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Abstract: Gliomas are the most common tumor of the central nervous system. However, the

presence of the brain barrier blocks the effective delivery of drugs and leads to the treatment

failure of various drugs. The development of a nanoparticle drug delivery system (NDDS)

can solve this problem. In this review, we summarized the brain barrier (including blood–

brain barrier (BBB), blood–brain tumor barriers (BBTB), brain–cerebrospinal fluid barrier

(BCB), and nose-to-brain barrier), NDDS of glioma (such as passive targeting systems,

active targeting systems, and environmental responsive targeting systems), and NDDS

efficacy improvement strategies and deficiencies. The research prospect of drug-targeted

delivery systems for glioma is also discussed.

Keywords: glioma, brain barrier, nanoparticle drug delivery system, efficacy improvement

strategies, deficiencies of NDDS

Introduction
Cancer remains the most threatening disease to human life and health. The cancer

mortality rate remains alarming despite recent advances.1 In 2016, there were 330,000

new cases and 227,000 deaths from central nervous system (CNS) tumors.2 Glioma is

the most common CNS tumor (40–50%) with an annual incidence of 3–8 cases/

100,000 people.3 The World Health Organization (WHO) classifies glioma into four

grades: WHO grade I and II tumors are low-grade gliomas including astrocytomas,

oligodendrogliomas, dysembryoplastic neuroepithelial tumor, gangliogliomas, and

mixed glioma. WHO III and IV are high-grade gliomas (malignant gliomas, MG)

including anaplastic astromassa, oligodendroglioma, ependymoma, glioblastoma, and

gliosarcoma. MG is more aggressive and worse prognosis. The 5-year survival rate in

grade IV patients was less than 5%.4,5 Three conventional methods are usually used in

clinical treatment: surgical treatment, radiotherapy, and chemotherapy.6 However, it is

difficult to carry out an accurate resection due to the infiltrative growth of glioma.7,8

Furthermore, radiotherapy and chemotherapy greatly and negatively impact the quality

of life.9–11

Nano-targeted agents are drug delivery systems that integrate drugs into different

nanocarriers to concentrate them in targeted tissues/organs.12 This strategy is also

called a nanoparticle drug delivery system (NDDS) and offers high drug stability,

sustained release potential, and low drug toxicity to solve these issues.12–15 NDDS can

increase the blood-drug concentration, prolong the half-life, and reduce the drug
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delivery frequency by improving solubility, stability, and

bioavailability of hydrophobic drugs. Thus, NDDS is an

active area of research. However, the diagnosis and treat-

ment of glioma remain difficult because the brain barrier

restricts drug transport to the brain.

In this review, we summarize the biological character-

istics of various brain barriers and other neural barriers

that limit the delivery of brain-targeted drugs as well as the

shortcomings of existing work. The latest progress in

targeted drug delivery in glioma was discussed

(Figure 1). The characteristics and advantages of NDDS

are introduced, and strategies for enhancing brain targeting

drug delivery are summarized. Finally, possible develop-

ment directions are predicted.

Research Difficulties or Challenges
Brain Barriers
Brain barriers are structures that prevent certain harmful

substances from entering the brain. They are composed of

blood–brain barrier (BBB), blood–cerebrospinal fluid bar-

rier, and brain–cerebrospinal fluid barrier (BCB).16 In

addition, there are blood-brain tumor barriers (BBTB) in

brain tumor tissues.17

BBB
Ehrlich18 first identified BBB in 1885 when he discovered

that intravenous dyes could stain most organs except the

brain. The BBB excludes almost all macromolecular drugs

and more than 98% of small molecules.18,19 The BBB is

mainly composed of brain capillary endothelial cells

(BCECs), which can differentiate into pericytes, astrocytes,

and neurons.20 Most importantly, the BCECs prevent cross-

cell transport of compounds from blood to brain, which

greatly restricts the passive diffusion of compounds.21,22

Therefore, many studies have worked to develop targeted-

NPs that can overcome BBB to improve the treatment and

diagnosis of glioma—examples include liposomes, nano-

micelles, microspheres, or nanoemulsions.23 The structure

and drug transport route of the BBB is shown in Figure 2.

Figure 1 Schematic diagram of this review.
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BBTB
The vascular permeability increased when the BBB was

destroyed,24 but some nourishing blood vessels of the

tumor retained the characteristics of the BBB, which forms

the BBTB.17,25 Similar to the BBB, the BBTB is composed

of specific endothelial cells located between tumor cells and

tumor blood vessels.26 Some receptors are highly expressed

in the blood vessels of brain tumors and thus facilitate ligand-

dependent drug transport to provide convenience for target-

ing drugs in tumor tissues.16,17,24 The BBTB contains three

distinct microvascular groups: continuous, nonporous capil-

laries (similar to normal blood vessels), continuous, porous

capillaries, and capillaries with gaps between endothelial

cells.17 Although the BBTB is more permeable than the

BBB, its presence still prevents the use of drugs in cancer

therapy.27 Therefore, finding a way to facilitate drugs to cross

the BBTB is crucial for drug treatment of glioma.

BCB
In the ventricular system, a ventricular tube separates the

cerebral spinal fluid and brain tissue. The BCB28 is com-

posed of ependymal epithelial cells and astrocytes, and its

high permeability makes it easy for substances in cerebrosp-

inal fluid to enter brain tissue through ependymal. Therefore,

drugs that do not easily cross the BBB can be injected

directly into the cerebrospinal fluid in clinical practice so

that it can enter the brain tissue quickly.29 After intrathecal

injection, drugs can pass through the subarachnoid space and

reach the cerebrospinal fluid to directly reach the brain tissue

without passing the BBB. It has rapid effects and is suitable

for the prevention and treatment of meningopathy or malig-

nant tumor metastasis.30

Nose to Brain Barrier
Nasal administration can also allow more drugs to reach

the brain than peripheral intravenous administration. There

are two parts of the nasal cavity (the breathing area and the

olfactory area)—these are responsible for absorbing drugs

into the brain or blood.31 Some drugs are absorbed into

blood circulation through the mucous membrane of the

respiratory department and then enter the brain tissue

through the BBB. Other drugs bypass the BBB and enter

the brain tissue directly through the olfactory mucous

membrane or nerve. Of these pathways, the olfactory

mucous pathway is the fastest and main route—the drugs

travel from the nasal cavity to the brain. Indeed, humans

only receive tiny amounts of drugs (25–200 µL) from the

3–10% mucous membrane, which limits the concentration

of drugs delivered to the brain. Moreover, the clearance of

nasal cilia can shorten the drug absorption time. Drug

metabolism and secretion can also inhibit drug access to

Figure 2 Structure and drug transport route of BBB. (I) penetrating through the tight junctions; (II) passive diffusion across the endothelial cells; (III) carrier-mediated

transport; (IV) adsorption-mediated transcytosis or endocytosis; and (V) receptor-mediated transcytosis.

