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Abstract: Chronic obstructive pulmonary disease (COPD) is a worldwide epidemic affecting 

over 200 million people and accounting for more than three million deaths annually. The disease 

is characterized by chronic inflammation of the airways and progressive destruction of lung 

parenchyma, a process that in most cases is initiated by cigarette smoking. Unfortunately, there 

are no interventions that have been unequivocally shown to prolong survival in patients with 

COPD. Regeneration of lung tissue by stem cells from endogenous and exogenous sources is a 

promising therapeutic strategy. Herein we review the current literature on the characterization 

of resident stem and progenitor cell niches within the lung, the contribution of mesenchymal 

stem cells to lung regeneration, and advances in bioengineering of lung tissue.
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Introduction
Chronic obstructive pulmonary disease (COPD) is a worldwide epidemic affecting 

an estimated 210 million people and accounting for more than three million deaths 

annually.1 Over the next 20 years, the World Health Organization expects total COPD 

mortality to more than double. In China alone, three million men and women are 

expected to die from COPD by the year 2030 if current cigarette and biomass expo-

sure trends continue.2 Unfortunately, aside from supplemental domiciliary oxygen for 

the small number of patients who demonstrate resting arterial hypoxemia and smoking 

cessation for continued smokers, there are no interventions that have been unequivo-

cally shown to prolong survival in patients with COPD3 and no therapies that can 

fully restore the lost lung function associated with COPD. As COPD is characterized 

by loss of lung tissue and remodeling of the airways, there is growing enthusiasm for 

using stem and progenitor cells to regenerate healthy parenchymal and airway cells 

and restore lung function in patients with COPD. In this paper, we review the rationale 

and examine the clinical and animal evidence for the use of stem and progenitor cell 

therapy in COPD.

Mechanisms of structural cell damage in COPD
To understand the rationale for stem and progenitor cell therapy in COPD, it is impor-

tant to examine first the prevailing theories of COPD pathogenesis that underpin 

regenerative medicine. Morphologically, COPD is characterized by two distinct but 

related pathologic features, ie, bronchiolitis involving predominantly the small airways 

(airways less than 2 mm in diameter) and emphysema.4 Emphysema is character-

ized by dilatation and destruction of lung tissue beyond the terminal bronchioles. 
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The centriacinar form of emphysema is characterized by 

tissue destruction of the respiratory bronchioles and occurs 

most frequently in cigarette smokers. Panacinar emphy-

sema, on the other hand, is characterized by destruction of 

the entire acinar unit and occurs largely in the setting of 

alpha-1 antitrypsin deficiency.4 The key pathophysiologic 

changes underlying airflow limitation in COPD include the 

loss of elastic lung recoil pressure due to the destruction 

of alveolar septa and terminal bronchioles (emphysema), 

increased airflow resistance due to airway wall remodeling 

(ie, thickening of small airway wall) and mucoid impaction of 

the airway lumen.4 In addition, there is growing evidence that 

endothelial dysfunction and vascular remodeling initiated 

by vascular endothelial growth factor-mediated apoptosis 

of endothelial cells may also contribute to disease progres-

sion in COPD.5

Although there have been tremendous advances in our 

understanding of COPD pathobiology over the past two 

decades, the exact pathologic mechanisms by which emphy-

sema and airway remodeling occur in COPD remain largely a 

mystery. One of the leading theories is the “inflammatory 

hypothesis”. Proponents argue that in certain (genetically) 

susceptible individuals, lung inflammation, which occurs 

in response to environmental triggers such as air pollution 

and cigarette smoke, changes from a “normal” response to 

an abnormal one, characterized by excess innate and adap-

tive immunity, at some point during the exposure.6 This 

abnormal inflammatory response is further exaggerated 

during exacerbations. Two processes considered to be patho-

genically important in this abnormal inflammatory response 

are proteolytic7 and oxidant stress8 driven by the influx of 

inflammatory cells, ie, neutrophils, macrophages (innate 

response), and lymphocytes (adaptive response).9 Interest-

ingly, once the inflammatory changes are firmly established 

in the lungs, the removal of the environmental trigger such 

as cigarette smoke does not fully abrogate the abnormal 

inflammatory response observed in the airways. Indeed, 

smokers who discontinue smoking continue to demonstrate 

airway inflammation.10

Mechanisms of cellular aging 
and senescence in COPD
Another emerging hypothesis relates to accelerated cellular 

