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Purpose: Tuberculosis (TB) is the leading cause of mortality in individuals infected with human

immunodeficiency virus (HIV), yet the methods for detecting Mycobacterium tuberculosis at an

early stage remain insensitive or ineffective. This study aimed to discover plasma biomarkers for

distinguishing HIV-TB coinfected individuals from HIV individuals without TB (HIV-nonTB).

Patients and Methods: A total of 200 Chinese HIV-positive patients were recruited, 100

each for HIV-nonTB group and HIV-TB group. Plasma proteomic profiles were analyzed for

50 patients each in both groups, using data-independent acquisition (DIA)-mass spectro-

metry-based proteomics. Differently expressed proteins were revealed with ridge regression

analysis. Enzyme-linked immunosorbent assay (ELISA) analyses were performed for further

validation in other 100 patients.

Results: DIA-mass spectrometry revealed 13 upregulated and 33 downregulated proteins in

the HIV-TB group. AMACR (α-methylacyl-CoA racemase), LDHB (L-lactate dehydrogen-

ase B chain), and RAP1B (Ras-related protein Rap-1b) were selected for building

a diagnostic model, for which the receiver operation characteristic curve had under areas

of 0.99 and 0.89 testing with proteomics data (sensitivity = 92%, specificity = 100%) and

ELISA data (sensitivity = 76%, specificity = 92%), respectively.

Conclusion: The combination of AMACR, LDHB, and RAP1B proteins may serve as

a potential marker of TB in HIV-infected patients.

Keywords: diagnosis, coinfection, AIDS-related opportunistic infections, Mycobacterium

tuberculosis, ROC curve, proteome

Introduction
Tuberculosis (TB) is one of the most deadly infectious diseases worldwide and also

the leading cause of mortality in HIV-positive (HIV+) population.1–3 The World

Health Organization (WHO) reported an estimated 0.8 million TB cases attributable

to HIV infection worldwide in 2018.3 The HIV-positive state makes people more

prone to tuberculosis and can also activate the existing latent TB infection.4

Management of co-infected patients can be complicated due to multiple drug–

drug interactions and compromised immune function.5 Hence, co-infection poses

great challenges for both diagnoses and treatment.

Early detection of TB in the HIV+ population can reduce TB transmission,

morbidity, and mortality. However, the atypical clinical manifestation due to HIV
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infection state makes diagnosis rather challenging. When TB

occurs to an HIV+ patient, the disease tends to be dissemi-

nated tuberculosis, rather than sputum producing pulmonary

tuberculosis. Unfortunately, sputum smear microscopy is

still the most frequently used method for rapid TB diagnosis

in HIV+ patients, with unsatisfactory sensitivity and speci-

ficity. Compared with smear, Mycobacterium tuberculosis

(Mtb) culture or nucleic acid detection assays are more

sensitive. The result waiting time for the former test can be

several weeks, which largely undermines its usage in early

diagnosis. And both tests require either sputum or tissue

samples, for which the collection process is of great diffi-

culty. Besides, they are not usually affordable and available

in resource-limited settings.6,7 All these factors necessitate

an urgency to develop a simple, inexpensive, rapid, non-

traumatic and accurate test for TB.

Recent works revealed that serum proteins secreted by

various cells (the secretomes) can reflect the physiological

and pathological status of cells, and thus are promising

biomarkers for different disease states.8,9 Methods using

mass spectrometry (MS)-based proteomics for detecting bio-

markers in serum are effective in diagnosing complex dis-

eases including TB.8–12 MS-based proteomics can analyze

all the proteins in serum to discover and quantify the TB-

associated protein expression changes, which is independent

from the detection of M. tuberculosis. Studies have already

identified multiple potential TB biomarkers using MS-based

proteomics, including iTRAQ-based proteomics, and sur-

face-enhanced laser desorption ionization time of flight

mass spectrometry (SELDITOF-MS).10–12 However, only

a few studies have focused on examining the serum proteo-

mic profiles in HIV+ patients co-infected with TB, which are

more complicated than in those of TB individuals without

HIV infection.10,12–14 Among these studies, only Chen et al

concentrated on the Chinese population, from which endo-

glin was identified as a potential biomarker based on

iTRAQ-based proteomics.12 Due to the limited size of the

total samples used in iTRAQ-based proteomics, additional

true biomarkers could be missed. Moreover, the study did

not establish a simple visual model, especially one with high

diagnostic performance in a blind testing set, to discriminate

HIV-TB coinfected from HIV-nonTB individuals.