Dovepress Li et al

International Journal of Nanomedicine 2020:15 submit your manuscript | www.dovepress.com

DovePress
2565

Powered by TCPDF (www.tcpdf.org)

http://www.dovepress.com
http://www.dovepress.com


the brain. Furthermore, long-term nasal administration can

produce toxic and side effects on the nasal mucosa and

cilia.32

Security Issues
Anti-tumor drugs can have off-target effects including neuro-

toxicity to normal tissues due to low selectivity. Furthermore,

drug resistance and dose toxicity after long-term chemother-

apeutic drug use are also serious problems.10 Second, drug

carriers generally have poor biodegradability and long-term

safety concerns.33 Peptides and antibodies are exogenous

substances used for targeting but are often not selective to

the brain and are highly unstable and immunogenic. Third,

carrier-mediated active targeting and endocytosis are highly

dependent on the corresponding receptor expression density

of glioma cells. Individual differences are common among

patients. Thus, it is quite likely to activate the rejection

mechanism of the immune system (reticuloendothelial system

and mononuclear phagocytic system).16,22,34

Molecular Weight of Drug Carriers
PEG or other polymers are commonly used as drug car-

riers in NDDS. However, the molecular weights (MW) of

polymers range from a few thousand to tens of thousands.

Polymers with appropriate MW can reduce the adsorption

of serum protein and the recognition ability of the immune

system. PEG2000, PEG3000, and PEG3400 are often used,

but there are few studies that carefully evaluate the most

appropriate MW in glioma therapy. Different MW poly-

mers should be used for NPs with different targeted func-

tions. For the passive targeting drug delivery system

(PTDDS) and the environmental responsive targeting

drug delivery systems (ERTDDS), polymers with a large

MW can lead to sufficient residence time to act on the

EPR effect and promote NPs to enter the target site. For

the active targeting drug delivery systems (ATDDS), poly-

mers with a small MW can minimize interference between

BBB-targeted ligands and BBB interactions—this is more

conducive to vector-mediated endocytosis.35

Properties of NPs
In addition, the size and morphology of NPs can greatly

impact the efficiency of glioma treatment. The size only

influences the tumor retention and penetration and also

affects the BBB targeting and penetrating efficiency. Size

changes are an enhancement strategy for glioma therapy

and have been described in detail in “Reduction of the

particle size of drug delivery system”. The shape of

nanoparticles also affects endocytosis between BBB and

cell membranes. Rod/chain-like targeted NPs have higher

brain accumulation than spherical NPs.36 Other NP fea-

tures include surface charge, ligand density, ratio of dual-

targeting systems, and water solubility.

Application of NDDS
NDDS can be classified into passive targeting systems, active

targeting systems, and environmental responsive targeting

systems according to their different modes of action.37,38

Part of the glioma drug delivery system and the relative

mechanisms are shown in Figure 3 and Table 1. Nano-

carriers are mainly used in passive targeting systems to

encapsulate drugs such as nanoparticles, liposomes, and

microspheres.39 Drug-containing nano-carriers are naturally

engulfed through the physiological process of cell endocy-

tosis to achieve targeted drug distribution. Besides, various

targeted molecules act as “missiles” to modify drug-carrying

nano-carriers such as proteins, antibodies, small molecules,

or nucleic acid aptamers. These are common in active-

targeting systems and deliver drugs through a directional

role to target sites.40 Moreover, the physicochemical target-

ing system could realize the targeted distribution of drug-

carrying nanocarriers in the body through physical and

chemical effects such as magnetism, heat, sound, light, elec-

tricity, and pH.41

Passive Targeting Drug Delivery System
The PTDDS mainly delivers drugs to tumor tissues based on

the “enhanced permeability and retention effect” (EPR

effect) in tumor tissues instead of normal tissues.42

Interestingly, in the late stage of brain tumors, passive target-

ing nanoparticles can even enter the brain tumors through

gaps in the endothelium due to the weak difference of EPR

effect between tumor tissues and peripheral tissues. The most

common passive-targeting drug delivery systems include

liposomes, microemulsions, and nanoparticles.

Liposomes
Liposomes are spherical vesicles formed by phospholipid

bilayer membranes that have attracted wide interest in

biocompatibility and targeting with BBB. They are

a common carrier for glioma PTDDS.

The elemene liposome (EL) injection was approved by

the China Food and Drug Administration (CFDA) in 1994.

More than 20 years of clinical studies have shown that EL is

a non-cytotoxic anti-cancer drug with a high content of anti-

cancer active ingredients (β-elemene, 85%).43,44 It can
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suppress varieties of cancer cells and improve the immune

system. It has obvious effects on improving patients’ quality

of life, prolonging the survival period, resisting metastasis

and recurrence, and reversing multiple-drug resistance

(MDR), etc. EL has benefited more than 7.07 million cancer

patients in southeast Asia, Hong Kong, Japan, Korea,

Europe, and the US.45 Zhu et al46 found that EL (48 h)

significantly accelerated the apoptosis initiation time of C6

glioma cells versus the normal elemene group (72 h).

Moreover, Gao et al47 formulated the temozolomide-

liposome (TL) that could be distributed in the brain. The

t1/2, mean residence time (MRT), Cmax, and AUC values of

TL were several-fold higher than the solution, which showed

that TL could improve the therapeutic effect of the brain,

reduce heart-lung toxicity, and prolong the circulation time of

TZM in vivo.

