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Background: Phototherapy is a potential new candidate for glioblastoma (GBM) treatment.

However inadequate phototherapy due to stability of the photosensitizer and low target

specificity induces the proliferation of neovascular endothelial cells for angiogenesis and

causes poor prognosis.

Methods: In this study, we constructed c(RGDfk)-modified glycolipid-like micelles (cRGD-

CSOSA) encapsulating indocyanine green (ICG) for dual-targeting neovascular endothelial

cells and tumor cells, and cRGD-CSOSA/ICG mediated dual effect of PDT/PTT with NIR

irradiation.

Results: In vitro, cRGD-CSOSA/ICG inhibited cell proliferation and blocked angiogenesis

with NIR irradiation. In vivo, cRGD-CSOSA/ICG exhibited increased accumulation in

neovascular endothelial cells and tumor cells. Compared with that of CSOSA, the accumula-

tion of cRGD-CSOSA in tumor tissue was further improved after dual-targeted phototherapy

pretreatment. With NIR irradiation, the tumor-inhibition rate of cRGD-CSOSA/ICG was

80.00%, significantly higher than that of ICG (9.08%) and CSOSA/ICG (42.42%).

Histological evaluation showed that the tumor vessels were reduced and that the apoptosis

of tumor cells increased in the cRGD-CSOSA/ICG group with NIR irradiation.

Conclusion: The cRGD-CSOSA/ICG nanoparticle-mediated dual-targeting phototherapy

could enhance drug delivery to neovascular endothelial cells and tumor cells for anti-

angiogenesis and improve the phototherapy effect of glioblastoma, providing a new strategy

for glioblastoma treatment.

Keywords: angiogenesis, dual-targeting, glycolipid-like micelles, phototherapy,

glioblastoma

Introduction
Glioblastoma (GBM) is one of the most common intracranial malignant tumors in

adults.1,2 It is highly lethal and prone to recur and regenerate.3,4 Though surgical

treatment, radiotherapy and chemotherapy have made some progress in recent years,

the prognosis of GBM patients is dismal due to serious systemic toxicity and side

effects5,6 and the median survival time is generally less than 14months.7 Therefore, it is

urgent to find new effective treatments. Phototherapy, including photodynamic therapy

(PDT) and photothermal therapy (PTT), is a new noninvasive local treatment.8,9 It has

attracted extensive attention in the field of GBM treatments, due to its high efficacy and
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low toxicity and side effects.10 Keyvan Rad et al11 reported

folate-conjugated gold-photoactive polymer nanoparticles

and combined PDT/PTT for GBM targeting treatment.

Dixit12 used dual receptor-targeted theranostic nanoparticles

for GBM effective therapy via PDT.

However, studies have increasingly found that inadequate

phototherapy aggravates the degree of hypoxia in solid

tumors.13 This cause the release of pro-angiogenic factors,

such as vascular endothelial growth factor (VEGF) by hypoxia

tolerant tumor cells,14 which can trigger the proliferation of

neovascular endothelial cells for angiogenesis.15 The invasive

growth of GBM depends on the degree of tumor

vascularization16 as tumor vessels provide sufficient nutrition

for GBM growth.17 Moreover, compared with normal blood

vessels, the tumor vessels are highly permeable and the base-

ment membrane is incomplete, which provides good

conditions for GBM invasion and metastasis, thus causing

poor prognosis.18,19 Therefore, tumor vessel proliferation

leads to decreased phototherapy efficacy.20 Currently,

antibodies or small molecule inhibitors are often combined

with phototherapy21,22 to overcome these disadvantages.

However, the efficacy of antibodies and small molecule inhi-

bitors is low and temporary.23 In addition, repeated adminis-

tration is often leads to drug resistance.24,25 Therefore, a new

treatment to solve the problem of disordered angiogenesis

during GBM phototherapy is urgently needed.

The mechanisms of angiogenesis are complex, including

activation and proliferation of neovascular endothelial cells,

degradation and remodeling of the extracellular matrix,

change in vascular permeability, and generation and remo-

deling of new blood vessels.26,27 Inhibiting a critical stage

such as proliferation of neovascular endothelial cells may

suppress the disordered angiogenesis caused by GBM photo-

therapy. Integrin αvβ3 is one of the adhesion molecules28 that

is highly expressed on the surface of both neovascular

endothelial cells and U87 MG cells.29,30 Cyclic peptide

c(RGDfk) could bind to integrin αvβ3 specifically,31 which

modifies the surface of the drug delivery system and could be

used to target HUVECs and U87 MG cells.

Moreover, selecting a high-energy efficiency photosensi-

tizer in the process of phototherapy is also important.

Indocyanine green, which is an FDA-approved photosensiti-

zer that can be used for clinical treatments,32 has a long

excitation wavelength, good tissue penetration and low

toxicity.33 Indocyanine green can produce a double effect

of PDT/PTT to induce apoptosis and necrosis of cells with

near-infrared (NIR) irradiation.34 However, the application

of indocyanine green in tumor phototherapy is limited,

because it is extremely unstable and easily degrades when

exposed to light. Moreover, it is prone to self-aggregation in

aqueous solution, leading to poor uptake by cells.35,36 Studies

have been reported that nanoparticles could enhance drug

stability and increase drug accumulation in target cells. High-

dose photosensitizer would inhibit the proliferation of neo-

vascular endothelial cells for blocking angiogenesis, and

dual-targeted phototherapy could destroy the structure of

tumor vessels to enhance drug delivery. Therefore, designing

a suitable drug delivery systems is necessary to improve the

efficacy of phototherapy treatment of GBM.