aging, or senescence that results in a series of perturbations 

in cell morphology and function, ultimately culminating in 

cell cycle arrest.11,12 The molecular and cellular mechanisms 

associated with cellular senescence include DNA dam-

age,13 abnormal DNA repair,14 impairment of epigenetic 

modifications of DNA,15 telomere shortening,16 and free 

radical formation and protein damage.17

In COPD patients with emphysema, several alterations 

in structural cells related to aging and senescence have been 

demonstrated. For example, lung fibroblasts from patients 

with emphysema have been shown to stain positive for 

senescence-associated β-galactosidase, a marker of cellular 

senescence, and demonstrate reduced proliferative capacity 

compared with fibroblasts obtained from healthy smokers.18 

It has also been shown that Type II alveolar and endothelial 

cells from emphysematous patients have increased expres-

sion of cyclin-dependent kinase inhibitors p16INK4a and 

p21Waf1/CIP1 which can both induce senescence.19

Although there is little understanding of epigenetic 

modifications in relation to specific genes in COPD, global 

acetylation of histone H3 has been detected in the lungs of ex-

smokers with COPD.20 In addition, the histone deacetylases, 

histone deacetylase (HDAC) 2 and Sirtuin 1, which act on 

histone residues to mediate DNA silencing, have been shown 

to be decreased in the lungs of COPD patients compared 

with healthy smokers who had not developed COPD.21,22 

The reduced expression of Sirtuin 1 in COPD patients was 

shown to be due to post-translational oxidative modification 

by cigarette smoke.21 As Sirtuin 1 is important for nuclear 

factor (NF)-kB-dependent transcription and cell survival to 

tumor necrosis factor (TNF), a reduction in Sirtuin 1 would 

lead to increased acetylation of histones and enhanced inflam-

mation in response to cigarette smoke.

Finally, in somatic cells, telomeres shorten with every 

cell cycle and when they reach a critical length, senescence 

is induced. Telomeres are thus a good biomarker of cellular 

aging. Several studies have demonstrated shorter telomeres 

in leukocytes in current smokers when compared with ex- 

and nonsmokers,23,24 and Tsuji et al showed that patients 

with COPD had shorter telomeres in Type II epithelial and 

endothelial cells compared with telomeres from smoking 

and nonsmoking controls.19 In contrast, Muller et al did not 

find a significant difference in telomere length of lung fibro-

blasts between individuals with and without emphysema.18 

However, in both studies, the authors found that other bio-

markers of senescence were upregulated and overexpressed. 

In terms of systemic aging in COPD we have recently 

demonstrated that COPD patients have shorter telomeres in 

their peripheral circulation than do healthy people and their 

telomere length decreases with worsening lung function. 

We further demonstrated that telomere length was related 

to surfactant protein-D, a lung specific biomarker, but not 

to nonspecific systemic biomarkers of inflammation such as 
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C-reactive protein and interleukin-6, raising the possibility 

that the generalized aging process may be driven by the 

lung disease.25 Collectively, there appears to be sufficient 

evidence to suggest that resident structural cells within 

the lungs and lymphocytes within the systemic circulation 

of COPD patients exhibit markers of cellular senescence 

and accelerated aging, which is potentially detrimental to 

normal lung repair.