Microemulsions
Microemulsions are drug delivery systems formed sponta-

neously in the water phase and oil phase with surfactant

phospholipid drugs receptor protein disulfide bond

Figure 3 Schematic diagram of the classification and transport mechanism of a targeted drug delivery system.
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Table 1 Application and Mechanism of Glioma Drug Delivery Systems

NDDS Types Mechanisms Ref.

PTDDS

Liposomes Phospholipid bilayer EPR effect/across the endothelial cells of BBB 46,47

Microemulsions P-gp/endocytosis EPR effect/inhibition of P-gp efflux/across the endothelial cells of BBB 49,51

Niosome P-gp EPR effect/inhibition of P-gp efflux 87,88

Nanoparticles Endothelial cells EPR effect/transcytosis or endocytosis 57,59

ATDDS

Receptor-mediated Insulin Endocytosis/insulin receptor 89

Transferrin Endocytosis/transferrin receptor 71

Lactoferrin Endocytosis/lactoferrin receptor 73,74

Endothelial growth factors Endocytosis/endothelial growth factors receptor 90

Amino acids Endocytosis/amino acids receptor 91

Apolipoproteins/ angiopep-2 Endocytosis/low density lipoprotein receptor 92,93

H-ferritin Endocytosis/HFn receptor (transferrin receptor 1) 72

Peptide-mediated iRGD Endocytosis/αvβ3/αvβ5 78

RDP Endocytosis/nerve-penetrating properties 82,83

Chlorotoxin Endocytosis/ matrix metalloproteinase-2 54

T7 Endocytosis/transferrin receptor 94

CDX peptide Nicotinic acetylcholine receptors 95

F3 Bind to nucleolin 96

CendR motif Neuropilin-1/across the endothelial cells 97

Small molecule-mediated Folic acid Folate receptor 85

Apt-mediated AS1411/FB4 Recognize proteins/phospholipids/ nucleic acids 98,99

Cytokine-mediated Interleukin-13 IL-13Rα2 receptor 100

Matrix metalloproteinases-

mediated

MMP-9 Key modulators of tumor invasion/ metastasis 101

Cell-mediated Mesenchymal stem cells Endocytosis/across the endothelial cells of BBB 102

Macrophages Endocytosis/across the endothelial cells of BBB 103

Dual targeting-mediated Transferrin-folic acid Promote drug across BBB/targeting tumor cells 66

Ang-2-VEGF receptors Endothelial growth factors receptor/low density lipoprotein receptor 104

T7-DA7R-LS Transferrin receptor/VEGF receptor 2 105

Thermosensitive-P1NS Winding-contraction phase transition /nerve-penetrating properties 106

Transferrin-pH Promote drug across BBB/pH difference 107

pH-reduction pH difference and glutathione/dithiothreitol 108

ERTDDS

(Continued)
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and cosurfactants. Oil phase components can increase the

affinity of drugs to BBB endothelial cells, and surfactants/

cosurfactants can inhibit or reduce P-gp efflux.45,48

Li et al49 constructed a microemulsion containing lino-

leic acid conjugated with paclitaxel (CLA-PTX) against

brain tumors. The CLA-PTX microemulsion had a lower

IC50 and a higher tumor inhibition rate than CLA-PTX

solution and free PTX, which is possibly because of the

higher affinity of CLA-PTX to BBB endothelial cells and

the enhanced permeability and retention effect for passive

targeting. Xie et al50,51 prepared a hyaluronic acid chito-

san-based microemulsion (HAC-ME), which significantly

increased the BBTB permeability of glioma cells after

0.25 h of administration. The material down-regulated

the expression level of the tight junction protein claudin-

5. Carboplatin combined with HAC-ME can promote the

apoptosis of glioma cells versus free carboplatin.

Nanoparticles
Nanoparticles are widely used in the treatment of

glioma.52–54 An et al55 designed realgar nanoparticles

(RN) that could significantly increase the proportion of

C6 cells in S and G2/M phases. This decreased the propor-

tion of C6 cells in the G0/G1 phase, downregulated Bcl-2

expression, and substantially upregulated Bax expression

versus free realgar and control. Jain et al56 fabricated sur-

face-modified PLA nanoparticles loaded with TZM. Such

PLA-NP nanoparticles can significantly increase the accu-

mulation of the macromolecular dye coumarin-6 in the

brain and reduce the accumulation in other organs. These

results indicated that the nanoparticles could enhance the

permeability of drug transport across the BBB into the

brain. Thus, nanoparticles have potential value in glioma

treatment and may reduce drug toxicity to other organs.

Many other nanomaterials have been used to treat glioma

including chitosan that can effectively prolong the time of

drug action and increase circulation.57 Dendritic polymers

can improve drug release and biocompatibility.58

Macromolecular block copolymer micelles have a long

cycle capacity and high stability.59

Active Targeting Drug Delivery Systems
However, the PTDDS has unfortunately not shown clinical

value due to a lack of selectivity and affinity—this can

lead to toxicity and side effects in normal tissues.34,40,60

Therefore, many researchers are working on ATDDS to

achieve selective treatment of glioma.61 ATDDS are

designed to exploit differences in receptors or antigen

expression on the surface of tumor cells and normal

cells. By virtue of the high affinity between ligand and

receptors, ATDDS can achieve higher cross-BBB transport

ability or tumor penetration. These features promote selec-

tive drug targeting with anti-tumor activity. Common

active targeting vectors include small molecules, proteins,

peptides, and aptamers; examples include folic acid, trans-

ferrin, and the RGD peptide.62–69

Receptors-Mediated ATDDS
Many receptors are expressed in the BBB including recep-

tors of insulin, transferrin, endothelial growth factors, and

amino acids. Receptor-mediated endocytosis is one of the

main mechanisms by which drugs cross the BBB into the

brain.70 Herein, researchers have modified nano-carriers

with proteins to improve the ability of transporting across

BBB and to improve the effectiveness of glioma drugs.

Sun et al71 fabricated TMZ/transferrin (Tf)-nanoparticles

(PAMAM-PEG-Tf/TMZ) that successfully crossed the BBB

and killed glioma tumor cells. These particles lead to

Table 1 (Continued).

NDDS Types Mechanisms Ref.