In this study, glycolipid-like polymer micelles

(CSOSA), constructed by grafting stearic acid and chit-

osan exhibit low toxicity, easy chemical modification

and biodegradability, were modified with a cyclic poly-

peptide c(RGDfk) as dual-targeted nanocarriers (cRGD-

CSOSA). Hydrophobic indocyanine green (ICG) was

encapsulated in the hydrophobic core of cRGD-

CSOSA. The micellar structure of cRGD-CSOSA

could increase the stability of ICG in aqueous solution

to enhance the ability of reactive oxygen species (ROS)

production. With cRGD modification, cRGD-CSOSA

exhibited an increased accumulation in neovascular

endothelial cells and tumor cells, the high-dose photo-

sensitizers inhibited the proliferation of neovascular

endothelial cells for blocking angiogenesis, and the

dual-targeted phototherapy destroyed the structure of

tumor vessels for enhancing drug delivery. Therefore,

nanoparticles further accumulated in the tumor cells,

which promoted apoptosis and necrosis with NIR irra-

diation. Additionally, the dualeffect of PDT/PTT

mediated by ICG could synergistically improve the

phototherapy efficacy of GBM (Figure 1). Furthermore,

the tumor suppression effect of cRGD-CSOSA/ICG with

NIR irradiation was investigated using a xenografted

GBM mouse model.

Materials and Methods
Materials
Chitosan oligosaccharide (CSO) with an average molecular

weight of 18.0 kDa was obtained by enzymatic degradation

of chitosan, and Gel Permeation Chromatography (GPC)

method was used to confirm the modification of the chitosan

(CS) (95% acetylation, Mw = 450 kDa; Yuhuan Marine

Biochemistry Co., Ltd, Zhejiang, China). The cyclo(RGDfK)

peptide (cRGD) was synthesized by ChinaPeptides Co., Ltd.

(Shanghai, China). NH2-PEG-NH2 (PEG2000) and 2, 4,
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6-trinitrobenzene sulfonic acid (TNBS) were purchased from

Sigma-Aldrich (Diegem, Belgium). Indocyanine green

(ICG), tetrabutylammonium iodide (TBAI),

N-hydroxysuccinimide (NHS), pyrene and Rhodamine

B isothiocyanate (RBITC) were purchased from Aladdin

Reagent Co., Ltd. (Shanghai, China). Stearic acid (SA) was

supplied by Shanghai Chemical Reagent Co., Ltd. (Shanghai,

China). 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide

hydrochloride (EDC) was purchased from Shanghai

Medpep Co, Ltd. N,N’-disuccinimidyl carbonate (DSC)

was obtained from Bio Basic Inc., (Toronto, Canada).

Methylthiazoletetrazolium (MTT) was obtained from

Sigma Chemical Co. Trypsin, Roswell Park Memorial

Institute 1640 medium (RPMI-1640) and α-minimum essen-

tial medium (α-MEM) were purchased from Gibco

(Merelbeke, Belgium). Fetal bovine serum was purchased

from Sijiqing Biology EngineeringMaterials Co, Ltd. All the

other chemicals were of analytical or chromatographic grade.

Cell Cultures
The U87 MG cells and HUVECs were purchased from the

Cell Bank of Shanghai Institute of Biochemistry and Cell

Biology, Chinese Academy of Sciences (Shanghai, China).

The U87 MG cells were cultured at 37 °C in

a humidified atmosphere containing 5% CO2 in α-MEM

supplemented with 10% fetal bovine serum and 100 IU/

mL penicillin-streptomycin. The HUVECs were cultured

in RPMI 1640 medium supplemented with 10% fetal

bovine serum (FBS) and 100 IU/mL penicillin-streptomy-

cin. The cells were regularly subcultured using trypsin/

ethylene diamine tetraacetic acid (EDTA).

Synthesis and Characteristics of

cRGD-Modified Glycolipid-Like Micelles
The glycolipid conjugate CSOSA was synthesized by

a previously described method.37 To synthesis cRGD-

modified glycolipid-like micelles (cRGD-CSOSA), NH2-

PEG2000-NH2 was used to connect the cRGD and CSOSA.

Briefly, 33 mg PEG2000 and 8 mg DSC were dissolved in

dried DMSO, and the mixture was stirred at room tem-

perature for 9 h. Then, 10 mg cRGD was dissolved in

dried DMSO, added into the previous mixture dropwise,

and stirred for another 9 h. After that, 83 mg of CSOSA

was dissolved in 20 mL of deionized (DI) water, and the

above mixture was added dropwise and stirred for another

24 h. The final production was dialyzed against DI water

for 48 h and then collected by lyophilization.

To verify the chemical structure of CSOSA and cRGD-

CSOSA, 1H-NMR spectroscopy of the chemicals was per-

formed by a 1H NMR spectrometer (AC-80, Bruker Biospin,

Germany). These chemicals were dissolved in D2O at

a concentration of 10 mg/mL. The amino-substitution

degrees (SD%) of CSOSA and cRGD-CSOSA were deter-

mined by the TNBS test.38 Pyrene was used as a probe to

estimate the critical micelle concentrations (CMC).39

A Zetasizer (3000HS, Malvern Instruments Ltd, UK) was

used to determine the sizes and zeta potentials of micelles.