SWATH-like data-independent acquisition-mass spec-

trometry (DIA-MS) becomes a promising tool that com-

bines deep proteome coverage capabilities with quantitative

consistency and accuracy.15 This label-free proteomics

technique overcomes multiple shortages of traditional pro-

teomics data-dependent acquisition (DDA) method and is

increasingly used in targeted proteomics analysis.15 Here,

we focused on Chinese HIV-TB coinfected and HIV-nonTB

cohorts, which is difficult to diagnose at an early stage using

traditional detection methods, such as sputum culture.

Using the DIA-MS proteomics technique, we generated

a new proteomic profile for distinguishing HIV-TB from

HIV-nonTB. Furthermore, we constructed and validated an

effective diagnostic model with higher accuracy for discri-

minating HIV-TB from HIV-nonTB.

Patients and Methods
Patient Recruitment
TB cases were defined as any form of TB in HIV-infected

patients, with or without microbiological confirmation. TB

diagnosis was based on comprehensive clinical features,

including radiological and laboratory exams such as chest

X-ray, sputum acid-fast bacilli (AFB) smear and culture

and pathological examination.

On enrollment, patients were interviewed with structured

questionnaires and then received physical examination along

with TB screening tests. Demographic and risk-behavior

information, medical histories, clinical presentation, chest

radiologic findings, and laboratory test results were collected

at the point of diagnosis.

The diagnosis of HIV infection was confirmed by

Western blot tests for HIV antibody according to the

national HIV/AIDS diagnostic criteria. A total of 200 HIV-

infected individuals were enrolled, 100 each for TB group

(HIV-TB) and non-TB group (HIV-nonTB).

The study was conducted in accordance with the declara-

tion of Helsinki. Both the study protocol and the informed

consent procedure were approved by the Shanghai Public

Health Clinical Center Ethics Committee. All participants

signed the consent form before enrollment. The dataset used

for analysis did not include patient identifiers.

Plasma Sample Collection and

Preparation
Blood specimens were collected with ethylenediaminete-

traacetic acid tubes, and then be centrifuged and separated.

Plasma samples were kept in aliquots at −80°C until

further testing.

Protein Sample Preparation
Fifty samples were taken from each of the two groups for

proteomics analysis. Total protein was extracted according to

a standard protocol. Briefly, frozen plasma samples were
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homogenized with SDT (4%SDS, 100mM Tris-HCl, pH

7.6). Proteins were isolated by centrifugation at 14000g for

15 min at 4°C, and their concentrations were quantified using

the Bradford protein assay kit (Thermo Fisher Scientific Inc,

Rockford, IL, USA).

A total of 200 μg protein of each sample was added

with DTT, with a final concentration of 100 mM, and

incubated in a boiling bath for 5 min. Then, the sample

was added with 200 μL UA buffer and centrifuged at

12500g for 25 min. Subsequently, 100μL iodoacetamide

(IAA) buffer (100mM IAA in UA) was added at room

temperature. The samples were kept in darkness for 30

min to facilitate the alkylation reaction. Then, 100uL UA

buffer was added and centrifuged at 12500g for 15 min.

Next, 100μL 40mM NH4HCO3 buffer was added and

centrifuged at 12500g for 15 min. The proteins were

digested for 16–18 h at 37°C by adding 40μL trypsin

(Promega, Madison, WI, USA). The released peptides

were desalted using C18 Cartridge (Thermo, USA).

Finally, the samples were dried and resuspended in

40 μL 0.1% formic acid.

Mass Spectrometry (MS) of the Samples
Samples were analyzed on an Agilent 1260 Infinity II

HPLC system. The combined mixtures were reconstituted

in buffer A (10mM HCOONH4, 5% ACN, pH 10.0).