Photo-sensitive Photosensitizer/

photothermal agent

ROS/singlet oxygen/local hyperthermia 109–111

pH-sensitive Acidic microenvironment pH difference 112

Reduction-sensitive Disulfide bond Glutathione/dithiothreitol 113,114

Magnetic sensitive Magnetic resonance The magnetic field 115

Ultrasonic sensitive Ultrasonic Ultrasonic cavitation effect 116

Thermo-sensitive Hydrogen bonding Winding-contraction phase transition 106
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a significantly longer MST in mice with gliomas. Fan et al72

prepared a human H-ferritin (HFn) nanocarrier. The main

entry point is HFn receptor 1, which is overexpressed in

BCECs and glioma cells. In contrast, when specifically tar-

geted and loaded into glioma cells, nearly all HFn accumu-

lates in lysosomes leading to the death of glioma tumor cells

—the surrounding healthy brain tissues do not have HFn

aggregation. Such anti-glioma tumor activity is shown in

Figure 4.

Similarly, Chen and Li et al73,74 used a lactoferrin-

modified PEG-poly(D,L-lactide-co-glycolide) (PLGA) nano-

particles loaded with shikonin and procationic liposomes

loaded with doxorubicin (DOX) for glioma therapy. The

drug delivery system modified by lactoferrin can promote

the drug-carrying nanoparticles across BBB so that the drugs

can be enriched in the brain and achieve better efficacy.

Peptides-Mediated ATDDS
Polypeptides are small molecules composed of 2–50 amino

acids with non-advanced structure. When ligand peptides

bind to receptors, nano-carriers linked to peptides generally

enter cells through receptor-mediated endocytosis. For exam-

ple, RGD peptide including cyclic RGD peptide (cRGD) or

internalizing RGD peptide (iRGD).75–78 Cell-penetrating

peptides (CPPs) such as rabies-derived peptide (RDP) are

also of interest because they can transport exogenous mole-

cules to tumor tissues.79–81

Gu et al78 modified PEG-PLA nanoparticles containing

PTX with MT1-AF7p peptide (MT1-NP-PTX). This mate-

rial has obvious anti-proliferation activity on C6 glioma

cells with IC50 values of 2.81- and 2.47-fold lower than

free PTX and NP-PTX, respectively. The percentage apop-

tosis of MT1-NP-PTX was the highest versus PTX and

Figure 4 HFn-encapsulated Dox effectively improves anti-glioma tumor activity. (A) In vivo BLI images of GBM tumor cells in orthotopic mice that were intravenously

injected with different formulations, ie, HFn-Dox, Doxil, free Dox, and HFn protein. (B) Quantitative analysis (n=5) of the BLI signals of (A). The red arrows indicate the

time points of administration. (C) Animal survival curves in different groups. Asterisks indicate that the difference between HFn-Dox and free Dox or Doxil was statistically

significant (Kaplan–Meier, p=0.0019 and 0.0023, respectively). (D) The effect of different treatments on mouse body weight (mean±SD, n=5). Reprinted with permission

from Fan K, X Jia, M Zhou, et al Ferritin Nanocarrier Traverses the Blood Brain Barrier and Kills Glioma. ACS Nano. 2018; 12(5): 4105–4115. Copyright (2018) American

Chemical Society.72
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NP-PTX, which suggested more PTXs were delivered

when combined with iRGD (high-affinity for cancer-

related integrins such as αvβ3 and αvβ5). Zhao et al82

established RDP-conjugated curcumin-coated nanolipo-

somes (RCL). Expectedly, the growth inhibition efficiency

of RCL was 3.33-fold higher than curcumin liposomes

(CL) in U251MG. The results of anti-glioma activity

showed the survival time of glioma model mouse in the

RCL group was longer than model and CL. In addition,

RDP-p53 could efficiently and selectively enter and inhibit

SH-SY5Y cells; the total percentage of apoptotic cells of

RDP-p53 significantly improved versus the PBS and

p53.83 All of the above showed that RDP-mediated nano-

carriers were promising options for glioma therapy.

Small Molecule-Mediated ATDDS
Small molecules, such as folic acid (FA), biotin, and

bisphosphate, are often used as targeted ligands in

ATDDS for tumors. They offer good safety, no immuno-

genicity, and easy modification. FA is the most widely

used because the folate receptor (FR) is highly expressed

on many cancers but not in normal tissues.84

Xu and Li et al85,86 proposed a nano-targeted delivery of

DOX for glioma based on PAMAM G5 dendrimer. The ther-

apeutic effect of glioma was significantly improved after FA

modification. The tumor growth inhibition of FA-PAMAM

/DOX was increased up to 57.44%, while free DOX was

17.70% only. Meanwhile, FA-PAMAM/DOX could signifi-

cantly reduce tumor volume in mice. Moreover, the data

show that FA-PAMAM/DOX could significantly prolong the

half-life time and improve DOX accumulation in brain tumor

versusDOX.TheMSTof xenograft rats of FA-PAMAM/DOX

was obviously longer than free DOX. This novel strategy of

targeting nano-carriers modified with FA offers a promising

way to increase the accumulation of drugs at tumor sites.

Aptamer-Mediated ATDDS
Aptamers (Apt) are oligonucleotides that can be synthesized

chemically to promote targeted drug delivery. Compared

with other targeted molecules, Apt attracted more and more

attention due to their specific binding ability, high affinity,

and low immunogenicity. Apt could easily penetrate tumor

tissues because they can specifically identify target mole-

cules such as proteins, phospholipids, sugars, and nucleic

acids.117 Of these, AS1411 has extensive application value

and potential development ability in clinical treatment of

tumor—it could inhibit the growth of a variety of tumor

cells without affecting normal cells.118,119

Luo et al98 established a nanoparticle with AS1411-

functionalized poly (l-γ-glutamyl-glutamine)-PTX (AS1411-

PGG-PTX). The percentage of apoptosis of S1411-PGG-PTX

was significantly increased versus PGG-PTX. In addition, the

MST of mice in the AS1411-PGG-PTX group was signifi-

cantly longer than the PTX group and the saline group. This

might be due to the good stability in blood, long circulation

time, and more accumulation of PTX in glioblastoma tissues.

Mu et al99 combined FB4—a segment of RNA that can

specifically bind to transferrin receptor—with micelles loaded

with flurbiprofen and conducted in vitro experiments with

bEND5 cells (brain microvascular endothelial cells) in mice.

