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Background: The current gold standard for measuring sleep is polysomnography (PSG),

but it can be obtrusive and costly. Actigraphy is a relatively low-cost and unobtrusive

alternative to PSG. Of particular interest in measuring sleep from actigraphy is prediction

of sleep-wake states. Current literature on prediction of sleep-wake states from actigraphy

consists of methods that use population data, which we call generalized models. However,

accounting for variability of sleep patterns across individuals calls for personalized models of

sleep-wake states prediction that could be potentially better suited to individual-level data

and yield more accurate estimation of sleep.

Purpose: To investigate the validity of developing personalized machine learning models,

trained and tested on individual-level actigraphy data, for improved prediction of sleep-wake

states and reliable estimation of nightly sleep parameters.

Participants and methods: We used a dataset including 54 participants and systematically

trained and tested 5 different personalized machine learning models as well as their general-

ized counterparts. We evaluated model performance compared to concurrent PSG through

extensive machine learning experiments and statistical analyses.

Results: Our experiments show the superiority of personalized models over their generalized

counterparts in estimating PSG-derived sleep parameters. Personalized models of regularized

logistic regression, random forest, adaptive boosting, and extreme gradient boosting achieve

estimates of total sleep time, wake after sleep onset, sleep efficiency, and number of

awakenings that are closer to those obtained by PSG, in absolute difference, than the same

estimates from their generalized counterparts. We further show that the difference between

estimates of sleep parameters obtained by personalized models and those of PSG is statis-

tically non-significant.

Conclusion: Personalized machine learning models of sleep-wake states outperform their

generalized counterparts in terms of estimating sleep parameters and are indistinguishable

from PSG labeled sleep-wake states. Personalized machine learning models can be used in

actigraphy studies of sleep health and potentially screening for some sleep disorders.
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Introduction
Sleep health plays a critical role in both physiological and psychological health. Poor

sleep is associated with an increased chance of cardiovascular disease,1–4 Type 2

diabetes,5 cognitive problems,6 attention-deficit hyperactivity disorder (ADHD),7 depres-

sion, and performance.8–11 Addressing such problems requires reliable assessment of

sleep.12–15 The current gold standard to measure sleep is polysomnography (PSG) which

can be burdensome. Actigraphy is a relatively low-burden alternative to PSG16–18 for

estimating sleep parameters such as total sleep time, sleep efficiency, wake after sleep
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onset, and the number of awakenings. However, comparisons

of sleep parameters obtained from actigraphy to those from

PSG rely on algorithms with low specificity (ie, are limited in

detecting wake epochs reliably). Thus, the current manuscript

develops and validates both personalized and general machine

learning approaches to improve upon currently available and

widely used algorithms.

The literature of detection and prediction of sleep-wake

states from actigraphy includes many sleep scoring

algorithms19–37 and machine learning-based methods38–43

developed at the population-level. Such population-level

studies have focused on developing a single predictive

model or algorithm, which we call generalized models.

Generalized models are trained using population data and

are used to detect or predict sleep-wake states in individuals.

Such population-level models assume similarity between

individuals that may not be true. Considerable variability in

sleep patterns across individuals44 can be due to differences

in personal characteristics such as age, environmental and

genetic factors, lifestyle, etc. Personalized models for sleep-

wake states prediction trained and tested on specific indivi-

duals (ie, using only individual-level data) could better

account for individual-level characteristics that might yield

classes of individuals for whom a class of algorithms could

be used.

In our previous work, we investigated and established

the feasibility of developing reliable personalized machine

learning models trained on individual data matching the

performance of their generalized counterparts for sleep-

wake states prediction from actigraphy.45 In this paper, we

extend this approach via machine learning experiments to

test the superiority of personalized machine learning mod-

els over their generalized counterparts in estimation of

night-level sleep parameters from actigraphy.

Materials and Methods
Data
Actigraphy data were collected simultaneously with PSG

recordings, at every 30 s, in a sleep laboratory, as previously

described.25 AW-64 (Minimitter, Inc, Bend, OR) and

Actiwatch Spectrum (Philips/Respironics, Murrysville, PA)

were used for actigraphy collection. PSG recordings were

scored by Registered Polysomnographic Technologists and

recoded as sleep or wake, movement artifact as wake, and

missing data as missing. Data collection included a total of

81 participants across the following studies: a study on

healthy adults (baseline) whose sleep was disturbed by

noise, henceforth referred to as the Acoustics (AC)

study;46–48 a study including older adults on Tiagabine med-

ication (henceforth TI) [unpublished data, for description, see

Ref. 25]; a sleep restriction (SR) study on healthy partici-

pants (all collected sleep recordings were in controlled stan-

dardized conditions and study participants received no

medication or placebo on individual nights);49 and daytime

sleep in night-workers (NW).50 In all of the studies but SR,

participants spent 8.5 hrs in bed. In the SR study, participants

spent 10 hrs in bed on sleep-replete nights and 5 hrs on sleep

restricted nights. In all of the studies, for each participant, we

have data collected from multiple sleeping periods (ie, days

in the NW study and nights in other studies), with each

sleeping period consisting of roughly 1000 epochs of data,

each of 30-s duration. For each epoch (ie, at every 30 s) in

each participant’s data, we have an activity counts value from

actigraphy that is labeled as either sleep or wake based on

expert annotation of the corresponding (temporally aligned

as previously described25) PSG recording epoch. All proce-

dures were approved by the Brigham and Women’s Hospital

Institutional Review Board and all participants provided

informed written consent.