Mechanisms of lung repair
Theoretically, if the reparative and regenerative processes 

in the lungs can keep up with the destructive, inflammatory, 

or apoptotic processes, then lung homeostasis can be 

maintained, leading to the preservation of normal tissue and 

function. Following epithelial injury, the airway epithelium 

begins to repair almost immediately. At the wound edge, the 

(undamaged) epithelial cells de-differentiate and migrate to 

“cover up” the wounded area and release a variety of pro-

inflammatory cytokines and growth factors to attract proteins 

and cells needed for restoration of the extracellular matrix, 

which is crucial for normal wound repair . Once this occurs, 

re-epithelialization can proceed.

The adult human lung comprises various trophic 

units which are each lined by specialized types of airway 

epithelia.26 The ability of the lung to repair itself in the 

setting of injury is determined by the molecular events that 

mobilize the resident stem and progenitor cells within each 

of the trophic units. Stem cells and progenitors are similar in 

that they both proliferate and give rise to differentiated cells 

but only stem cells are capable of self-renewal.27 The reader 

is referred to Figure 1 for the putative stem and progenitor 

cell niches within the human lung.

Resident stem cells within the lung
In contrast to dermal and intestinal epithelia, which are highly 

proliferative and rapidly renewing, the turnover of the airway 

epithelium is extremely slow unless injured.28 Each of the 

tracheal, bronchial, and alveolar regions within the lung has a 

distinct resident stem or progenitor cell population which pos-

sesses unique cellular physiologic properties. To date, several 

cells within the trachea and bronchial tissue have been reported 

to be enriched for stem/progenitor cell activity including 

cytokeratin 5/14-expressing basal cells, secretory (Clara) cells, 

cells residing in submucosal glands, and neuroepithelial bodies 

(NEB).29–33 A more recent study indicates that cytokeratin 5/14 

expressing basal cells can self-renew and also give rise to new 

ciliated Clara and secretory cells following epithelial injury.34 

We have also demonstrated that within human airways the 

basal cell population contains a side population (SP) of cells, 

which are characterized by the ability to efflux actively the 

DNA binding dye, Hoescht 33342.35 As with other epithelial 

tissues such as in mammary glands,36,37 the eye,38 and the skin,39 

SP cells within the airways are rare, making up less than 0.1% 

of the total epithelial cell population. We further demonstrated 

that a single SP cell had the potential to differentiate and form 

air-liquid interface cultures containing basal, ciliated, and 

secretory cells. Consistent with these findings, Giangreco et al 

have demonstrated using an aggregation chimera mouse that 

in normal and moderately injured airways, single randomly 

distributed progenitor cells are capable of maintaining epithe-

lial homeostasis.40 On the other hand, repair following severe 

injury resulted from large clonal cell patches associated with 

stem cell niches residing in neuroendocrine bodies (NEB) 

and bronchioalveolar duct junctions (BADJ).40 The existence 

of Clara cells expressing Scgb1a1 (Secretoglobin 1a1, also 

known as CC10 or CCSP) which function as stem cells in 

the NEB microenvironment of the bronchiolar epithelium 

and BADJ have previously been demonstrated by Giangreco 

and colleagues.41 An important finding of this study was that 

repair mediated through activation of local stem cells led to 

a loss of progenitor cell diversity.40

Within whole mouse lung tissue digests, Summer et al 

demonstrated a population of SP cells that were sca-1-positive 

and heterogeneous for CD45 expression, and comprised 

0.03%–0.07% of all lung cells.42,43 This group went on to 

demonstrate that sca-1-positive, CD45 negative SP cells from 

mouse lung has a molecular profile similar to NEB-associated 

CCSP expressing Clara cells.43 The BADJ has also been pro-

posed to harbor a subset of Clara cells expressing an alveolar 

Type II marker surfactant protein C. As these cells proliferate 

following injury, it was proposed that these cells gave rise to 

bronchiolar and alveolar cells in vivo.44 However, Rawlins 

et al using mouse strains with cell lineage labeling, have 

recently demonstrated that Scgb1a1 and surfactant protein C 

expressing cells in mice do not function as bronchioalveolar 

stem cells.45 They also demonstrated that specific populations 

of Clara cells were transiently amplifying progenitor cells 

for the bronchus but not alveoli. They showed that alveolar 

Type I cells are maintained only by alveolar Type II cells 

(regardless of their Scgb1a expression status).