Then, the solutions were fractionated with a reverse-

phase column (XBridge Peptide BEH C18 Column,

130Å, 5 µm, 4.6 mm X 100 mm, Waters Corporation,

United States). The separation gradient is linear: 0–40

min, 5–45% buffer B (10mM HCOONH4, 85% ACN,

pH 10.0). A total of 36 fractions were dried by vacuum

centrifugation and merged into 10 fractions. Each fraction

was dissolved in 30μL 0.1% formic acid for further usage.

For both DDA and DIA, 9 µL of each fraction was spiked

with 1 µL 10×iRT peptides (Biognosys), respectively, at the

recommended 1:10 ratio and analyzed separately. Peptide

spectral libraries were generated using nano-LC MS/MS.

DIA was run using various gradient lengths and sample

amounts at both nanoflow rates and capillary flow rates.

The parameters used in DDA mode analysis are as

follows: (1) MS: scan range (m/z)=350–1500; resolu-

tion=60,000; AGC target=400,000; maximum injection

time=50 ms; include charge states=2–6; Filter Dynamic

Exclusion: exclusion duration=45 s; (2) HCD-MS/MS:

Isolation window=1.6Th, resolution=50,000; AGC tar-

get=1,000,000; maximum injection time=100 ms; collision

energy=35%; stepped CE=5%.

The parameters used in DIA mode analysis were as

follows: (1) MS: scan range (m/z)=350–1200; resolu-

tion=60,000; AGC target=400,000; maximum injection

time=50 ms; (2) HCD-MS/MS: resolution=30,000; AGC

target=400,000; maximum injection time=72 ms; collision

energy=35%; stepped CE=5%.

Spectral Library Generation
A spectral library was generated from the DDA data using

the Spectronaut Pulsar X (version 12, Biognosys AG). The

raw DDA data sets were searched against the Homo sapiens

isoform SwissProt database (42,356 entries). The FASTA

file of the human non-redundant protein sequence was

downloaded in June 2018. Up to two missing cleavages in

tryptic peptides were allowed. Carbamidomethylation of

cysteine was selected as a fixed modification while oxida-

tion of methionine and N-terminal acetylation were set as

variable modifications. The data were processed with 1%

False Discovery Rate (FDR) at both peptide and precursor

levels.

The data generated in the DIA mode MS analysis were

analyzed using Spectronaut Pulsar X with default para-

meters (BGS Factory Settings). The data were processed

with 1% False Discovery Rate (FDR) at the precursor

level.

Bioinformatics Analysis
To screen out differentially expressed proteins, the thresh-

old of fold change difference between two groups was 1.5

(up or down) and the p-value (t-test) was set at 0.05, with

the coefficient variation (CV) within-group <50% and

missing values <50%.

The gene ontology (GO) annotations for those differ-

entially expressed proteins was performed by Blast2GO.16

The significantly enriched GO terms were performed

under the background of all the identified proteins using

Fisher’s exact test. The KEGG pathway enrichment ana-

lysis was conducted using KAAS (KEGG Automatic

Annotation Server),17 with the identified proteins as the

background set.

Enzyme-Linked Immunosorbent Assay

(ELISA)
To confirm the expression changes of selected proteins

identified by DIA analysis, 20 proteins were selected and

quantified by ELISA in a separate population consisting of

50 HIV-TB coinfected and 50 HIV-nonTB patients. All
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ELISA kit catalog details were listed in Supplementary

Table S2. Measurements were performed based on the kit

manufacturer’s specifications. Briefly, standard or sample

was incubated in microtiter wells containing antibodies of

proteins for 2 h. Then, the liquid of each well was

removed, and the biotinylated tracer antibody conjugated

with streptavidin peroxidase was added. The plates were

continued to be incubated for 1 h. After washing, signal

was developed by adding substrate TMB for 30 min,

followed by the addition of sulfuric acid. Within 5 min,

the absorbance was read at 450 nm on an ELISA plate

reader (BioTek). The data were analyzed using Excel,

student’s t-test was used to compare means between two

groups.