To factor out night-specific effects on the performance of

sleep-wake states predictors and the design of our machine

learning experiments, we worked with at least 2 sleeping

periods to train and 1 additional sleeping period to test our

machine learning sleep-wake states predictors. Hence, we

limited our analyses to 54 participants on whom we had

collected data from ≥3 sleeping periods (see Table 1). We

randomly partitioned the data of the 54 participants into 3

disjoint groups each with 18 participants. In each group, one

sleeping period was designated as the source of test data and

the remaining sleeping periods were used as the sources of

training data. The different groups used different nights (1, 2,

or 3) among the first 3 nights, for testing the sleep-wake states

predictors. In SR data, a random selection of sleep-replete and

Table 1 Number of Participants and the Number of Their

Available Sleeping Periods in the Data

Number of

Participants

Number of Available Sleeping

Periods

8 1

19 2

29 3

9 8

2 10

14 11
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sleep-restricted nights was used for training; ie, we have

trained our classifiers on both sleep-replete and sleep-

restricted nights and then tested them on 1 randomly chosen

night out of the first 3 (sleep-replete) nights. Our rationale was

that classification of sleep-wake is more difficult in sleep-

replete nights because there is a longer period of time in bed,

and because of that there are many “wake states” to be

detected by the machine learning model. In contrast, on sleep-

restricted nights with 5 hrs of time in bed, participants are

mostly asleep, and there would not be many wake state

epochs. Sleep-replete nights were also longer (10 hrs time in

bed) and thus included more epochs.

Data Normalization
In order to minimize the effect of scale variability between

devices and participants, the raw actigraphy values were nor-

malized per sleeping period as follows: Let a ¼ fa1; :::; amg
be the sequence of actigraphy measurements in a given sleep-

ing period. The normalized actigraphy measurement ni corre-

sponding to ai is given by:

ni ¼ ai � minðaÞ
maxðaÞ � minðaÞ : (1)

Feature Extraction
Consistent with our previous study,45 we extracted features

from the actigraphy data using a sliding window of 21 epochs

centered at the target actigraphy value. We then used the

extracted features as input to our sleep-wake states predic-

tors. For each sliding window (which represents each acti-

graphy value), we extracted the following features used in

previous works:32,51 10th, 20th, 50th, 5th, and 90th percen-

tiles, mean, sum of values, standard deviation, coefficient of

variation, peak-to-peak amplitude, interquartile range, skew-

ness, kurtosis, signal power, peak intensity, median crossings

(ie, the number of times actigraphy values cross the median

of the sliding window), time above threshold (ie, the number

of actigraphy values >15), and maximum value, along with

the 21 normalized actigraphy measurements within the win-

dow. Therefore, each sliding window was represented with

a 39-tuple of feature values and was assigned either a PSG-

defined wake or sleep label.

Predictive Models
We experimented with 5 commonly used machine learning

algorithms all using Python’s sklearn (version 0.17.1) imple-

mentations with default parameters unless stated otherwise:

1. Naive Bayes (NB): The NB is a generative classifier

that is provably optimal when the features are condi-

tionally independent given the class label. NB is often

quite effective in practice and works as follows: Let

x ¼ ðx1; x2; :::; xnÞ be an instance, with n features, to

be classified. Assuming that the features are condi-

tionally independent given the class, for any possible

class label y, the conditional probability that the sam-

ple x belongs to the class y is given by the posterior

probability: PðyjxÞ / PðyÞQn
i¼1 PðxijyÞ. NB assigns

x to the class with the largest posterior probability.52

The parameters definingPðyÞ (ie, the prior distribution
of the classes) and PðxijyÞ (ie, the conditional distribu-
tion of each attribute xi given the class, also known as

the likelihood) are estimated from the labeled training

data. Herein, we use a multi-variate Bernoulli model

for PðxijyÞ and default sklearn discretization scheme

for continuous values.
2. Regularized logistic regression (RLR): Logistic

regression (LR)53 is the discriminative counterpart of

2-class NB model where a binary logistic model is

used to directly estimate the probability of a binary

response. Here, PðyjxÞ ¼ 1
1þe�ðwxþbÞ , where the para-

meters ðw; bÞ are estimated from the training data

using maximum likelihood estimation which in the

case of LR reduces to least square regression. RLR

adds a regularizer to the least square objective func-

tion to counteract the tendency of the model to overfit

the training data. We used L2 regularizer and the

resulting objective function was optimized using sto-

chastic gradient descent (SGD).

3. Random forest (RF) is an ensemble of decision tree

classifiers. The members of the ensemble are obtained

by applying bootstrap aggregation (“bagging”) to

decision tree learners.54 The process of bagging

works as follows: Given a training set, bagging repeat-

edly selects B random samples (with replacement) of

the same size, each time uses the randomly selected

data as the training set, and fits a decision tree to the

training sample, resulting in an ensemble of

B decision trees (ie, a forest). Test samples are then

classified by taking a majority vote over the class

labels produced by the trees of the forest. In this

work, we used RF classifiers with B=100.