Unfortunately, the field has limited knowledge of the 

phenotypes of stem/progenitor cells within each trophic unit 

of the human lung, due to the technical difficulty of sampling 

and the paucity of available markers for identification. Thus, 

a fundamental understanding of each of the stem cell niches 

and the molecular signals that enhance repair in each of the 
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tropic units of the lung is required for future development 

of regenerative therapies.

Potential mechanisms to enhance 
resident stem cell regeneration
As resident stem cells within the airways have the capac-

ity to regenerate tissue following damage, one possible 

therapeutic option could be to enhance resident stem 

cell activation. The angiogenic factor, fibroblast growth 

factor-2 (FGF-2), is essential for normal lung develop-

ment and branching morphogenesis. In canine models of 

emphysema, FGF-2 has been shown to increase pulmonary 

blood flow to the damaged lung, leading to recovery of 

pulmonary function.46 However, in this same study, FGF-2 

did not regenerate parenchymal tissue or induce alveolar 

septation.

Adrenomedullin, a potent vasodilator peptide, has been 

shown to significantly increase lung volume, static lung 

compliance, and mean linear intercept of alveolar tissue in 

mouse lungs treated with elastase, suggesting that it protects 

against parenchymal destruction related to excess proteolytic 

activity in the lungs.47 Treatment with adrenomedullin was 

associated with increased numbers of mononuclear cells 

and sca-1 positive cells in circulating blood, and increased 

numbers of bone marrow derived cells within the elastase-

treated lung. The authors concluded that adrenomedullin may 

improve emphysema by mobilizing bone marrow cells and 

protecting alveolar epithelia and endothelial cells against 

tissue destruction.

All-trans-retinoic acid (ATRA) is an analogue of vitamin 

A and plays an important regulatory role in cell development, 

differentiation, and homeostasis. There are two types of 

Trophic units of the lung Resident stem/progenitor epithelial cells
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Figure 1 Illustration of putative stem/progenitor cells which have been demonstrated within the four trophic regions of the human lung, ie, trachea, bronchi, bronchioles and alveoli. 
Reprinted with permission of the American Thoracic Society. Copyright © 2008, American Thoracic Society. X, Engelhardt JF. The glandular stem/progenitor cell niche in airway 
development and repair. Proc Am Thorac Soc. 2008;5(6):682–688.
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retinoid receptors, ie, retinoic acid receptors and retinoid 

