within the intercellular lipids. The follicular ducts

contain lipophilic sebum secretions derived from the

sebaceous glands. The apparent intense fluorescence near

the hair follicles could be referred to the localized accu-

mulation of the developed lipophilic vesicles.66 Based on

these findings, the follicular pathway could be described as

the main skin permeation route for VRD-loaded inva-

somes. Since the hair follicles are surrounded by blood
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capillaries, then the drug-loaded systems would be

expected to deeply permeate the skin layers and reach

the systemic circulation as micro-reservoir systems which

are able to sustain the rate of drug release and/or improve

its bioavailability by avoiding the first-pass effect.

Analysis of the Results of PBPK Model

Prior to the prediction of the pharmacokinetic parameters of

VRD in human volunteers following the transdermal appli-

cation of the optimized ETH9-INV8 system, the investigated

PBPK model should be verified against the reported clinical

data. The verification of the model was achieved by compar-

ing PBPK model-simulated (predicted) pharmacokinetic

parameters (Tmax, Cmax, and AUC0-24h) of VRD following

a single oral dose of 20 mg to the corresponding reported

pharmacokinetic parameters by Stark et al,32 Table 4. It was

revealed that mean predicted/observed ratios for Tmax, Cmax,

and AUC0-24h were 1.06, 0.98 and 0.82, respectively. This

could confirm the validity of the investigated modelling soft-

ware and the adopted model.

The PBPK model-simulated plasma concentration–

time curves of VRD following the transdermal application

of ETH9-INV8 system in adults and geriatrics, relative to

an oral aqueous drug dispersion, are portrayed in Figure 6.

The predicted pharmacokinetic parameters are summar-

ized in Table 5.

For adults, the mean Cmax value of the drug following the

transdermal application of ETH9-INV8 system (2.3 µg/L)

was lower than the corresponding mean value (4.8 µg/L)

achieved with the aqueous drug dispersion. An accelerated

absorption rate was observed by the latter as illustrated by the

steep mountain-like appearance in the plasma concentration-

Figure 3 A representative transmission electron micrograph of ETH9-INV8 system [ethosomal system 9-derived invasomal system 8].
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time plot. It was clear that the maximum drug concentration

descended rapidly to markedly lower concentrations. The

drug plasma concentration–time curve following oral drug

administration showed a pattern that can be generalized, with

subsequent doses, as peaks and troughs. On the other hand,

an almost steady-state drug plasma concentration–time curve

Figure 4 Histopathologic micrographs of hematoxylin and eosin-stained rat skin samples treated with normal saline solution (A) and ETH9-INV8 system [ethosomal system

9-derived invasomal system 8] (B).

Figure 5 Confocal laser scanning micrographs of rat skin samples treated withvardenafil hydrochloride-loaded hydroalcoholic solution (A) and ETH9-INV8 system

[ethosomal system 9-derived invasomal system 8] (B).

Dovepress Ammar et al

International Journal of Nanomedicine 2020:15 submit your manuscript | www.dovepress.com

DovePress
5681

Powered by TCPDF (www.tcpdf.org)

http://www.dovepress.com
http://www.dovepress.com


was revealed following the transdermal application of ETH9-

INV8 system. This pattern would promote prolonged drug

delivery to those patients suffering from PAH. The respective

median Tmax values of VRD following oral administration of

an aqueous drug dispersion and the transdermal application

of ETH9-INV8 systemwere 0.7 h and 2.8 h. The shorter Tmax

of the former treatment may be attributed to the rapid oral

absorption of VRD from the GIT into the systemic circula-

tion. On contrary, the delayed Tmax value of the later could be

related to the barrier function of the SC and the multilayer

Table 4 Comparison of Physiologically Based Pharmacokinetic Model Simulated (Predicted) and Clinical (Observed) Vardenafil

Hydrochloride Pharmacokinetic Parameters Following a Single Oral Dose of 20 Mg (n = 21 in Observed Data and n = 100 in

Predicted Data)

Treatment Dose of 20 mg aTmax (h) bCmax (µg/L) bAUC0-24h (µg.h/L)

Predicted data 0.7 (0.5–1.2) 19.0 ± 11.5 56.0 ± 36.0
cObserved data 0.66 (0.25–2.58) 19.30 ± 1.71 68.00 ± 1.76

Mean predicted/observed ratio 1.06 0.98 0.82

Table 5 Physiologically Based Pharmacokinetic Model Simulated Vardenafil Hydrochloride Pharmacokinetic Parameters Following