4. AdaBoost (AB)55 is an adaptive boosting meta-

algorithm. Suppose each training sample xi has a label

yi 2 f�1; 1g. After m� 1 iterations, AB produces an

ensemble classifier of the linear form
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Cm�1ðxiÞ ¼ ∑
m�1

k¼1
αkckðxiÞ; (2)

where each ck is a (weak) classifier that assigns a label

ckðxiÞ 2 f�1; 1g. At the mth iteration, AB augments

the ensemble to obtain CmðxiÞ ¼ Cm�1ðxiÞ þ αm
cmðxiÞ. AB chooses the classifier weight αm and the

classifier cm so as to minimize the exponential loss of

Cm given by E ¼ ∑ie
�yiCmðxiÞ. We use AB with an

ensemble size of 100 where each classifier in the

ensemble is a decision tree classifier.

5. Extreme gradient boosting (XGB)56 is a scalable var-

iant of gradient boosting.57 XGB produces an ensem-

ble of classification or regression models, typically

decision trees. Like AB, it builds the ensemble in

a stage-wise fashion, using any arbitrary differentiable

objective function that includes a loss function and

a regularization term. We used XGB to generate an

ensemble of 100 classification trees with a logistic loss

function and L2 regularization term.

Performance Evaluation and Statistical

Analyses
We trained and evaluated personalized sleep-wake states

predictors (ie, classifiers), one for each individual, using the

training and test data for each individual. In contrast, we

trained generalized sleep-wake states predictors using the

training data for the entire population. We evaluated the

resulting predictors on the test data for each individual so

as to allow direct comparison of personalized and general-

ized predictor counterparts in terms of classifier performance

evaluation metrics. We further compared the estimates of

sleep parameters obtained by personalized and generalized

sleep-wake states predictors to those obtained by PSG in

estimation of sleep parameters (see Sections Classifier per-

formance evaluation and Sleep parameters). We also con-

ducted statistical analyses as described below.

Classifier Performance Evaluation
We used standard performance measures for evaluating the

performance of sleep-wake states predictors. Let the num-

ber of test samples belonging to the wake class correctly

labeled as wake (true positives) be TP; the number of

wake instances classified incorrectly as sleep (false nega-

tives) be FN; the number of sleep instances classified

correctly by the classifier as sleep (true negatives) be

TN; and the number of sleep instances that are labeled

incorrectly as wake (false positives) be FP. Then, accuracy

(ACC), sensitivity (SN), specificity (SP), and Matthews

correlation coefficient (MCC) are given by:

ACC ¼ TPþ TNTPþ FPþ TN þ FN ; (3)

SN ¼ TPTPþ FN ; (4)

SP ¼ TNTN þ FP; (5)

MCC ¼ TP*TN � FP*FN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTPþ FPÞðTPþ FNÞðTN þ FPÞðTN þ FNÞp :

(6)

In general, it is possible to trade-off SP against SN by

adjusting the classification threshold used to convert pre-

dicted class probabilities into class labels. Hence, it is useful

to plot the Receiver Operating Characteristic (ROC) curve58

to visualize the performance of a classifier over all possible

choices of classification thresholds. The ROC curve is

a two-dimensional plot in which the true positive rate

(TPR), that is, SN, is plotted on the Y-axis, and the false-

positive rate (FPR), that is, (1-SP) is plotted on the X-axis.

Each point on the ROC curve represents the behavior of the

classifier at a specific choice of the threshold. Thus, if one

classifier has higher TPR for all FPR as compared to

another, then we can conclude that the former outperforms

the latter for any choice of the classification threshold, or

equivalently, the trade-off between TPR and FPR. The area

under ROC curve (AUC), the probability that a randomly

chosen wake sample is scored higher than a randomly cho-

sen sleep sample by the classifier, is often used as

a summary statistic to compare classifiers. An AUC score

higher than 0.5 is considered better than random guessing.

A perfect classifier will have an AUC of 1.

Sleep Parameters
We used the following 5 standard sleep parameters: total

sleep time (TST), the amount of time in minutes that the

person is asleep during a sleeping period; sleep onset

latency (SOL), the time in minutes that it takes for the

person to fall asleep for the first time since the start of the

data recording in a given sleeping period; wake after sleep

onset (WASO), the amount of time in minutes the person

spends awake, starting from when they first fall asleep to

when they become fully awake and do not attempt to go

back to sleep; sleep efficiency (SE), the percentage of total

time in bed actually spent in sleep; and number of
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awakenings (NA), the number of transitions from sleep to

wakefulness.

Statistical Analyses
We applied paired t-tests to assess the statistical significance

of the observed differences in performance. When assessing

such difference among multiple classifiers at the same time

(eg, when simultaneously comparing classifiers based on

classifier performance metrics), we used paired t-tests with

the Bonferroni corrected significance level to avoid the

family-wise Type I error.59 In our case, to test for statistical

significance at a significance level of α, the p-values would

have to be compared with α
mðm�1Þ where m is the total

number of predictive models under consideration. If we

choose of α ¼ 0:05, since m ¼ 10 (because we have 5 per-

sonalized and 5 generalized classifiers) we have to compare

p-values with 0:05
10�9 � 0:0005. On the other hand, when asses-

sing the difference in performance of two observed out-

comes (eg, the difference between a classifier’s estimated

TST and that of PSG, same for other sleep parameters), we

used paired t-test with significance level 0:05 and hence,

compared the p-values accordingly.