Preparation and Characterization of

ICG-Loaded Nanoparticles
Hydrophobic indocyanine green (ICG) was obtained by

the electrostatic interaction of indocyanine green and pre-

scription dose tetrabutylammonium iodide in DMSO

Figure 1 Schematic diagram of phototherapy effect with dual-targeting drug delivery system. The cRGD-CSOSA/ICG nanoparticles are absorbed by tumor cells and

neovascular endothelial cells rapidly, and PDT/PTT double efficacy occurs with NIR irradiation to induce cell apoptosis and necrosis for GBM therapy.
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(ICG:TBAI = 1:2, mol/mol), and the mixture was stirred at

room temperature for 30 min. ICG-loaded cRGD-modified

glycolipid-like nanoparticles (cRGD-CSOSA/ICG) were

prepared by dialysis as in our previous study.40 Briefly,

hydrophobic ICG (5 mg/mL in DMSO) was added into

a CSOSA or cRGD-CSOSA solution (2 mg/mL in deio-

nized water).Then the mixture was stirred at room tem-

perature for 2 h in the dark. After that, the solution was

dialyzed against DI water for 24 h and then centrifuged at

8000 rpm for 10 min to remove the unloaded ICG. The

size and zeta potential of the ICG-loaded nanoparticles

were obtained by the same methods as described above.

The morphology of the micelle samples was observed by

transmission electron microscopy (TEM, JEM-1230,

JEOL). Then, the amount of encapsulated ICG in the

micelles was detected by an ultraviolet-visible spectro-

photometer (TU-1800PC; Beijing, China) at 784 nm wave-

length. The formulas for entrapment efficiency (EE%) and

drug loading (DL%) were as follows:

EE% = [weight of ICG in micelles/weight of ICG in

feed] × 100%

DL% = [weight of ICG in micelles/weight of ICG-

loaded nanoparticles] × 100%

The stability of the ICG-loaded nanoparticles was

further investigated using the same method. In brief, ICG,

CSOSA/ICG and cRGD-CSOSA/ICG were diluted with DI

water to the same concentration and stored at room tem-

perature with light. At a certain time, the UV absorption of

the samples was then determined.

Photothermal Conversion Efficiency
The photothermal conversion efficiency was detected by

a sensitive thermometer. ICG, CSOSA/ICG and cRGD-

CSOSA/ICG with the same ICG concentration were irra-

diated by a near-infrared laser at 808 nm wavelength, and

the temperature of the samples was detected at the setting

time point.

In vitro ROS Detection
1.3-Diphenylisobenzofuran (DPBF) is a ROS detection

probe.41 The ICG, CSOSA/ICG and cRGD-CSOSA/ICG

solutions were incubated with equal amounts of DPBF and

irradiated by a laser. Then, a UV spectrophotometer was used

to detect the reduction in the UVabsorption of the samples at

the maximum absorption wavelength (at 420 nm). The

degree of UV absorption reduction indirectly represent the

amount of ROS production.

Singlet oxygen sensor green (SOSG) is a new fluor-

escent probe that detects intracellular ROS generation.42

Briefly, the U87 MG cells (5×104) were seeded into

culture plates. After 24 h of incubation with 5% CO2

at 37 °C, they were treated with ICG, CSOSA/ICG,

cRGD-CSOSA/ICG and PBS and cultured for 8 h. The

medium was then discarded and replaced with fresh

α-MEM, and the cells were treated with or without

NIR irradiation (2 W/cm2, 3 min). After 12 h of incuba-

tion, SOSG was added and fluorescence was observed

by confocal laser scanning microscopy (CLSM) (Ix81-

FV1000, Olympus Co.).

The Expression of Integrin αvβ3 on U87

MG Cells and HUVECs
AWestern blot assay was used to determine the expression of

integrin αvβ3 on the U87 MG cells and HUVECs. The U87

MG cells and HUVECs were digested by trypsin and col-

lected. After adding the appropriate RIPA lysis solution, the

samples were lysed in an ice bath for 30 min and centrifuged

at 8000 rpm for 15 min at 4 °C. The supernatant was col-

lected, and the total cell protein content was obtained by

BCA assay. Lastly, the samples were heated for 10 min at

100 °C, and the expression of integrin αvβ3 was determined.

Double-Targeting
The U87 MG cells or HUVECs were seeded at a density

of 5×104 cells/well in 24-well culture plates and cultured

for 12 h with 5% CO2 at 37 °C. Both RBITC-labeled

CSOSA and cRGD-CSOSA with the same concentration

(100 μg/mL) were added into 24-well culture plates for

1 h and 4 h at 37 °C, and then CLSM was used to observe

the fluorescence of the cells.