Transdermal Application of ETH9-INV8 System and an Oral Drug Dispersion, at 5 Mg Doses, in Adults and Geriatrics (n = 100)

Treatment Dose of 5 mg Population aTmax (h) bCmax (µg/L) bAUC0-24h (µg.h/L)

Oral drug dispersion Adults 0.7 (0.5–1.3) 4.8 ± 2.8 14.0 ± 9.0

Geriatrics 0.7 (0.5–1.1) 5.9 ± 3.7 20.1 ± 13.6

Transdermal ETH9-INV8 Adults 2.8 (2.1–12.0) 2.3 ± 0.9 30.6 ± 11.5

Geriatrics 3.2 (2.2–24.0) 2.3 ± 0.9 34.1 ± 13.6

Notes: aMedian (range); bmean ± standard deviation; cobserved data as retrieved from Stark et al.32

Abbreviations: ETH9-INV8, ethosomal system 9-derived invasomal system 8; Tmax, time-to-maximum drug concentration; Cmax, maximum drug concentration; AUC0-24h,

area under the time–concentration curve.

Figure 6 Physiologically based pharmacokinetic model simulated vardenafil hydrochloride plasma concentration–time curves following transdermal application of ETH9-

INV8 system [ethosomal system 9-derived invasomal system 8] and an oral drug dispersion, at 5 mg doses, in adults and geriatrics.
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structure of the skin which retards the rapid drug diffusion

into the systemic circulation. As revealed via CLSM studies,

the system is expected to deeply permeate the skin layers and

reach the systemic circulation as micro-reservoir systems

which can sustain the rate of drug release. Based on the mean

AUC0-24h values of the control (14.0 µg.h/L) and the test

treatment (30.6 µg.h/L), the relative drug bioavailability

would be 218.57%. The boosted bioavailability could be

attributed to a number of factors, including (i) the lipophilic

nature of VRD, (ii) the synergistic effect of PC, ethanol and

terpene mixture for enhancing the drug permeation into deep

skin layers and (iii) the small vesicle size of the system. The

high surface area/volume ratio would allow a facilitated con-

tact between the system and the skin. One should consider

that promising transdermal systems, which are able to deliver

an almost steady-state drug concentrations, are beneficial to

lower the side-effects of the drug which are commonly

elaborated with immediate release systems.

Significant changes in the body physiology occur with

advancing age. Aging involves progressive impairments in

the functional reserve of many organs, which might also

affect drug metabolism and pharmacokinetics. Lipophilic

drugs may have an increased volume of distribution with

a prolonged half-life due to the reduction in the glomerular

filtration rate.67 The hepatic first-pass effect of the highly

cleared drugs could be reduced due to the progressive reduc-

tion in the liver mass and in the blood perfusion. Hence, the

bioavailability of such drugs can be increased in the

elderly.68 The PBPK model-simulated pharmacokinetic

parameters of VRD following oral administration of an

aqueous drug dispersion in geriatrics revealed a higher mean

Cmax value (5.9 ± 3.7 µg/L). Within the same population, the

median Tmax value of VRD following the transdermal appli-

cation of ETH9-INV8 system was more delayed (3.2 h vs

0.7 h). Based on the respective mean AUC0-24h values of the

control (20.1 µg.h/L) and the test treatment (34.1 µg.h/L),

the relative drug bioavailability would be 169.65%. The

potentiality of the predicted pharmacokinetic parameters

and the boosted bioavailability of VRD following the trans-

dermal application of ETH9-INV8 system could be inferred,

regardless of the population.

Compared to healthy adults, the skin physiology in

geriatrics differs slightly in certain aspects like the thick-

ness of corneocyte, the SC water content, the hair follicle

density, the lipid thickness around the corneocytes and the

thickness of subcutaneous tissue.69 The plasma concentra-

tion–time curve of VRD following the transdermal appli-

cation of ETH9-INV8 systemin in geriatrics showed slight

differences to that predicted in adults. A higher median

Tmax and mean AUC0-24h values were revealed in geria-

trics. Yet, a similar mean Cmax value was predicted in both

populations.

Conclusions
Ethosome-derived invasomes were successfully developed

in the current work as a promising transdermal delivery

system for VRD. The ex-vivo drug permeation studies, the

CLSM examinations and the histopathologic assessments

unraveled the enhanced skin permeation and the promising

safety profile of the optimized transdermal system (ETH9-

INV8). The PBPK modeling revealed the boosted bioavail-

ability of VRD following the transdermal application of

ETH9-INV8 system in adults and geriatrics. Further clinical

studies are needed to explore the potential of the optimized

transdermal system in patients suffering from PAH.
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