Variability Across Individuals
Let xi and xj be two participants. Let ci and cj be the

personalized classifiers trained on the training data for indi-

viduals i and j, respectively. Let t be the concatenation of ti
and tj, where ti and tj denote the test data for individuals i

and j, respectively. Finally, let pi and pj be the sequences of

predicted probabilities for the positive class (wake) pro-

duced by ci and cj on the sequence t. We say that two

individuals are similar if the corresponding personalized

classifiers ci and cj yield similar sequences of predicted

probabilities for the positive (or negative) class. We define

Sij, a measure of similarity between individuals i and j, as

simply the Pearson correlation coefficient between pi and pj.

We used this similarity measure to examine the usefulness of

personalized classifiers for sleep-wake states detection.

Results
In this section, we proceed to report results of experiments

designed to compare personalized sleep-wake states pre-

dictors with their generalized counterparts over all studies

and considering each study separately. We statistically

compare the predictors both in terms of how well they

estimate sleep parameters (See Section Sleep parameters)

and in terms of classifier performance evaluation metrics

(See Section Classifier performance evaluation).

Sleep Parameters Estimation:

Personalized vs Generalized Predictors
We report results of our comparison averaged over all

participants and all studies in Table 2 (see Supplementary

Tables S1-S6 for detailed results on each participant and

all studies). We observe personalized sleep-wake states

predictors outperform their generalized counterparts

overall in estimation of night-level sleep parameters of

TST, WASO, SE, and NA compared to PSG. We further

observe among the five classifiers used in this work,

estimates of sleep parameters obtained from RF are over-

all, closer to those estimates obtained from PSG, than the

obtained estimates from other classifiers.

We analyzed the effect of different classification cut-offs

(ie, the threshold used to convert predicted wake or sleep

probabilities into their corresponding class labels) on

sleep parameters estimates obtained from our developed

Table 2 Estimates of Sleep Parameters Obtained with Personalized and Generalized Sleep-Wake States Predictors and PSG, Averaged

Over all Participants Across All Studies Combined. In Each Column, the Boldface Number Indicates the Estimated Sleep Parameter

Closest to That of PSG

Classifier Personalized Approach Generalized Approach

TST SOL WASO SE NA TST SOL WASO SE NA

NB 347.72 20.30 159.09 64.23 16.44 359.24 18.37 147.63 66.7 14.46

RLR 486.50 9.37 38.72 89.90 6.56 500.19 8.83 26.13 92.55 5.17

RF 457.67 10.00 66.83 84.57 25.59 474.54 9.35 50.87 87.83 29.20

AB 464.98 8.94 60.35 85.95 27.67 487.65 8.57 38.74 90.27 18.04

XGB 467.91 9.00 57.26 86.49 22.72 486.54 9.11 39.20 90.04 15.91

PSG 436.83 15.67 73.26 80.71 26.65 436.83 15.67 73.26 80.71 26.65

Abbreviations: NB, Naive Bayes; RLR, regularized logistic regression; RF, random forest; AB, adaptive boosting; XGB, extreme gradient boosting; PSG, Polysomnography;

TST, total sleep time; SOL, sleep onset latency; WASO, wake after sleep onset; SE, sleep efficiency; NA, number of awakenings.
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personalized predictors. Specifically, we chose our two best

performing classifiers, RF and XGB, and obtained their esti-

mates of sleep parameters with the following cutoffs: 0.1, 0.2,

0.3, 0.4, and 0.5. We report the results (averaged over all

participants across all studies) in Table 3. We observe for

TST, WASO, SE, and NA, the most reliable (as compared to

PSG estimates) estimates by classifiers are obtained with

a threshold of either 0.4 or 0.5. For SOL, however, our results

suggest 0.2 for both RF and XGB.

To statistically analyze the estimates of sleep para-

meters obtained by our classifiers, we ran paired t-tests

on (i) the difference between estimates of sleep parameters

obtained by personalized models and those obtained by

PSG and (ii) the difference between estimates of sleep

parameters obtained by generalized models and those

obtained by PSG. We report the results in Table 4;

a p-value < 0.05 shows the classifier estimates are statis-

tically different than those obtained by PSG. Interestingly,

we observe that none of the estimates of TST, WASO, SE,

and NA, obtained by personalized RF, are statistically

different than those obtained by PSG. We further observe

personalized AB and XGB outperform their generalized

counterparts for sleep parameters WASO and NA. In terms

of SOL, both personalized and generalized NB obtained

estimates that are not statistically different than those

obtained by PSG. Overall estimates of sleep parameters

by generalized models are statistically different than those

obtained by PSG.

Performance of Classifiers: Personalized

vs Generalized Predictors
We report results of our comparison, in terms of classifier

performance evaluation metrics (see Section Classifier perfor-

mance evaluation), averaged over all participants across all

studies in Table 5 (see Supplementary Tables S7–S12 for

detailed results on each participant and all studies). The per-

formance of personalized classifiers is comparable to that of

their generalized counterparts in terms of AUC (see Table 5,

Figure 1). XGB sleep-wake states predictors outperform their

NB, RLR, AB, and RF counterparts with an AUC of 0.84.