Competitive uptake of the U87 MG cells or HUVECs

was monitored to examine the internalization pathways of

cRGD-modified glycolipid-like micelles. The U87 MG

cells or HUVECs were seeded at a density of 5×104 cells/

well in 24-well culture plates and cultured for 12 h with 5%

CO2 at 37 °C. Solutions of cRGD with concentrations of

0 μM, 1 μM, 10 μM and 20 μM were added into 24-well

culture plates. After 2 h, RBITC-labeled cRGD-CSOSA at

the same concentration of 100 μg/mL was added into

24-well culture plates for 2 h at 37 °C. The fluorescence

of the cells was obtained by CLSM.
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Cytotoxicity
The U87 MG cells were seeded at a density of 6×103

cells/well in 96-well culture plates and cultured for

24 h with 5% CO2 at 37 °C. ICG, CSOSA/ICG and

cRGD-CSOSA/ICG with a series of ICG concentrations

were added. The blank culture medium was treated as

a blank control. After 8 h, the culture medium was dis-

carded and replaced with fresh α-MEM and then treated

with or without NIR irradiation (2 W/cm2, 3 min). After

48 h, 20.0 μL of the MTT solution (5.0 mg/mL) was

added and incubated for another 4 h. Then, the medium

was discarded and replaced by 200 μL of DMSO to

dissolve the purple formazan crystals. The absorbance of

each well at 570 nm was measured by a microplate reader

(Bio-Rad,Model 680, USA). Cell viability was calculated

based on the cells incubated with the culture medium

alone. The cell viability of U87 MG cells in the blank

CSOSA or cRGD-CSOSA group was determined by the

same method.

In vitro Anti-Angiogenesis
Same process with above. Cytotoxicity of HUVECs

exactly same as U87 cells apart from α-MEM was

replaced by RPMI 1640.

The HUVECs were seeded at a density of 2×105 cells/

well in 6-well culture plates and cultured for 24 h with 5%

CO2 at 37 °C. The cells were incubated with ICG,

CSOSA/ICG and cRGD-CSOSA/ICG of the same concen-

trations (10 μg/mL). The blank culture medium was trea-

ted as a blank control. After 8 h, we discarded the culture

medium and the HUVECs were digested with trypsin and

seeded at a density of 5×104 cells/well in 96-well culture

plates coated with Matrigel matrix. Then, the HUVECs

were treated with or without NIR irradiation (2 W/cm2, 3

min). The cells were then cultured for 6 h, and optical

microscopy was used to observe the formation of the

cavities in each group.

In vivo Imaging and Biodistribution of

cRGD-CSOSA in Tumor-Bearing Model
To prepare the xenograft tumor mouse model, a suspension

of approximately 1.0×107 U87 MG cells was inoculated

subcutaneously in nude mice (6–8 weeks). All the studies

were approved by the Ethical Committee of Zhejiang

University and were conducted in accordance with the

national regulations and protocols.

When the tumor size reached approximately 150 mm3,

ICG (1 mg/kg), CSOSA/ICG (1 mg/kg) or cRGD-CSOSA

/ICG (1 mg/kg) was injected via the tail vein to investigate

the tumor fluorescence imaging. At the setting time point

after injection, the mice were observed by the Maestro

in vivo imaging system (CRI Inc.). The fluorescence

images of the excised organs and tumor tissues were also

obtained by IVIS spectroscopy.

To observe the distribution of cRGD-CSOSA in the

tumor tissue, RBITC-labeled CSOSA (5 mg/kg) or cRGD-

CSOSA (5 mg/kg) was injected via the tail vein when the

tumor size reached approximately 150 mm3. After 24 h, all

the mice in the different groups were euthanized. The

excised tumors were frozen and cut into 5 μm slices for

immunofluorescence staining to detect CD31. The fluores-

cence distribution of tumor issues was obtained by CLSM.

To investigate the effect of dual-targeted phototherapy

on the cRGD-CSOSA targeting distribution in tumor tissue,

when the tumor size reached approximately 150 mm3, the

xenografted tumor-bearing mice were randomly divided

into four groups: CSOSA/ICG (3 mg/kg) with NIR irradia-

tion; cRGD-CSOSA/ICG (3 mg/kg) with NIR irradiation;

CSOSA/ICG (3 mg/kg); cRGD-CSOSA/ICG (3 mg/kg).

Various formulations were injected via the tail vein. After

24 h, the tumors of the xenografted tumor mice in the first

two groups were treated with NIR irradiation (1 W/cm2,

3 min). The last two groups without NIR irradiation were

used as negative controls. After 24 h, xenografted tumor

mice in the CSOSA/ICG with NIR irradiation and CSOSA/

ICG groups were treated with RBITC-labeled CSOSA

(5 mg/kg). Mice in cRGD-CSOSA/ICG with or without

NIR irradiation groups were treated with RBITC-labeled

cRGD-CSOSA (5 mg/kg). Twenty-four hours later, all the

mice in the different groups were euthanized. The excised

tumors were frozen and cut into 5 μm slices, and the fluor-

escence distribution of the tumor issues was obtained by

CLSM.

In vivo Phototherapy
When the tumor size reached approximately 150 mm3, saline,

ICG, CSOSA/ICGor cRGD-CSOSA/ICGwith a dose of 3mg

ICG/kg was injected via the tail vein. After 24 h, the tumors of

xenografted tumor mice were treated with NIR irradiation

(1 W/cm2, 5 min), and a temperature-sensitive camera was

used to record temperature changes in the mice.