X receptors. There are also three different isoforms of retinoic 

acid receptor: α, β, and γ, which have different regulatory 

roles in alveolar development.48,49 RARγ, for instance, is nec-

essary for alveolar formation in mice during the first 28 days 

following birth. Tepper et al demonstrated that injection of 

ATRA nine weeks after porcine elastase-induced emphysema 

in rats showed no progression in elastase-induced airway 

destruction compared with elastase-treated controls.50 This 

was associated with small but significant changes in lung 

volume, but not lung density as measured by computed 

tomography (CT). However, Fujita and colleagues found 

using an elastase-induced emphysema model and a tumour 

necrosis factor (TNF)-alpha in transgenic mouse that daily 

treatment with intraperitoneal ATRA injections for 12 days 

following induction of emphysema had no significant dif-

ferences in lung histology compared with controls.51 These 

studies indicated that the beneficial effects of ATRA may 

be species-specific. Further Ishizawa et al found that the 

combination of granulocyte-colony stimulating factor and 

ATRA had an additive effect in decreasing emphysema 

induced by elastase, indicating that mobilization of bone 

marrow cells could potentially play a role in lung regenera-

tion after injury.52 In humans, a small study by Paiva et al 

demonstrated that patients with moderate to severe COPD 

had reduced concentrations of circulating vitamin A levels 

and that supplementation of vitamin A could lead to improve-

ments in lung function.53 Another small study involving 

20 patients with moderate to severe COPD evaluated the 

potential for ATRA.54 In this study, patients were treated with 

either ATRA (50 mg/m2/day) or placebo for 12 weeks, fol-

lowed by a 12-week crossover phase. The trial demonstrated 

that although ATRA was well tolerated, it had no effect in 

reversing emphysema. The FORTE (Feasibility of Retinoids 

for the Treatment of Emphysema) study further evaluated the 

potential efficacy of retinoid therapy in a multicenter trial.55 

Although there was a dose- and time-dependent improvement 

in diffusing capacity, CT density mark score, and quality of 

life scores among subjects treated with ATRA, there were no 

definitive clinical benefits that could be observed with ATRA 

therapy. These data suggest that future studies focused on 

the biologic activity of ATRA in emphysematous patients 

requires further investigation.

Bioengineering of lung tissue
Both embryonic and adult stem cells in vitro can be induced 

to differentiate into airway and alveolar epithelial cells. 

However, engraftment following systemic administration 

is rare, fraught with many technical impediments, and the 

cells which do engraft in tissues often demonstrates a lack of 

relevant biologic responses. Thus the recent focus has been 

to use bioengineered three-dimensional matrices or artificial 

scaffolds to generate functional lung tissue in vitro and in 

vivo. These efforts have been previously successful in grow-

ing and regenerating skin, blood vessels, bone, and cartilage. 

With respect to the lung, MSCs isolated from amniotic fluid, 

umbilical cord blood, adipose tissue, or bone marrow have 

been used to generate tracheal cartilage using biosynthetic 

scaffolds in order to repair congenital tracheal defects in 

rodent models and more recently in human clinical trials.56–58 

Macchiarini et al were able to use a patient’s epithelial cells 

and MSC-derived chondrocytes to generate a bioengineered 

trachea, which after engraftment provided a functional airway 

without the requirement for immunosuppressive drugs.59

However, recreating the three-dimensional architecture 

of the lung parenchyma via bioengineering represents a sub-

stantial technical challenge. Therefore current murine studies 

have focused on understanding lung development with the 

hope that this knowledge (and technology) can be transferred 

to patients who require “lung repair”. These studies are 

utilizing mixed fetal lung cells, three-dimensional scaffold 

proteins, and growth factors such as fibroblast growth factor 

in vitro and in vivo to develop functional lung parenchymal 

tissue. In recent studies, the addition of gelatin or matrigel 

sponges imbedded with fetal lung cells in rodent lung repair 

models have demonstrated branching and epithelial structures 

reminiscent of alveolar architecture.60,61 Furthermore, in 

lung volume reduction models in rats, adipose-derived 

MSCs cultured on polyglycolic acid sheets applied to the 

wound edge have been demonstrated to accelerate alveolar 

and vascular regeneration.62 However, few studies have 

demonstrated the usefulness of bone marrow-derived cells 

compared with resident lung stem cells in these experiments 

and if the outcomes of tissue functionality are different with 

diverse stem cell sources. Thus, we still require future studies 

to develop our understanding of bioengineered lung tissue 

to meet clinical needs in COPD.

Exogenous stem or progenitor cells
Early studies using bleomycin or radiation-induced lung 

injury demonstrated the recruitment and engraftment of 

bone marrow-derived cells within the lung.63–66 However, 

later studies using lineage markers have demonstrated no 

evidence of pulmonary repopulation via bone marrow-

derived cells.67,68 Many variables of how exogenous stem 

cells may be recruited and engrafted as functional epithelial 
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cells are still left unanswered. These include their route 

of administration, the sources of stem cells and correct 

phenotype to administer, and the signals required from 

the lung for recruitment and engraftment of exogenous 

stem cells.