Interestingly, in the case of 16 out of the 54 participants, or

roughly 30% of the population under consideration,

Table 3 Estimates of Sleep Parameters Obtained with Different Classification Thresholds via Personalized RF and XGB Sleep-Wake

States Predictors, Averaged Over All Participants Across All Studies Combined. In Each Column, the Boldface Number Indicates the

Estimated Sleep Parameter Closest to That of PSG

Threshold TST SOL WASO SE NA

RF XGB RF XGB RF XGB RF XGB RF XGB

0.1 295.11 294.80 18.59 25.61 213.43 203.33 54.53 54.43 42.91 35.48

0.2 382.85 398.89 14.31 12.06 132.50 119.89 70.77 73.71 41.02 37.07

0.3 415.00 430.91 11.37 10.43 105.72 91.20 76.67 79.66 36.96 33.17

0.4 438.93 452.31 10.44 9.78 84.22 71.07 81.11 83.60 31.17 28.06

0.5 457.67 467.91 10.00 9.00 66.83 57.26 84.57 86.49 25.59 22.72

Abbreviations: RF, random forest; XGB, extreme gradient boosting; TST, total sleep time; SOL, sleep onset latency; WASO, wake after sleep onset; SE, sleep efficiency;

NA, number of awakenings.

Table 4 P-Values of the T-Tests Between Estimates of Sleep Parameters Obtained with Personalized and Generalized Sleep-Wake

States Predictors Compared to Those Obtained by PSG. Significance Level Is 0.05. Boldface Numbers Indicate Statistically Non-

Significant Values

Classifier Personalized Approach Generalized Approach

TST SOL WASO SE NA TST SOL WASO SE NA

NB <0.01 0.13 <0.01 <0.01 <0.01 <0.01 0.36 <0.01 <0.01 <0.01

RLR <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

RF 0.11 0.01 0.49 0.07 0.64 <0.01 <0.01 <0.01 <0.01 0.29

AB 0.02 <0.01 0.14 <0.01 0.65 <0.01 <0.01 <0.01 <0.01 <0.01

XGB 0.01 <0.01 0.07 <0.01 0.07 <0.01 <0.01 <0.01 <0.01 <0.01

Abbreviations: NB, Naive Bayes; RLR, regularized logistic regression; RF, random forest; AB, adaptive boosting; XGB, extreme gradient boosting; TST, total sleep time;

SOL, sleep onset latency; WASO, wake after sleep onset; SE, sleep efficiency; NA, number of awakenings.
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personalizedXGB significantly outperforms generalizedXGB

in terms of AUC (p-value < 0.00014 in t-test).Moreover, in the

case of 8 individuals, personalized XGB performs as well as

generalized XGB (performances can be observed in

Supplementary Table S7). Thus, in approximately 44% of the

population under consideration, personalized XGB outper-

forms or matches the performance of generalized XGB, and

underperforms in the majority of individuals.

We compare performance of personalized and general-

ized predictors averaged over test data from each study

separately (ie, test data from participants from the same

study) and report the results in Table 6. Interestingly,

personalized and generalized models are consistently com-

parable to each other in all four studies.

Supplementary Table S13 shows the results of our

statistical analysis on the significance in difference

between personalized and generalized predictors’ perfor-

mances in our experiments. Interestingly, the difference in

performance of personalized and generalized predictors is

not statistically significant in any of the predictors except

for AB. One possible justification is that AB is more prone

to over-fitting when training data belong to only one

participant (ie, the personalized case).

Finally, to assess whether differences in performances

of predictive models could be attributed to differences in

sizes of training data, we experimented with two training

datasets of different sizes. Results (see Supplementary

Tables S14–S16) suggest that training predictive models

with more than two sleeping periods yields no significant

improvements in their performance compared to when

trained with only two sleeping periods.

How Do the Difference in Performances

of Predictors Relate to Participants’
Characteristics?
To determine whether the differences in predictive perfor-

mance (in terms of AUC) between personalized and general-

ized XGB predictors (chosen because of their highest

achieved AUC among other classifiers) could be attributed

to differences in individuals’ age, gender, sleep disorder, or

time in bed (in minutes) on test data, we computed Pearson’s

correlation coefficients between each of these variables and

difference in AUC between personalized and generalized

XGB predictors. No significant correlation with any of

Table 5 Performance of Personalized and Generalized Sleep-Wake States Predictors Averaged Over All Participants Across All

Studies Combined. In Each Column, tThe Boldface Number(s) Indicate(s) the Highest Value Obtained for the Corresponding Metric

Classifier Personalized Approach Generalized Approach

ACC SN SP MCC AUC ACC SN SP MCC AUC

NB 0.75 0.74 0.74 0.38 0.83 0.75 0.69 0.77 0.36 0.83

RLR 0.86 0.29 0.98 0.36 0.82 0.86 0.26 0.99 0.35 0.83

RF 0.85 0.45 0.93 0.40 0.81 0.86 0.41 0.96 0.41 0.80

AB 0.86 0.46 0.95 0.44 0.80 0.87 0.37 0.98 0.45 0.85

XGB 0.86 0.45 0.95 0.45 0.84 0.87 0.38 0.98 0.45 0.85

Notes: © 2018 IEEE. Reprinted, with permission, from Khademi A, El-Manzalawy Y, Buxton OM, Honavar V. Toward personalized sleep-wake prediction from actigraphy. In

2018 IEEE EMBS International Conference on Biomedical and Health Informatics, BHI 2018 (Vol. 2018-March, pp. 414-417). Institute of Electrical and Electronics Engineers

Inc. https://doi.org/10.1109/BHI.2018.8333456.45

Abbreviations: NB, Naive Bayes; RLR, regularized logistic regression; RF, random forest; AB, adaptive boosting; XGB, extreme gradient boosting; ACC, accuracy; SN,

sensitivity; SP, specificity; MCC, Matthews correlation coefficient; AUC, area under curve.