Compared with untargeted micelles, the drug concentration in

the micelles with FB4 ligand increased by 1.67-fold.

Cytokine-Mediated ATDDS
Human interleukin-13 (IL-13) is a cytokine secreted by

activated T cells and has two receptors (IL-13/4R and IL-

13Rα2). It can induce pro-inflammatory and anti-

inflammatory immune responses.120,121 IL-13/4R is present

in normal cells and binds to IL-4, whereas IL-13Rα2 is

associated with glioblastoma but not expressed in normal

tissues. A recent study showed that IL-13Rα2 receptor is

overexpressed in the most common hair cell astrocytomas

in children.121–123 Therefore, it is a promising target for

cytotoxic drugs in various brain tumors.

For example, Madhankumar et al124,125 prepared a DOX

liposome modified with IL-13 to guide the liposome to the

tumor site by binding to the over-expressed IL-13Rα2 recep-
tor in glioblastoma. Compared with free DOX, liposomes

modified with IL-13 enhanced cytotoxicity and increased the

accumulation/retention of DOX in glioma cells. After 7

weeks of i.v. injection, the average tumor volume in IL-13-

modified DOX liposome group had a 5-fold reduction com-

pared with the non-targeted DOX liposome group. These

data show that IL-13 targeted nanovesicles are a viable

option for the treatment of brain tumors.

Stem Cell-Mediated ATDDS
Recent studies showed that the application of cell-

modified nanoparticles for drug delivery system is an

effective method to encourage the drugs to pass through

for drug delivery. These drugs have an affinity for brain

tumors and can be used as a drug carrier for the treatment

of glioma such as mesenchymal stem cells (MSCs).126–128

Wang et al102 manufactured MSCs loaded with PTX-

encapsulated PLGA NPs to demonstrate the therapy for

orthotopic glioma in rats. The PTX-migration rate of
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MSC-loaded PTX-PLGA NPs increased by 44.4±5.4%,

and MSC-loaded PTX-PLGA NPs had enhanced sustained

PTX release to induce glioma cell death compared with

PTX-PLGA NPs. Survival was significantly longer in con-

trol MSC-loaded PTX-PLGA NPs than those injected with

PTX-PLGA NPs alone. These data suggest that MSC-

loaded PTX-PLGA NPs are effective for glioma treatment

and are a promising strategy for tumor-targeted therapy.

Dual-Targeting-Mediated ATDDS
Compared with PTDDS, ATDDS enhances the efficacy of

glioma treatment via the two following aspects: (1) They

promote drug delivery systems for transport across the BBB;

(2) They selectively target glioma cells while increasing the

distribution of drugs in glioma and reduce their distribution in

normal brain tissues.129 Currently, most ATDDS have only

one feature that allows drugs to be non-selectively distributed

throughout the brain after passing through the BBB. This low

selectivity can cause some serious neurological side effects.

Thus, an ideal glioma TDDS should have the above two

characteristics at the same time, ie, dual-targeting-mediated

ATDDS. Dual-targeting-mediated ATDDS usually refers to

the modification of two functional ligands on the PTDDS.

One is targeted to the BBB to promote the cross-BBB trans-

port of the drug delivery system, and the other is targeted to

the glioma tissue and further concentrates the drug in the

glioma. A ligand, targeting both BBB and glioma, is con-

nected to the PTDDS—this can also be called a dual-targeting

-mediated ATDDS.32

Gao et al66 prepared DOX liposomes modified by trans-

ferrin and folate (Tf/F-DOX-Lip). A near-infrared fluorescent

probe showed that the fluorescence of DOX solution and

DOX-Lip was mainly in the cardiac region, but Tf/F-DOX-

Lip was mainly distributed in brain—these data illustrated that

liposomes modified by transferrin and folate could promote

the migration of liposome to the brain. The tumor inhibition

rate of Tf/F-DOX-Lip was six-fold higher than DOX-Lip after

i.v. administration. The data show that Tf/F-DOX-Lip could

not only promote DOX for transport across the BBB but also

increase the distribution of DOX in glioma.

Environmental Responsive Targeting Drug

Delivery Systems
Traditional drug delivery systems are not ideal for main-

taining system stability and promoting drug release at

target sites.130 Therefore, the design of ERTDDS has gra-

dually become a research hotspot in the field of pharmacy.

To understand the physiological differences between

tumors and normal tissues, ERTDDS131 can specifically

respond to endogenous or exogenous stimuli including

physical (such as photosensitivity109,132,133), chemical (as

pH sensitivity134–137 and reduction sensitivity113,138), and

biological (as matrix metalloproteinases139) features.

ERTDDS only responds to internal and external environ-

mental conditions when it is close to the drug action site—

these conditions then trigger the release of drugs in tumor

tissues while remaining stable in other tissues. Thus, it can

improve the anti-tumor efficacy and reduce the toxicity

and side effects.

Photo-Sensitive TDDS
Photosensitive TDDS is a tumor therapy method based on

photodynamic therapy (PDT) and photothermal therapy

(PTT).109,140-142 It is based on light conditions reaching

the photosensitive TDDS in the tumor site. Photosensitizer

(PS) or photothermal agent (PA) will absorb the light, and

reactive oxygen species (ROS), singlet oxygen, or local

hyperthermia will be released. While preserving normal

tissues, the nanoparticles selectively and efficiently pro-

duce cytotoxic activity and kill tumor cells.

Xu et al109 constructed a therapeutic nano-platform

(ICG-SFNPs) with silk fibroin (SF) to use indocyanine

green (ICG) for PTT of glioblastoma. Meanwhile, the

photothermal effect of ICG-SFNPS is more stable than

free ICG under near-infrared radiation (NIR). After local

NIR, the temperature of ICG-SFNPS rapidly increased by

33.9°C within 10 min and remained high for a long time to

kill tumor cells. The growth of glioblastoma cells was

completely inhibited by ICG-SFNPS.