When the tumor size reached approximately 120 mm3,

the xenografted tumor-bearing mice were randomly divided

into eight groups (n=5): ICG (3 mg/kg) with NIR irradiation,
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CSOSA/ICG (3mg/kg) with NIR irradiation, cRGD-CSOSA

/ICG (3 mg/kg) with NIR irradiation, saline with NIR irra-

diation, ICG (3 mg/kg), CSOSA/ICG (3 mg/kg), cRGD-

CSOSA/ICG (3 mg/kg) and saline. Various formulations

were injected via the tail vein. After 24 h, the tumors of the

xenografted tumor mice in the first four groups were treated

with NIR irradiation (1 W/cm2, 3 min); the last four groups

that were treated without NIR irradiation were used as nega-

tive controls. Five injections and NIR irradiations were admi-

nistered every other day for the first 10 days. The antitumor

activity was evaluated according to the tumor volume at

different times post-administration, and the tumor volumes

and mouse weights were measured every two days after the

first injection.

All the mice in the different groups were euthanized

21 days post-administration. The excised tumors and

major organs (heart, liver, spleen, lung, and kidney) were

fixed in formalin and cut into 5 μm slices for hematoxylin

and eosin (H&E) staining. In addition, immunohistochem-

istry (IHC) analyses were carried out using monoclonal

antibodies against CD31, Ki67 and C-caspase3.

Statistical Analysis
All data are expressed as the mean value ± standard devia-

tion (SD) of three independent measurements. Statistical

analysis was performed using one-way ANOVA or

Student’s t-test. P-values<0.05 were regarded as statisti-

cally significant.

Results and Discussion
Preparation and Characterization of

cRGD-CSOSA Micelles
First, glycolipid-like polymers CSOSA were obtained by

the reaction between the amino groups of CSO and the

carboxyl group of SA in the presence of EDC. Then,

cRGD-CSOSA was obtained by two-step amide reactions

using DSC as the bridge chain to connect c(RGDfk), H2N-

PEG2000-NH2, and CSOSA (Figure S1). The final

production was collected by lyophilization. The 1H-NMR

spectrum in D2O showed the structure of cRGD-CSOSA

(Figure 2A). The peaks at 1.09 ppm and 1.12 ppm

belonged to the methylene hydrogen and methyl hydrogen

of SA, respectively. The intense peaks between 3.4 ppm

and 3.6 ppm belonged to the methylene hydrogen of NH2-

PEG2000-NH2. The tiny peaks between 7.0 ppm and 7.2

ppm belonged to the amino acids of benzene from cRGD.

The results indicated that cRGD had been successfully

conjugated to CSOSA. This was further verified by amino-

substitution degrees (SD%) of CSOSA and cRGD-CSOSA

which were 10.3% and 13.7%, respectively.

The synthesized CSOSA and cRGD-CSOSAwere easy

to self-assemble into nanosized micelles in aqueous solu-

tion. Figure 2B shows the variation of the I1/I3 ratio

against the logarithmic concentration (Lg C) of CSOSA

and cRGD-CSOSA. The corresponding concentrations of

the turning points indicated the critical micelle concentra-

tion (CMC) values of CSOSA and cRGD-CSOSA, which

were 57.5 μg/mL and 69.8 μg/mL, respectively.

The average particle size of cRGD-CSOSA was 93.5

±1.4 nm, which was slightly higher than that of CSOSA,

determined as 64.3±1.6 nm (Table S1). The zeta potentials

of cRGD-CSOSA and CSOSAwere determined to be 28.3

±0.9 mV and 32.5±0.2 mV (Table S1), respectively. These

results might be attributed to the modification of hydro-

philic PEG chairs and cRGD on the surface of CSOSA.

Preparation and Characterization of

ICG-Loaded Nanoparticles
ICG was selected as a model photosensitizer. The average

particle sizes of CSOSA/ICG and cRGD-CSOSA/ICG were

113±5.3 nm and 127±10.8 nm, respectively, which were

slightly higher than those of their blank micelles

(Table S1). The reason for this difference might be that the

structure of the nanoparticles was enlarged as as ICG entered

the hydrophobic core. The zeta potentials of CSOSA/ICG

and cRGD-CSOSA/ICG were measured as 28.5±0.5 mVand

25.0±0.9 mV (Table S1), respectively. The TEM images

show that the CSOSA/ICG and cRGD-CSOSA/ICG nano-

particles were spherical (Figure 2C and D). The EE% andDL

% of cRGD-CSOSA/ICGwere determined as 64.85 ± 9.97%

and 6.09 ± 0.88%, respectively, which were slightly lower

than those of CSOSA/ICG (measured as 76.84±5.88% and

7.14±0.51%, respectively) (Table S1, Figure S2 and S3). The

hydrophilic PEG chains and cRGD modified on the surface

of CSOSAmight lead to a slight decrease in the EE% andDL

% values due to a decrease in the hydrophobic force in the

micellar hydrophobic core.43

As reported, ICG is extremely unstable in aqueous

solution, because it is prone to self-aggregation in water,

and its degradation is accelerated with light. The UV

absorption of ICG decreased significantly within a week,

suggesting that ICG might have been denatured. In com-

parison, there were no obvious changes in the UV absorp-

tion of either the CSOSA/ICG or cRGD-CSOSA/ICG
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nanoparticles (Figure 2E). The results indicated that gly-

colipid-like micelles could improve the stability of ICG.