Figure 1 ROC curves of personalized and generalized XGB sleep-wake states

predictors. The two darker ROC curves show the performance of the generalized

predictor (blue) and personalized predictors (orange) averaged over all individuals

across all studies. The lighter curves show performance of the generalized XGB

predictor and personalized XGB predictors tested on each individual. © 2018 IEEE.

Reprinted, with permission, from Khademi A, El-Manzalawy Y, Buxton OM, Honavar

V. Toward personalized sleep-wake prediction from actigraphy. In 2018 IEEE EMBS

International Conference on Biomedical and Health Informatics, BHI 2018 (Vol.

2018-March, pp. 414–417). Institute of Electrical and Electronics Engineers Inc.

https://doi.org/10.1109/BHI.2018.8333456.45
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these variables is observed. In agreement with a previous

analysis,25 the highest Pearson’s correlation coefficient of

0.264 with p-value = 0.53 was found for age.

Do the Different Studies (Sources of

Data) Impact the Relative Performance of

the Generalized vs Personalized

Sleep-Wake Predictors?
To examine whether there are systematic differences in the

relative performance of the personalized vs generalized

sleep-wake states predictors, we repeated our analyses sepa-

rately for each study (ie, source of experimental data) and

report the results in Table 7. We refer to such predictive

models as study-specific ones, each trained only using data

from a specific study and tested on the data from that study.

In the SR study of young adult males and TI study of

older adults, all personalized models, with the exception of

XGB, outperform their generalized counterparts in terms

of ACC. Also, we see that in all studies, personalized

models are comparable with their study-specific counter-

parts in terms of AUC. The performance of both persona-

lized and generalized models on data from the Acoustics

study is lower than that in the case of other studies. On the

Acoustics study, personalized XGB model outperforms its

generalized counterpart in terms of ACC by a margin of

nearly 11%. All personalized predictors, except for NB

and LR, have higher SN than their generalized counter-

parts. However, in terms of AUC, barring one exception

(NB), the personalized predictors do not outperform their

generalized counterparts.

Does Testing on Different Sleeping

Periods Impact the Test Results?
We ran paired t-tests on the AUC of all sleep-wake states

predictors (see Section pred_models) obtained on test data.

Specifically, let μi be the mean of performance (ie, AUC)

Table 6 Performance of Personalized and Generalized Sleep-Wake States Predictors Averaged Separately Across Individuals Within

Each Study. In Each Column of Each Study, the Boldface Number(s) Indicate(s) the Highest Value Obtained for the Corresponding

Metric

Study Classifier Personalized Approach Generalized Approach

ACC SN SP MCC AUC ACC SN SP MCC AUC

SR NB 0.76 0.75 0.75 0.40 0.85 0.68 0.79 0.66 0.34 0.85

RLR 0.88 0.32 0.98 0.42 0.86 0.88 0.33 0.98 0.41 0.86

RF 0.87 0.47 0.94 0.44 0.85 0.87 0.50 0.95 0.47 0.85

AB 0.88 0.49 0.95 0.49 0.85 0.88 0.46 0.97 0.50 0.89

XGB 0.84 0.43 0.94 0.42 0.88 0.89 0.48 0.97 0.51 0.89

TI NB 0.80 0.67 0.80 0.38 0.84 0.75 0.74 0.75 0.39 0.83

RLR 0.86 0.23 1.00 0.35 0.85 0.85 0.20 0.99 0.27 0.84

RF 0.89 0.52 0.95 0.49 0.84 0.87 0.40 0.96 0.41 0.83

AB 0.90 0.48 0.98 0.53 0.86 0.87 0.37 0.98 0.45 0.87

XGB 0.80 0.27 0.95 0.32 0.88 0.88 0.37 0.98 0.46 0.88

AC NB 0.60 0.70 0.57 0.24 0.70 0.72 0.41 0.83 0.25 0.69

RLR 0.76 0.13 0.98 0.18 0.67 0.77 0.10 1.00 0.23 0.68

RF 0.72 0.26 0.88 0.17 0.64 0.76 0.17 0.96 0.21 0.63

AB 0.75 0.26 0.92 0.22 0.62 0.77 0.15 0.98 0.25 0.69

XGB 0.87 0.47 0.96 0.48 0.66 0.77 0.16 0.98 0.25 0.69

NW NB 0.82 0.79 0.82 0.45 0.90 0.83 0.75 0.84 0.45 0.90

RLR 0.91 0.40 0.98 0.44 0.89 0.91 0.33 0.99 0.42 0.90

RF 0.91 0.53 0.95 0.49 0.88 0.91 0.49 0.96 0.48 0.86

AB 0.91 0.55 0.95 0.50 0.84 0.92 0.44 0.99 0.54 0.92

XGB 0.91 0.55 0.96 0.52 0.91 0.92 0.45 0.99 0.54 0.92

Notes: © 2018 IEEE. Reprinted, with permission, from Khademi A, El-Manzalawy Y, Buxton OM, Honavar V. Toward personalized sleep-wake prediction from actigraphy. In

2018 IEEE EMBS International Conference on Biomedical and Health Informatics, BHI 2018 (Vol. 2018-March pp. 414-417). Institute of Electrical and Electronics Engineers

Inc. https://doi.org/10.1109/BHI.2018.8333456.45

Abbreviations: SR, sleep restriction; TI, tiagabine; AC, acoustics; NW, night working, NB, Naive Bayes; RLR, regularized logistic regression; RF, random forest; AB, adaptive

boosting; XGB, extreme gradient boosting; ACC, accuracy; SN, sensitivity; SP, specificity; MCC, Matthews correlation coefficient; AUC, area under curve.
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on test data in group i, where i 2 f1; 2; 3g. For each

trained predictor, we ran three t-tests each with the null

hypothesis H0 : μi ¼ μj where i�j and i; j 2 f1; 2; 3g. For
example, rejecting H0 : μ1 ¼ μ2 would mean results of

testing on test data in group 1 are significantly different

from testing on test data in group 2. We report results of

our t-tests in Supplementary Table S17. Since none of the

p-values are significant, there is not enough evidence to

reject H0 for any of the predictors. We conclude resulting

performance of the predictors does not depend on which

sleeping period to use as test data.