Jia et al142 developed a biomimetic proteolipid nano-

particles (NPs) with ICG for phototherapy of orthotopic

glioma in mice. Biomimetic ICG-loaded liposome

(BLIPO-ICG) NPs were obtained by embedding the

glioma cell membrane protein into NPs. Due to the good

homologous targeting and immune escape characteristics,

BLIPO-ICG NPs can pass through BBB and specifically

bind to glioma cells and reach glioma in early stages. At

12 h post-injection, the signal-to-background ratio in the

brain tumor reached 8.4 demonstrating good accumulation.

In addition, after NIR (1 W/cm2, 5 min), the photothermal

effect of BLIPO-ICG NPs effectively inhibited the prolif-

eration of glioma cells with an inhibition rate of 94.2%.

No photothermal damage of normal brain tissue or other

side effects of treatment were observed. These results

indicate that the bionic protein lipid NP is a promising
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phototheranostic nanoplatform for brain tumor-specific

treatment. The mechanism and anti-glioma tumor activity

are shown in Figure 5.

pH-Sensitive TDDS
The normal pH of human blood and interstitial fluid is

usually alkaline (pH 7.4), while the tumor microenviron-

ment is acidic (approximately 5.6).143,144 The slightly

acidic environment is mainly caused by the rapid prolif-

eration of tumor cells and excessive accumulation of lactic

acid. In addition, most tumor cells are characterized by

insufficient blood supply and slow excretion, which further

acidify the tumor microenvironment. Using pH differences

between tumor tissues and normal tissues, numerous

researchers have constructed drug delivery systems via

pH-responsive materials.112,145-148 These delivery systems

can change their physicochemical properties such as swel-

ling and increasing solubility during the transition from

weakly alkaline to slightly acidic environment. Thus, it

can further trigger the release of drug molecules in the

package and play a targeted role in tumor therapy.

Yin et al112 developed a pH-sensitive prodrug (Lf-HA-

DOX) by combining hyaluronic acid (HA) with DOX. The

release of DOX in Lf-HA-DOX was 45%, 35%, and 12%

at pH 5.0, 6.0, and 7.4 at 24 h, respectively. Furthermore,

the geometric mean fluorescence intensity (GMFI) of

DOX in the free DOX group was almost unchanged

when the concentration of DOX changed; it increased in

the Lf-HA-DOX group. Similarly, Li et al107 synthesized

a pH-sensitive dual-targeting drug carrier (G4-DOX-PEG-

Tf-TAM) with conjugated Tf and Tamoxifen (TAM) of the

PAMAM dendrimers for enhancing the BBB transporta-

tion and improving the drug accumulation in the glioma

cells. They found that the DOX release was 32% at pH 4.5

and 6% at pH 7.4 indicating that the drug release is

relatively fast at weak acidic conditions and stable in

normal physiological environments.

Reduction-Sensitive TDDS
Reduction-sensitive TDDS refers to the particle delivery

system connected by a disulfide bond (S-S) between the

carrier and the drug. These particles self-assemble in sol-

vent to form a nanostructure.149 Disulfide bonds are

a special yet common chemical bond that is stable in

normal physiology. However, they are broken in tumor

tissues (reductive environment) with high expression of

dithiothreitol and glutathione (GSH) to release the drug

and achieve targeted release.113,150-153 Indeed, reduction-

sensitive TDDS are reduction-sensitive and biodegradable

and are an ideal platform for targeted tumor chemotherapy.

Zhu et al113 showed a biodegradable PEG-SS-PCL

micelle functionalized by cRGD (cRGD/PEG-SS-PCL).

A B

Figure 5 (A) Schematic illustration of biomimetic proteolipid BLIPO-ICG for crossing the BBB and active targeting delivery of orthotopic glioma. (a) Preparation process of

BLIPO-ICG. (b) Schematic of BLIPO-ICG for crossing BBB and active targeting imaging. (B) In vivo PTTof BLIPO-ICG in orthotopic glioma-bearing mice. (a) Representative

in vivo infrared thermal images of the brain region before and after 808 nm laser irradiation (1 W/cm2, 5 min). CLIPO-ICG = CBLIPO-ICG = ICG 1 mg/kg. (b)

Representative bioluminescent images of C6-Luc glioma-bearing mice in different groups. (c) Semiquantitative bioluminescent signal intensity in the brain. **p < 0.01 versus

control. #p < 0.05 versus LIPO-ICG+laser. (d) H&E staining of brain sections of orthotopic glioma-bearing mice in all groups. Scale bar = 200 μm. Reprinted with permission

from Jia Y, X Wang, D Hu, et al Phototheranostics: Active Targeting of Orthotopic Glioma Using Biomimetic Proteolipid Nanoparticles. ACS Nano. 2019; 13(1):

386–398. Copyright (2019) American Chemical Society.142
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These materials can enhance DOX delivery in a reductive

environment (10 mM GSH) to significantly improve tumor

inhibition and decrease toxicity upon comparison with non-

targeting agents and reduction-insensitive cRGD/PEG-PCL.

Su et al150 proposed a novel copolymer mPEG-PAsp

(MEA)–CA. The DOX was only slightly released in the

absence of GSH. However, there was 37% DOX released

after only 2 h when 10 mM GSH was added indicating that

GSH broke the S-S through a thiol-disulfide exchange reac-

tion to promote the release of DOX.

ERTDDS are also thermosensitive,106 magnetic

sensitive,115,154 and ultrasonic sensitive.155 They are

a research focus in recent years and can also specifically

target the treatment of glioma under different conditions

without affecting normal tissues.

Strategies to Improve the Drug
Targeting to Glioma
Reduce the Particle Size of the Drug

Delivery System
A smaller (200–800 nm) particle can usually be easily endo-

cytosed by phagocytes. However, when the particle size is

less than 200 nm, the curvature of local areas on the surface

of the carrier will also decrease as the particle size decreases.

Therefore, the particles could avoid being adsorbed by recep-

tors on the surface of the phagocytes—they can escape

phagocytosis and be cleared by phagocytes.156,157

Wan et al158 placed tartaric acid vinorelbine liposomes

with particle size of 200 nm and 800 nm in medium

containing mouse mononuclear macrophage RAW264.7

and luciferin, respectively. After 12 h, the probability of

devouring liposomes with particle size of 200 nm was

13%, while that of 800 nm was only 8%. Bi et al159

injected curcumin nano-suspension with the size of 70

nm (A) and 200 nm (B) into the body. The AUC0–60min

of A was 2.58 times higher than B in the brain. When the

size of the curcumin decreased from 200 nm to 70 nm, the

AUC0–60min of liver drug also decreased from 8491

ng·min·g−1 to 2300 ng·min·g−1. These results indicate

that the size decrease can not only promote drug delivery

to the brain but also reduce drug uptake by the liver. This

is critical for the treatment of brain diseases and the

reduction of drug toxicity and liver side effects.