Construction of the Diagnostic Model
Before building a diagnostic model, samples were ran-

domly divided into test (25 HIV-nonTB and 25 HIV-TB)

and validation (25 HIV-nonTB and 25 HIV-TB) sets. The

test set was used to select plasma protein markers and

construct discriminant models whereas the validation set

was used to validate discriminant models.

Initially, we calculated the coefficients for the top 20

differentially expressed proteins identified in DIA analysis

using ridge regression with 10-fold cross-validation. Then,

three proteins with highest coefficients (absolute value), i.e.,

α-methylacyl-CoA racemase (AMACR), L-lactate dehydro-

genase B chain (LDHB), and Ras-related protein Rap-1b

(RAP1B), were selected to construct a diagnostic model

using DIA data and ELISA data, respectively. The logistic

regression method was used during model construction. The

diagnostic sensitivity, specificity, accuracy, and ROC curves

were calculated for each model in the validation sets.

Results
Protein Identification and Relative

Quantification
DIA MS requires an assay library containing the spectra of

all the peptides to be quantified. DDA analysis was con-

ducted to generate a spectral library. A total of 5278

peptides representing 1449 proteins were identified.

Principal-component analysis (PCA) showed substantial

variability in the distribution of protein abundance

between sample conditions (Figure 1A). To determine

significant differences in abundance between these two

groups, t-tests were initially performed on these proteins

as shown in the volcano plot using -log10(P-value) vs.

log2(fold change of two groups) (Figure 1B). In addition

to fold change (|FC|>1.5) and p-value (<0.05), more rig-

orous criteria regarding coefficient of variation (CV<0.5)

and percentage of missing value (<50%) within groups

were considered to reduce false-positive rates. Finally,

a total of 46 proteins were identified significantly differ-

entially expressed between two groups, of which 13 were

upregulated and 33 were downregulated in HIV-TB group

(Supplementary Table S1). Hierarchical clustering showed

that these proteins well distinguished the two groups,

indicating them to be potential biomarkers (Figure 1C).

Gene Ontology (GO) Analysis
The Blast2GO was employed to retrieve GO terms associated

with the hits obtained after a BLAST search of a total of 992

GO terms associated with the sequences of 46 differentially

expressed proteins were extracted (Figure 2). Organelle pro-

teins, cell part proteins, and cell proteins were the majority

among 46 differentially expressed proteins in terms of cellular

components; binding proteins were dominant in terms of

molecular functions; proteins were mainly involved in cellular

process, single-organism process, biological regulation, regu-

lation of biological process, metabolic process, and response

to stimulus in terms of cellular process.

GO Enrichment Analysis for Differentially

Expressed Proteins
The identification of significantly enriched GO terms was

performed under the background of all the identified proteins

using Fisher’s exact test. The results indicated that the differ-

entially expressed proteins in two patient groups were mainly

involved in the catabolic process, respondence of inorganic

substance, and single-organism catabolic process (Figure 3).

KEGG Pathway Enrichment Analysis of

Differentially Expressed Proteins
Like GO enrichment analysis, KEGG pathway enrichment

analysis of the 46 proteins was also analyzed under the

background of identified proteins set by Fisher’s exact test.

As a result, 105 relevant KEGG signaling/metabolic path-

ways were obtained, among which the top 8 significantly

enriched pathways were associated with metabolism and

immune processes (Figure 4).

Validation of DIA Results by ELISA
In order to validate the dysregulated proteins based on DIA

results, the 20most differentially expressed proteins based on
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ridge regression coefficients between two patient cohorts

were further measured by ELISA. The detailed information

on these 20 proteins is listed in Supplementary Table S2. The

ELISA results showed that 10 of them were consistent with

DIA results, which showed statistically significant differ-

ences in protein level. For example, CLEC3B, CNDP1,

SELENOP, PON3, AMACR, PGLYRP2, and BCHE were

significantly downregulated in HIV-TB cohort in comparison

with HIV-nonTB cohort, while LDHB, RAP1B, and CD14

were upregulated in HIV-TB cohort compared with HIV-

nonTB cohort (Figure 5). The fold changes in CASP8,

GSN, LDHA, PON1, and TUBA1B proteins between two

cohorts detected by ELISA were inconsistent with DIA

results in terms of direction. The ELISA results from other

proteins failed to reach a statistical difference between the

two groups.