Discussion
Existing work on developing methods to estimate sleep

parameters from actigraphy has focused on developing

a single model for all individuals, ie, a generalized

model. The considerable variation in sleeping patterns

across individuals44 implies that person-specific models

could account for such variation across individuals and

yield superior models. We develop and show the validity

of 5 families of personalized machine learning models

for predicting sleep-wake states from actigraphy and

compare their performance with that of generalized mod-

els using PSG as the gold standard. Our results show that

the performance of personalized models, as evaluated by

standard classifier performance measures for epoch-level

sleep-wake states prediction, yields slightly worse per-

formance than generalized models. Personalized models

match or outperform their generalized counterparts in

approximately 44% of the population, ie, underperform

generalized models in 56% of the population. In contrast,

results of our experiments also show personalized mod-

els significantly outperform their generalized counter-

parts in estimating the night-level sleep parameters of

total sleep time, wake after sleep onset, sleep efficiency,

and number of awakenings, compared to PSG. Our ana-

lyses show that differences between estimates of sleep

parameters obtained by personalized models are statisti-

cally indistinguishable from sleep parameters obtained

by PSG, whereas nearly all generalized model sleep

Table 7 Performance of Personalized and Study-Specific Sleep-Wake States Predictors Averaged Separately Across Individuals Within

Each Study. In Each Column of Each Study, the Boldface Number(s) Indicate(s) the Highest Value Obtained for the Corresponding

Metric

Study Classifier Personalized Approach Study-Specific Approach

ACC SN SP MCC AUC ACC SN SP MCC AUC

SR NB 0.76 0.75 0.75 0.40 0.85 0.74 0.76 0.74 0.39 0.85

RLR 0.88 0.32 0.98 0.42 0.86 0.87 0.38 0.97 0.44 0.86

RF 0.87 0.47 0.94 0.44 0.85 0.86 0.59 0.91 0.48 0.86

AB 0.88 0.49 0.95 0.49 0.85 0.88 0.53 0.95 0.51 0.89

XGB 0.84 0.43 0.94 0.42 0.88 0.88 0.57 0.95 0.53 0.89

TI NB 0.80 0.67 0.80 0.38 0.84 0.80 0.70 0.81 0.43 0.84

RLR 0.86 0.23 1.00 0.35 0.85 0.86 0.22 0.99 0.29 0.84

RF 0.89 0.52 0.95 0.49 0.84 0.87 0.49 0.95 0.48 0.84

AB 0.90 0.48 0.98 0.53 0.86 0.88 0.44 0.98 0.49 0.88

XGB 0.80 0.27 0.95 0.32 0.88 0.88 0.45 0.97 0.50 0.88

AC NB 0.60 0.70 0.57 0.24 0.70 0.52 0.82 0.43 0.22 0.70

RLR 0.76 0.13 0.98 0.18 0.67 0.83 0.52 0.89 0.44 0.85

RF 0.72 0.26 0.88 0.17 0.64 0.73 0.25 0.89 0.17 0.62

AB 0.75 0.26 0.92 0.22 0.62 0.76 0.19 0.96 0.24 0.69

XGB 0.87 0.47 0.96 0.48 0.66 0.76 0.18 0.97 0.23 0.68

NW NB 0.82 0.79 0.82 0.45 0.90 0.83 0.75 0.83 0.44 0.90

RLR 0.91 0.40 0.98 0.44 0.89 0.91 0.39 0.98 0.43 0.89

RF 0.91 0.53 0.95 0.49 0.88 0.91 0.57 0.95 0.52 0.88

AB 0.91 0.55 0.95 0.50 0.84 0.92 0.55 0.97 0.56 0.91

XGB 0.91 0.55 0.96 0.52 0.91 0.92 0.56 0.97 0.57 0.92

Abbreviations: SR, sleep restriction; TI, tiagabine; AC, acoustics; NW, night working, NB, Naive Bayes; RLR, regularized logistic regression; RF, random forest; AB, adaptive

boosting; XGB, extreme gradient boosting; ACC, accuracy; SN, sensitivity; SP, specificity; MCC, Matthews correlation coefficient; AUC, area under curve.
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parameters differed from PSG. Among our personalized

machine learning models, ensemble methods, including

random forest and extreme gradient boosting, have

superior performance compared to other predictive meth-

ods. Our results lay the groundwork for development of

classes of reliable personalized machine learning models

able to estimate sleep parameters on an individual-level

basis and capable of coping with personal characteristics

and variability of sleep patterns across individuals.