Mesenchymal stem cells  
and immune modulators
Mesenchymal stem cells (MSCs) are nonhematopoietic stem 

cells of mesodermal origin, with the capacity to differentiate 

into both mesenchymal and nonmesenchymal lineages. 

MSCs are found primarily in the bone marrow of adults and 

give rise to blood, skeletal muscle, vascular, and connec-

tive tissues throughout the body. Postnatally, bone marrow 

MSC can be isolated from adipose tissue, liver, synovial 

membrane, teeth, and tendons. In particular, MSCs are easily 

isolated from a small aspirate of bone marrow and can be 

expanded with high efficiency. MSCs have great potential 

in clinical therapy because they express intermediate to low 

levels of HLA Class I, low levels of HLA Class II, and low  

levels of costimulatory molecules to avoid self-recognition 

by the immune system.69 In immunocompetent patients, 

MSCs have also been demonstrated to suppress allogeneic 

T-cell proliferation and evade alloreactive recognition.70 

The immunomodulatory properties of MSCs are thought 

to involve the secretion of soluble mediators and cell-cell 

contact inhibition; however, the exact mechanisms of action 

are unclear.71 In an acute lung injury model in mice using 

bleomycin, systemic administration of MSCs has been 

demonstrated to decrease the accumulation of collagen, 

fibrosis and levels of matrix metalloproteinases.68 The 

proposed mechanism of action for these findings was the 

secretion of interleukin-1 receptor antagonist by the MSCs.72 

In endotoxin-induced lung injury models, intratracheal 

administration of MSCs has been demonstrated to decrease 

mortality, tissue inflammation, and concentrations of inflam-

matory mediators (in particular TNFα and MIP 1β) within 

bronchoalveolar lavage fluid.73 Recent studies suggest that 

the release of angiopoietin-1 by MSCs is potentially another 

important mechanism in stabilizing the endothelial fluid 

leak and maintaining alveolar-capillary barrier function in 

an endotoxin injury model.74,75

Clinical trials of MSCs
Autologous and allogeneic MSCs are currently being tested 

in clinical trials for a variety of diseases including Crohn’s 

disease, multiple sclerosis, diabetes mellitus and end-stage 

liver disease, and to prevent transplant rejection and restore 

left ventricular function in patients with congestive heart 

failure.76 An open-label Phase II trial utilizing Prochymal®, 

an allogenic MSC infusion in patients with severe Crohn’s 

disease, who were unresponsive to corticosteroids, infliximab 

(anti-TNF antibody), and other immunosuppressive therapies, 

has recently been completed. The study reported significant 

improvements in symptoms as assessed by the Crohn’s 

disease activity index (CDAI). This has led to the approval 

by the Food and Drug Administration for a Phase III double-

blind, placebo-controlled trial of this therapy for the treatment 

of Crohn’s disease.77

In 2008, Osiris therapeutics initiated a multi-center, 

double-blind, placebo-controlled Phase II clinical trial of 

Prochymal in patients with moderate to severe COPD. At 

the six-month interim report, the trial contained 62 patients 

(58% men). The age range of the subjects was from 47 to 

80 years, and 23 of the patients had moderate and 39 had 

severe disease. The important findings of the interim report 

were that Prochymal was safe and significantly reduced sys-

temic inflammation in these patients compared with those 

receiving placebo, as determined by circulating levels of 

C-reactive protein.78 However Prochymal did not significantly 

alter lung function in these patients.78 Final completion of 

this two-year trial will provide new insights in the potential 

utility of MSCs in treating patients with COPD.

Conclusion
Despite significant progress in our understanding of lung 

stem cells and their functional capacities over the past 

decade, much remains unknown about the processes 

involved in lung repair. Accumulating data from both animal 

models and clinical trials suggest that adult-derived stem 

cells may provide potential therapeutic strategies for lung 

repair in COPD. Pivotal clinical trials are currently under-

way, which in a few years will provide major insights on 

the utility of using stem and progenitor cells as therapeutic 

agents in COPD.
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