Diagnostic Value of the Model
To develop a model for discriminating the two cohorts,

50 HIV-nonTB and 50 HIV-TB samples were equally

assigned into the test set and validation set. First, we

ranked the top 20 differentially expressed proteins iden-

tified in DIA result based on ridge regression coefficients

(Supplementary Table S3). Then, we chose three proteins

with highest coefficients and validated by ELISA, i.e.,

AMACR, LDHB, and RAP1B, to build a predictive

Figure 1 Features of the plasma proteome dataset from label-free quantitative proteomics analysis. (A) The PCA plot was used to check and distinguish the 5278 peptide

fragment ions between the two groups. A represents individuals in HIV-nonTB group and B denotes individuals in HIV-TB group; (B) a volcano plot of proteins in HIV-TB

relative to HIV-nonTB group; (C) hierarchical cluster analysis of the 46 differentially expressed proteins.
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model using DIA data and ELISA data, respectively. For

DIA data (Figure 6A), the area under the receiver opera-

tor characteristic curve (AUC) of the combined model

(AMACR, LDHB, and RAP1B) in validation set to dis-

tinguish HIV-TB from HIV-nonTB was 0.99, which was

higher than that of the single factor models (0.97 for

AMACR; 0.87 for LDHB; 0.83 for RAP1B). The sensi-

tivity and specificity of the single factor models were

90% and 94%, 77% and 90%, and 88% and 72%, respec-

tively. The combined model showed better performance

in sensitivity (92%) and specificity (100%).

For ELISA data (Figure 6B), the AUC of the combined

model was 0.89. The sensitivity and specificity were 76%

and 92%, respectively. Altogether, our results suggest that

the proteins AMACR, LDHB, and RAP1B can serve as

potential biomarkers to differentiate both cohorts with

sensitivity and specificity.

Discussion
Currently, individuals with co-infected TB and HIV are at

high risk of death.1–3 The treatment and diagnosis of co-

infection remain a major global public health challenge.

Moreover, multidrug-resistant tuberculosis (MDR-TB) has

recently increased annually by over 20%, which is much

harder to treat and leads to elevated mortality.18 Due to the

poor performance of the current diagnostic methods, such

as sputum smear microscopy, for diagnosing TB in HIV-

infected patients, an easy, sensitive, and specific test is

urgently needed in remote and resource-constrained

settings.

Identifying the TB-associated proteins in HIV patients

will facilitate early diagnosis and understanding of the

pathogenesis of TB in HIV-positive patients. Here, a label-

free quantitative proteomics technique was used for the

comparison of plasma proteomic profiles between HIV-TB

co-infected patients and HIV-infected patients. Although

several studies have explored potential biomarkers for

HIV-TB coinfection in serum from different populations

by proteomics,10,12–14 only one study paid attention to

Chinese populations, and one protein, endoglin, was

detected between HIV-TB and HIV-nonTB using iTRAQ-

based proteomics analysis and confirmed by ELISA.12

Figure 2 GO annotation terms of differentially expressed proteins at GO level 2.
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However, this protein was not detected in our study, pos-

sibly due to the difference in sample size and techniques

used in proteomics.