Structural Modification
Studies have shown that small lipophilic drug molecules with

a molecular weight of less than 500 Da can cross the BBB by

passive diffusion. Therefore, small-molecule drugs can have

improved properties by modifying their polar groups such as

esterification and alkylation of hydroxyl or carboxyl groups.

Non-polar groups such as methyl and benzene rings can also

be introduced to increase lipophilicity and improve BBB

transmittance.160,161

Chen et al162 designed and synthesized a series of novel

derivatives to improve the anticancer efficacy of natural β-
elemene. Most derivatives exhibited significant anti-

proliferative activities against the three cancer cell lines

(SGC-7901, HeLa, and U87) versus natural β-elemene.

Interestingly, these compounds displayed excellent sensitiv-

ity to glioma cells. Moreover, further mechanistic studies

revealed that 11a caused the G2 phase arrest of the cell

cycle and induced apoptosis of glioma cells by preventing

the activation of the PI3K/Akt pathway. In addition, 11a

significantly suppressed the tumor growth in cancer xeno-

graft mouse model, which was superior to β-elemene at the

same condition. In conclusion, the remarkable biological

properties of these new β-elemene derivatives may make

them promising candidates for glioma treatment.

Combination with Resuscitative CHMs
Resuscitative CHMs163,164 are traditional Chinese medi-

cines considered “orifice-opening” agents including musk,

borneol, acorus gramineus, and benzoin. With spicy and

fragrant attributes, Resuscitative CHMs can better enter

the brain tissue through the BBB. The active ingredients

have strong lipid solubility and minimal molecular

weights. In addition, resuscitative CHMs can also induce

other drugs upward into the brain, ie, they can increase the

permeability of BBB, promote drugs to pass through the

BBB, and improve the efficacy of drugs. The cell structure

is basically complete after this action. Pharmacological

studies have found that resuscitative CHMs can increase

the content of Evans blue (EB) in the brain tissue of

normal mice confirming that Resuscitative CHMs can

open the BBB in normal mice.

Borneol
The mechanism of borneol passing through BBB may be

inhibition of transporters to increase the vasodilatory neuro-

transmitters and inhibit active transport of ion

channels.165,166 P-glycoprotein (P-gp) is an efferent protein

on the BBB. It can easily bind with a variety of substrates and

expel them from brain tissues to reduce the therapeutic drug

effects. Borneol inhibited the expression of P-gp to allow

drugs to enter brain tissue. For instance, tanshinol has been
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used to treat epilepsy and other brain diseases, but it will be

excreted by P-gp within a short time after entering the brain.

When borneol was introduced into tanshinol to form an

esterification complex, it could easily travel through the

BBB into the brain for a longer retention time. Moreover,

the inhibitory effect on P-gp of borneol made the higher

concentration of tanshinol play a role in brain tissue.167 The

effect of borneol on aprotinase-modified nanoparticles can

significantly increase the absorption of nanoparticles by

capillary endothelial cells in the brain of Alzheimer’s disease

and can improve memory.168 These data provide a new idea

for targeted glioma drug delivery.169

α-Asarone
Wu et al170 evaluated the “orifice-opening” effect of α-asarone
(a main active ingredient of acorus gramineus) on the

improvement of brain delivery of Puerarin (PUE) and tetra-

methylpyrazine (TMP). They then investigated whether the

enhancing effects were associated with adenosine receptors

(ARs)-mediated trans-BBB pathway. Their results indicated

that α-asarone significantly increased the accumulation of

permeated PUE and TMP, and the enhancing effects could

be counteracted by AR inhibitors. Indeed, α-asarone
decreased the expression of ZO-1 (an important BBB junction

protein) and increased the expression of A1AR and A2AAR.

Pharmacokinetic studies showed that oral administration of α-
asarone significantly increased AUCbrain 1.34-fold and 1.79-

fold for PUE and TMP. These results suggested that α-asarone
is an effective adjuvant agent for the delivery of PUE and

TMP to the brain.

Application of Physical Technology
During ultrasonic processing, liquids undergo a series of

dynamic processes such as vibration, growth, and rupture

under the action of sound waves. When physical effects

are applied to the cell interface of the surrounding tissues,

tight junctions between cells become loose and reversible

pores appear. This improves cell endocytosis. In addition,

ultrasonic vibration can improve the permeability of cell

membrane and promote drug uptake.171,172

EB can bind with plasma albumin to form an EB-albumin

complex, which has a large molecular weight and cannot

penetrate the complete BBB. The gap between BBB cells

becomes larger under the action of ultrasound, which may

promote the passage of the complex through the BBB. Based

on this hypothesis, Chen et al173 performed ultrasound treat-

ment on the brains of rats successfully transplantedwith tumor

cells. The results showed that the compound could pass

through BBB after i.v. injection. After injection of lipid micro-

bubble solution and saline, the brain tumor sites of the two

groups of rats were first treated with ultrasound (1.0 MHz).

The EB solution was injected immediately, and glioma tumor

tissues were extracted after 72 h. Under confocal laser micro-

scope, only sparse red spots of fluorescence were observed in

the control group, while many areas of red fluorescence were

observed in the experimental group. This confirms that ultra-

sound can promote EB through BBB into glioma tissue.

Currently, ultrasound-mediated targeted therapy174 is still

in the experimental stage. The appropriate ultrasound para-

meters for optimal drug delivery must be identified with

studies for potential adverse reactions including bleeding,

brain injury, and inflammation after the destruction of ultra-

sound BBB. Nevertheless, this technology is expected to lead

to breakthroughs in targeted drug delivery to the brain and

cancer therapy after the development of new ultrasound tar-

geted therapy and continuous optimization of ultrasound

parameters.