In vitro Photothermal Conversion

Efficiency and ROS Detection
ICG could induce the PTT effect, and the temperatures of

ICG, CSOSA/ICG and cRGD-CSOSA/ICG were increased

with continuous NIR irradiation (2 W/cm2, 3 min) to 46.0 °C,

44.4 °C and 45.8 °C respectively. Compared with PBS, which

was increased to 30.5 °C, there was a significant difference

(Figure 3A). The results indicated that ICG loaded into gly-

colipid-like micelles exhibited a negligible effect on the ICG

photothermal conversion efficiency.

With NIR irradiation, ICG could also promote the pro-

duction of ROS. Figure 3B shows the decrease in DPBF UV

absorption at 420 nm wavelength, which presented the rela-

tive amount of ROS after different preparations were treated

with NIR irradiation for 3 min, 5 min, and 10 min. The

results indicated that the ROS production of CSOSA/ICG

and cRGD-CSOSA/ICG was higher than that of ICG. This

difference might be due to the instability in aqueous solution

and the accelerated degradation with irradiation of ICG.

The intracellular ROS production mediated by NIR

irradiation was also investigated in the U87 MG cells

(Figure 3C and D). The intensity of green fluorescence

represented the amount of intracellular ROS. The cRGD-

CSOSA/ICG with NIR irradiation induced a stronger pro-

duction of ROS in the cells than did the equivalent of ICG

and CSOSA/ICG. Additionally, NIR irradiation alone or

formulations without NIR irradiation produced little intra-

cellular ROS. This result might be because glycolipid-like

polymeric micelles improved the stability of ICG and

cRGD modification enhanced the uptake by cells.

The Expression of Integrin αvβ3 on U87

MG Cells and HUVECs
AWestern blot assay was used to determine the expression

of integrin αvβ3 on the HUVECs and U87 MG cells. The

results are shown in Figure S4. Both the U87 MG cells and

HUVECs highly expressed integrin αvβ3. This finding
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suggested that the nanoparticles modified by cRGD have

the feasibility to target both neovascular endothelial cells

and tumor cells.

Cellular Targeting Uptake of

cRGD-CSOSA Micelles
RBITC-labeled CSOSA and cRGD-CSOSA were used to

determine dual-targeting capability. The intensity of red

fluorescence represented the amount of micelle uptake by

the cells. The confocal images shown in Figure 4A and

B indicate that with the modification of cRGD, the uptake

of cRGD-CSOSA in the HUVECs and U87 MG cells sig-

nificantly increased. As shown in Figure 4C and D, the

fluorescence signal in U87 MG cells and HUVECs of the

cRGD-CSOSA group was stronger than that in the CSOSA

group. To further investigate the internalization mechanism

of cRGD-CSOSA, cRGD was used to block integrin αvβ3 on

the membranes of the HUVECs and U87 MG cells. The

results in Figure 5A and B show that after treatment with

increasing concentrations of cRGD, the uptake of cRGD-

CSOSA byU87MGcells and HUVECs decreased gradually.

These results suggested that cRGD-CSOSA internalization

into the cells was mediated by integrin αvβ3 signaling path-

ways and that cRGD modification could enhance the uptake

of micelles by U87 MG cells and HUVECs. This result

indicated that cRGD-CSOSA is a potential dual-targeting

carrier that could target both tumor cells and neovascular

endothelial cells.

Cytotoxicity Assay
An MTT assay was used to determine in vitro cytotoxi-

city. As shown in Figure 6A, cRGD-CSOSA/ICG and

CSOSA/ICG showed excellent cytotoxicity in the pre-

sence of NIR irradiation. When the ICG concentration

was 5 μg/mL, cRGD-CSOSA/ICG and CSOSA/ICG

caused approximately 52.9% and 34.5% cell death,

respectively, with NIR irradiation. When the ICG con-

centration was 10 μg/mL, cRGD-CSOSA/ICG and
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CSOSA/ICG caused approximately 76.2% and 69.9% cell

death, respectively. In general, cRGD-CSOSA/ICG

exhibited higher cytotoxicity to cells than did CSOSA/

ICG, which was mainly due to the high affinity of cRGD

with the integrin αvβ3 on the membrane of U87 MG

cells. In comparison, ICG had little cytotoxicity with
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median fluorescence intensity of U87 MG cells were incubated with different micelles for 1 and 4 h, respectively. (D) The median fluorescence intensity of HUVECs were

incubated with different micelles for 1 and 4 h, respectively. (Data are represented as mean ± SD, n=3). **p < 0.01, ***p < 0.001.
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NIR irradiation, possibly due to its poor stability and

internalization by cells. Moreover, the ICG and ICG-

loaded nanoparticles showed insignificant cytotoxicity

without NIR irradiation. In addition, as shown in

Figure S5, the cell survival rate of both the CSOSA

and cRGD-CSOSA treated groups was approximately

80%, even at a concentration of 200 μg/mL. These results

suggest that cRGD-CSOSA is a safe nanocarrier.