With recent advances in technology, the public have

access to multiple types of actigraphy-collecting devices on

the market. These consumer devices provide individuals with

measures of their sleep often via phone-based apps. However,

all of the currently available devices are equipped with

a priori trained and developed (usually non-transparently)

generalized sleep assessment models and hence, are not per-

son-specific. The “black box” models also may be changed

via non-transparent software updates. We note that these

devices can collect individual-level actigraphy data very con-

veniently and over time. Such availability of data will open

up the potential to equip individuals’ devices with persona-

lized models of sleep parameter estimation. Research-grade

data could be used to cluster individuals by patterns of sleep

to select the closest and most appropriate validated model

rather than repeat PSG validations for every individual.

Performances of our developed classifiers on the

Acoustics study were lower than the performances on other

studies (see Section data for explanation of studies). In the

Acoustics study, sleep was occasionally disrupted by envir-

onmental noise. A heat map of the similarity between sub-

jects (Figure 2) (see Section Variability across individuals)

illustrates the difference between subjects in the Acoustics

study. Not only are they different from participants in other

studies but also from each other. We speculate the high

degree of variability across participants in the Acoustics

study explains the difference in performance of the predictive

models on the Acoustics study compared to other studies.

Interestingly, our analyses on how size of training data

would impact performances of our developed classifiers

demonstrate sufficiency of 2 sleeping periods of annotated

actigraphy data for training reliable personalized and gen-

eralized classifiers. Specifically, considering training classi-

fiers using 2 sleeping periods as baseline, we observed no

significant improvement on test data in performances of

either personalized or generalized classifiers when trained

with more than 2 sleeping periods. We conclude developing

Figure 2 Heatmap of the similarity between participants obtained according to the defined similarity measure. Axes group participants based on the study they were in.

Each pixel corresponds to one participant. Dark blue means maximum similarity and yellow means minimum similarity. Participants from the Acoustics study are observed to

be different than each other and those from other studies potentially explaining the difference in the performance of our predictive models on them.
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reliable personalized and generalized machine learning pre-

dictive models of sleep-wake states from actigraphy data is

viable with only data from 2 sleeping periods.

To our knowledge, current work along with45 are the first

comprehensive machine learning-based approaches to sleep-

wake states prediction from actigraphy with 5 families of

developed reliable personalized and population-level machine

learning models. We systematically developed our machine

learning models and tested them with various measures of

classifier performance and statistical analyses through exten-

sive machine learning experimentation on high resolution (30-

s epoch) data. We achieve a high sensitivity using a Naive

Bayes classifier. Aswe denotewake states to be a positive class

label in our study, sensitivity reflects the predictive model’s

ability to detect wake states. We pinpoint a high sensitivity, ie,

ability to detect wake states, while noting that from a machine

learning perspective, there is a trade-off between sensitivity

and specificity with higher sensitivities potentially lowering

specificities and vice versa. We argue that in using any sleep-

wake states prediction or scoring algorithm (and binary classi-

fication in general), one can trade-off sensitivity and specificity

by changing the threshold used to convert predicted probability

of class labels.60 The trade-off can be application and context

dependent. Hence, we suggest the use of the Receiver

Operating Characteristics (ROC) curves capturing all possible

trade-offs (see Section Classifier performance evaluation).

Using actigraphy in measuring sleep has several advan-

tages over PSG. Recording and collecting PSG over an

extended period of time can be inconvenient and costly,

making it impractical61 in settings where longitudinal mea-

sures of sleep are of interest. Using actigraphy, one can

relatively conveniently collect movement data over time

and this provides us with the opportunity to measure sleep

in longitudinal settings with relatively low-cost. The inex-

pensive and unobtrusive nature of actigraphy, as opposed to

PSG, makes actigraphy a valuable tool to increase the

amount of collected data. Actigraphy devices are usually

small in size and light in weight making them an unobtrusive

alternative to PSG recordings that can be cumbersome for

patients. These advantages of actigraphy over PSG pave the

way for choosing actigraphy over PSG in developing perso-

nalized models of measuring sleep.

We use actigraphy data from25 collected during sleep

laboratory sessions, but we note such data may not reflect

actigraphy behavior in home settings. The population

under consideration comprise a wide range of ages which

entails both advantages and disadvantages. To our

strength, sufficient classifier performance on such age

diversity shows the reliability, validity, and applicability

of our developed machine learning models on people with

a variety of ages. We observed no statistically significant

correlation between age and the difference between our

developed personalized and generalized predictive models.

As a limitation, the age range calls for elucidation of sleep

patterns across people in different age categories and

development of reliable personalized machine learning

models for sleep quality assessment in each category.

Some directions for future research include, but are not

limited to: (1) The data used in our work do not contain 24

hrs of sleep screening and are limited to night time (sleeping

period). Development of reliable personalized machine

learning models of sleep-wake states prediction using 24-hr

data is a promising next step, (2) PSG annotation is a non-

trivial task and is not always available along with actigraphy

data. A fruitful future research direction is developing perso-

nalized variants of the unsupervised (not using the PSG

labels) machine learning models of sleep-wake states predic-

tion using actigraphy,41 (3) We considered at least 3 sleeping

periods of data from each participant: 2 or more to train and 1

to test our predictive models. However, in situations such as

clinical sleep studies, it is conceivable that only 1 sleeping

period of data may be available. Future work can develop

personalized models that are trained and tested using only 1

sleeping period of actigraphy data, and (4) Developing per-

sonalized machine learning models for sleep-stages predic-

tion as well as for that of physical activity recognition.51
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