Alternative Routes of Administration
Nasal Drug Delivery

After nasal administration (NA), some drugs bypass the BBB

and enter brain tissue directly through the olfactory mucosa or

olfactory nerves. Compared with peripheral vein administra-

tion, NA allows increased delivery and faster transfer of drugs

into the brain.175 Zhang et al176 administrated a β-asarone
microemulsion through the nose and tail vein injection on

rats. The results showed that β-asarum microemulsion was

absorbed into the blood and brain tissues quickly and could

be detected at 2 min after NA. However, the ratio of

AUCbrain(0–2 min)/AUCplasma(0–2 min) was 1.49, and more

drugs entered the brain with a nearly 50% higher amount of

drug in brain tissues than in plasma. Meanwhile, a lower

amount of drug could enter into the brain after caudal vein

administration. Compared with NA, the concentration of β-
asarum in the brain after i.v. administrationwas only 56.85%of

the NA. This suggests that NA has unique advantages in

promoting drug delivery to the brain andmay be one of the pre-

selected methods for glioma treatment.

Intrathecal Injection

Intrathecal injection (i.t.) refers to the injection of drugs into

the spinal canal. The delivery of the cerebrospinal fluid plays

a key role after delivery through the subarachnoid space. This

approach is suitable for the prevention and/or treatment of

meningeal lesions, malignant tumor metastasis, and other

diseases.177 The i.t. offers low dosages and targeted drug
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delivery. It can be administered by a single puncture or

multiple rounds of delivery after the sheath is implanted.

After i.t., the drug can directly reach the target site through

BCB without crossing the BBB for quick action.

Etminanet et al30 used nimodipine microspheres for

intrathecal injection, and the results showed that nimodipine

microspheres could prolong drug release time, enhance heal-

ing effect, and reduce drug toxicity. While drugs act more

directly when given i.t., they can cause more damage.

Strategies for enhancing glioma treatment are shown in

Table 2.

Perspectives
Due to the protective effect of the brain barrier on the brain,

the clinical treatment of glioma still remains difficult. Brain-

targeted drug delivery has attracted wide attention because

of its slow release and controllable and targeted safety.

Regardless of the target, drug targeting is based on the

interaction between the dosage form characteristics of the

drug delivery system and the specific physiological/patholo-

gical structure of the body. The development of biomimetic

drugs/materials with homologous binding and immune

escape functions has been regarded as the most ideal alter-

native. These drugs/materials use autologous tissues/cells/

proteins from the human body as carriers to quickly reach

the target site after entering the human body.

For example, NPs wrapped in glioma cell membrane or

glioma cell membrane proteins were loaded on NPs.

Under certain conditions, tumor cells are killed by various

mechanisms such as starvation therapy and photodynamic/

Table 2 Strategies for Enhancing the Treatment of Glioma

Types Strategies Mechanisms Enhancements Ref.

Before Behind

Use new drug

delivery

system

Free

realgar

Realgar

nanoparticles

EPR effect/endocytosis C6 cells apoptosis rate was increased by 5.50 times 55

Free TMZ PAMAM-PEG

-Tf/TMZ

Endocytosis/Tf receptor MST of mice bearing gliomas was extended by 22.9

days

71

Free TMZ TMZ-Lf/NPs Endocytosis/Lf receptor The concentration of TMZ in brain was higher 3

times; IST increased 1.4 times

178

Free DOX Lf-HA-DOX Endocytosis/pH difference/Lf receptor The GMFI of DOX was increased 8.71 times 112

Reduce the

particle size

200nm 70nm Promote drug delivery to the brain; reduce drug

uptake by the liver; avoid being adsorbed by

receptors on the surface of phagocytes, escaping

phagocytosis and clearance by phagocytes

After 5 minutes of administration, the concentration

in the brain improved 2-fold; after 20 min of

administration, the concentration in the brain

improved 3-fold; AUC0–60 min in the brain was 2.58

times

159

Structural

modification

β-elemene Derivatives-

11a

Caused the G2 phase arrest of the cell cycle;

induced apoptosis of glioma cells by preventing the

activation of the PI3K/Akt pathway

Tumor inhibitory ratio increased from 49.6% to

64.8%

162

Combination

with

resuscitative

CHMs

Tanshinol Tanshinol-

borneol

esterification

complex

Inhibit the expression of P-gp; reduce P-gp efflux It was easy to travel through BBB to the brain with

the higher concentration of tanshinol; had a longer

retention time

167

PUE and

TMP

Combination

with α-

asarone

Decrease expression of ZO-1, while increase the

expression of A1AR and A2AAR

The accumulation of permeated PUE and TMP was

increased; AUCbrain for PUE and TMP was increased

1.34-fold and 1.79-fold

170

Application of

physical

technology

EB-albumin

complex

Performed

ultrasound

treatment

The tight junctions between cells become loose and

reversible pores appear; improved endocytosis of

cells

Fluorescence intensity increased significantly 173

Change route

of

administration

Oral/

intravenous

Nasal drug

delivery/

intrathecal

injection

Directly through the BCB without crossing BBB i.v. administration was only 56.85% of the nasal

administration/ prolong drug release time; enhanced

healing and reduced drug toxicity

30,176
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photothermal therapy.132,142 In addition, as endogenous

substances, it is difficult for the immune system to recog-

nize the drug-carrying system in membrane disguise.

Thus, these systems can escape rejection by the immune

system for long therapy cycles. The carriers are gradually

degraded or absorbed without accumulation in the body.

Such bionic materials can be applied independently with-

out chemotherapy drugs. Thus, they do not cause serious

adverse reactions and might be safer.

Accordingly, the following four suggestions are pro-

posed for further research on targeted agents for glioma.

(1) While studying the brain-targeted delivery of drugs,

researchers should also pay attention to the latest pro-

gress in basic research including structural characteris-

tics, composition, and permeability of BBB and glioma.

It is important to improve the efficiency of brain-targeted

delivery of drugs. (2) Researchers should identify and

evaluate the factors that affect the behavior of the glioma

NDDS in vivo, which is the basis of the effectiveness.

(3) Considering the perspective of biosafety, biodegrad-

able material without immunogenicity or biotoxicity that

can be removed from the brain should be utilized in

glioma NDDS. (4) A unified preparation method should

be developed to make NPs more uniform, stable, and

controllable—this will ensure clinical efficacy.
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