Label-free DIA removes the requirement for protein

staining or peptide labeling and fragments every single

peptide in a sample. Hence, it is a powerful technique

for discovering proteomics with a high capacity for

multiplexing, a modest need for sample volume per

analyte, and increased depth and reproducibility com-

pared with other proteomic technologies.15,19,20 This

method has been applied to detect potential biomarkers

in different diseases.21,22 Through DIA-based quantita-

tive proteomics, here we identified a total of 46 differ-

entially expressed proteins in HIV patients with or

without TB. Among these candidate proteins, 13 were

upregulated and 33 were downregulated in HIV-TB

group, compared with nonTB group. These dynami-

cally changing proteins may play essential roles in

anti-TB immunity, and partially the shift may reflect

the reverse manipulation by pathogens. For example,

we found that CD14 (Monocyte differentiation antigen

CD14), and RAP1B (Ras-related protein Rap-1b) were

elevated in the plasma of HIV-TB patients, which

could interact with IKK leading to NF-kB activation

and pro-inflammatory cytokine expression.23,24 The

upregulation of CD14 was previously reported in pul-

monary TB patients,25,26 while knockout of CD14 may

reduce mortality during murine tuberculosis due to

reduced inflammatory response.27 Sphingolipids were

found to participate in bacteria virulence promotion,

and SPT (Serine palmitoyltransferase) is the rate-

limiting enzyme of the de novo sphingolipid

biosynthesis.28 Thus, the increased SPT expression

level may favor the growth of Mtb. A recent study

found that genetic knockout or inhibition of SPT

could greatly reduce Mtb uptake by diverse cell types

without affecting other forms of endocytosis.29 In con-

trast to SPT2, AMACR (α-methylacyl-CoA racemase),

Figure 3 Significantly enriched GO terms for the differentially expressed proteins.
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which is critical for β-oxidation of branched fatty acids

in both mycobacteria and humans, was downregulated

in HIV-TB group compared to HIV-nonTB group.

Similar findings were presented by Cruz et al, who

discovered that the expression of host AMACR gene

in tuberculoid leprosy patients was lower than that in

lepromatous leprosy individuals.30

Some studies have shown lower concentration of serum

selenium in TB patients compared with healthy controls,31

while other studies revealed the association between selenium

level and TB disease severity.32 Consistent with these findings,

we observed that SELENOP, amajor selenoenzyme in plasma,

was downregulated in HIV-TB patients. Besides, level of

PGLYRP2 tended to be lower in HIV-TB patients, suggesting

the innate immune response to be undermined by the

pathogen.33 These findings were also supported by Achkar

et al10 During progression of infection byM. tuberculosis, the

macrophage infection experienced a metabolic switch from

mitochondrial oxidative phosphorylation to aerobic glycolysis,

then went to late adaptation/resolution stage in which macro-

phages transitioned from glycolysis tomitochondrial oxidative

metabolism, leading to impairment of macrophage proinflam-

matory and antimicrobial responses.34 LDHB (L-lactate

dehydrogenase B chain) is a central enzyme in lactate meta-

bolism, which preferentially converts lactate into pyruvate,

fueling oxidative metabolism. Therefore, the increase of

LDHB in HIV-TB individuals could erode macrophage

response to TB infection.

Based on these 46 differentially expressed proteins,

we successfully developed a prediction model by com-

bining the expression levels of 3 host proteins,

AMACR, LDHB, and RAP1B. Logistic regression ana-

lysis showed that the panel of these three proteins

could improve the diagnostic AUC to 99% (DIA data)

and 89% (ELISA data), accuracy to 88% (DIA data)

and 80% (ELISA data), specificity to 100% (DIA data)

and 92% (ELISA data), and sensitivity to 92% (DIA

data) and 76% (ELISA data) for discriminating HIV-

TB from HIV-nonTB patients.

Conclusion
In this study, we examined plasma proteomic profiles in

a Chinese population of HIV-TB coinfected and HIV-

nonTB cohorts and identified 46 differentially expressed

proteins between them. Our results were corroborated by

ELISA assay. Further, we built a new diagnostic model

Figure 4 KEGG pathway enrichment analysis for the 46 differentially expressed proteins.
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with combination of AMACR, LDHB, and RAP1B, which

had higher diagnostic accuracy for discriminating HIV-TB

individuals from HIV-nonTB population. These results

may expand our knowledge of the HIV-TB coinfection.

Figure 5 Levels of candidate biomarkers (mean±SEM) were measured by ELISA in plasma of HIV-TB (n = 50) and HIV-nonTB patients (n = 50).

Notes: Only 12 proteins are shown, and the details of all 20 proteins are listed in Table S2. The p-values were calculated with the two-tailed t-test. *p < 0.05; **p < 0.001.
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