AA

B
Laser(-) Laser(+)

C Control ICG CSOSA/ICG
cRGD-CSOSA/

ICG

Laser(-)

Laser(+)

Figure 6 In vitro cytotoxicity and anti-angiogenesis. (A) In vitro cytotoxicity of ICG, CSOSA/ICG and cRGD-CSOSA/ICG with the NIR irradiation (2 W/cm2, 3 min). (B)
The effects of ICG-loaded nanoparticles on proliferation of HUVECs with the NIR irradiation (2 W/cm2, 3 min). (C) The ability of ICG-loaded nanoparticles to anti-

angiogenesis with the NIR irradiation (2 W/cm2, 3 min). **p < 0.01, ***p < 0.001.
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In vitro Anti-Angiogenesis
The MTT assay was also used to determine the effects of

ICG-loaded nanoparticles on the proliferation ability of

HUVECs. As shown in Figure 6B, cRGD-CSOSA/ICG

and CSOSA/ICG showed significant inhibition of

HUVECs proliferation with NIR irradiation. When the

concentration of ICG was 5 μg/mL, the cell inhibition

rate of cRGD-CSOSA/ICG was 46.7% which was higher

than that of CSOSA/ICG (25.3%). When the concentration

of ICG was 10 μg/mL, the inhibition rates of cRGD-

CSOSA/ICG and CSOSA/ICG were 58.5% and 38.6%,

respectively. However, ICG had little effect on the prolif-

eration of HUVECs in the presence of NIR irradiation.

Each preparation exhibited a negligible effect on the pro-

liferation ability of HUVECs without NIR irradiation.

These results suggested that cRGD-CSOSA/ICG could

be used to inhibit the proliferation of HUVECs following

NIR irradiation.

The angiogenesis assay was used to further investigate

the ability of ICG, CSOSA/ICG and cRGD-CSOSA/ICG

nanoparticles to produce an anti-angiogenic effect. The

optical microscopy images in Figure 6C show that the

tube-like structures in the cRGD-CSOSA/ICG group with

NIR irradiation were destroyed, and the HUVECs were

scattered. The tube-like structures in the CSOSA/ICG

group with NIR irradiation were partially damaged.

However, the ICG with NIR irradiation groups formed

tube-like structures. Additionally, the HUVECs in each

group could spontaneously form a tube-like structure with-

out NIR irradiation. The results indicated that cRGD-

CSOSA/ICG-mediated phototherapy could overcome the

proliferation of neovascular endothelial cells and block

angiogenesis with NIR irradiation.

In vivo Imaging and Biodistribution
ICG could be used as a fluorescence probe for tumor imaging

because of the fluorescence production in the presence of

NIR irradiation with a wavelength of 790 nm. Integrin αvβ3 is

highly expressed on the tumor cells and neovascular endothe-

lial cells, which could contribute to the ability of cRGD

peptides to target tumor tissues, as well as to tumor diagnosis.

As shown in Figure 7A, compared with CSOSA/ICG and

ICG, a large number of cRGD-CSOSA/ICG nanoparticles

accumulated at tumor sites 12 h post-administration. The

distribution of cRGD-CSOSA/ICG in the tumors increased

over time with no obvious discrepancy until 72 h, while the

fluorescence signal of ICG and CSOSA/ICG in the tumors

was weakened after 48 h. In addition, only some of the

CSOSA/ICG nanoparticles accumulated in the tumor tissue

by the enhanced permeability and retention (EPR) effect. The

tumor tissues and main organs of the nude mice were har-

vested to investigate the fluorescence imaging (Figure 7B).

No significant fluorescence was found in the major organs of

all groups. Additionally, the fluorescence of the cRGD-

CSOSA/ICG group in the tumors was significantly stronger

than that in the other groups. These results indicated that

glycolipid-like micelles modified with cRGD could actively

target the tumor and increase the distribution and accumula-

tion of cRGD-CSOSA/ICG in the tumor. In addition, due to

the fluorescence of ICG, cRGD-CSOSA/ICG could be used

for tumor monitoring and diagnosing.

To further investigate the distribution of CSOSA and

cRGD-CSOSA in tumor tissue after dual-targeted photo-

therapy, fluorescence imaging of tumor tissue sections was

obtained by CLSM (Figure 7C). Green fluorescence was

used to label the neovascular endothelial cells, and the

intensity of red fluorescence represented the amount of

micelle distribution in the tumor tissue. Compared with

that of CSOSA, the distribution of cRGD-CSOSA in the

neovascular endothelial cells and tumor cells increased sig-

nificantly. This result indicated that cRGD-CSOSA is

a potential dual-targeting carrier that could target both neo-

vascular endothelial cells and tumor cells.

The distribution of cRGD-CSOSA in tumor tissue

after was investigated. As shown in Figure 7D, the

intensity of red fluorescence represented the amount of

micelle distribution in the tumor tissue, and a large

number of cRGD-CSOSA micelles accumulated in the

tumor tissue after dual-targeted phototherapy. However,

there was no significant change in CSOSA accumulation

in the tumor tissue after phototherapy. This result sug-

gested that dual-targeted phototherapy with cRGD mod-

ified CSOSA micelles could preferentially destroy the

tumor vascular structure and further improve drug deliv-

ery to tumor cells. This phenomenon might be due to the

increased permeability of blood vessels through the for-

mation of endothelial intercellular gaps via endothelial

cell microtubule depolymerization following vascular-

targeting photodynamic therapy; thus, tumor uptake of

nanoparticles was significantly increased.

In vivo Antitumor Activity
The in vivo antitumor efficiency of ICG-loaded nanopar-

ticles with NIR irradiation was investigated on U87 MG

tumor-xenografted nude mice. The increased temperature
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induced by NIR irradiation was measured by in vivo infra-

red thermal imaging and analyzed by FLIR QuickReport

software (Figure 8A). The intratumoral temperature of the

cRGD-CSOSA/ICG group increased to 56.4 °C after NIR

irradiation, which was significantly higher than those of

the CSOSA/ICG (47.4 °C), free ICG (44.8 °C) and saline

(42.3 °C) groups. The reason for this difference was that

cRGD modified micelles could enhance the active target-

ing ability for efficient intratumoral accumulation and cell

uptake, and the micellar structure improved the stability

of ICG.

The tumor growth curves and ex vivo photograph of

U87 MG tumors from each group after 21 days of admin-

istration are shown in Figure 8B and Figure S6, respec-

tively. The cRGD-CSOSA/ICG group treated with NIR

irradiation showed the highest tumor inhibition. CSOSA/

ICG with NIR irradiation exhibited a weaker tumor inhibi-

tion compared with that of cRGD-CSOSA/ICG due to the

lack of an active targeting effect. The free ICG with NIR

irradiation group had negligible therapeutic effects due to

its lack of stability and selectivity. The combined NIR

irradiation and drug delivery systems exhibited better antic-

ancer effects than those groups without irradiation. As

shown in Figure 8C, each treated group displayed no sig-

nificant changes in body weight, which was similar to the

saline-treated group. These results indicated that cRGD-

CSOSA/ICG had good biocompatibility and low systemic

toxicity. The final tumor weights are shown in Figure 8D,

and the group treated by cRGD-CSOSA/ICG nanoparticles

with NIR irradiation (80.00%) displayed the highest tumor-

inhibition efficiency, which was higher than that of ICG

(9.08%) and CSOSA/ICG (42.42%) with NIR irradiation.

Hematoxylin and eosin (H&E) staining also demonstrated

that the most serious tumor tissue damage was caused by

cRGD-CSOSA/ICG nanoparticles with NIR irradiation

(Figure 9B). Tumor sections in saline+laser group showed

compact and organized desmoplastic structure. In compar-

ison, wizened, vacuous and irregular cellular morphologies

as indicated by black arrows, were observed in CSOSA/

ICG+laser and cRGD-CSOSA/ICG+lase groups. The slices
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of major organs (heart, liver, spleen, lung, and kidney)

(Figure 9A) from mice treated by nanoparticles with NIR

irradiation showed no significant abnormalities or lesions

compared to those of the saline-treated mice, indicating

a lack of appreciable organ damage and further suggesting

the low toxicity of the nanoparticles.

To further investigate the anti-angiogenic efficacy of

cRGD-CSOSA/ICG with NIR irradiation, immunohisto-

chemical staining analysis was carried out on tissue sec-

tions of tumors in all treatment groups. As shown in

Figure 9C, the expression of CD31 (brown) in tumor

samples treated with cRGD-CSOSA/ICG under NIR irra-

diation decreased significantly compared with other

groups. The results indicated that cRGD-modified nano-

particles could target neovascular endothelial cells to block

angiogenesis. Furthermore, to investigate tumor apoptosis

in vivo, C-caspase3 staining was conducted (Figure 9D).

The cRGD-CSOSA/ICG with NIR irradiation significantly

enhanced the expression of C-caspase3 (brown) in tumor

tissues. Ki67 staining was conducted to observe the cell

proliferation ability of tumors in vivo. The expression of

Ki67 (brown) in tumor tissue treated with cRGD-CSOSA

/ICG and NIR irradiation was low (Figure 9E). In compar-

ison, without NIR irradiation, the tumor tissues remained

intact, and the expression levels of CD31, C-caspase3 and

Ki67 were not different from those of the negative control

(Figure S7). These results further demonstrated that dual-

targeting cRGD-CSOSA/ICG combined with PTT and

PDT could potentially inhibit tumor growth.

Conclusion
In this study, cRGD-CSOSA/ICG nanoparticles were

developed for dual-targeting of both neovascular endothe-

lial cells and tumor cells and stabilizing ICG, which
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mediates the phototherapy of glioblastoma. Importantly,

cRGD-CSOSA/ICG nanoparticles could selectively accu-

mulate in neovascular endothelial cells and tumor cells and

mediate PDT and PTT for glioblastoma, resulting in the

significant apoptosis of tumor cells and anti-angiogenic

effect. Furthermore, cRGD grafted CSOSA as a micelle

structure stabilized ICG in vivo. With NIR irradiation,

cRGD-CSOSA/ICG nanoparticles stimulated the produc-

tion of ROS and increased the temperature greatly, which

further activated caspase-3 and induced tumor cell apop-

tosis. In addition, the proliferation of neovascular endothe-

lial cells was inhibited, and the structure of tumor vessels

was destroyed, which further enhanced drug delivery and

inhibited angiogenesis. Therefore, cRGD-CSOSA/ICG

nanoparticles could realize dual-targeting glioblastoma

and neovascularization, and further improve glioblastoma

treatment efficiency by combining PDT and PTT, repre-

senting a potential therapy for the treatment of

glioblastoma.
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