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Objective: Neuropathic pain and fibromyalgia are two common and poorly understood

chronic pain conditions that lack satisfactory treatments, cause substantial suffering and

societal costs. Today, there are no biological markers on which to base chronic pain

diagnoses, treatment choices or to understand the pathophysiology of pain for the individual

patient. This study aimed to investigate cerebrospinal fluid (CSF) protein profiles potentially

associated with fibromyalgia and neuropathic pain.

Methods: CSF samples were collected from 25 patients with neuropathic pain (two indepen-

dent sets, n=14 patients for discovery, and n=11 for verification), 40 patients with fibromyalgia

and 134 controls without neurological disease from two different populations. CSF protein

profiling of 55 proteins was performed using antibody suspension bead array technology.

Results: We found increased levels of apolipoprotein C1 (APOC1) in CSF of neuropathic

pain patients compared to controls and there was a trend for increased levels also in

fibromyalgia patients. In addition, levels of ectonucleotide pyrophosphatase family member

2 (ENPP2, also referred to as autotaxin) were increased in the CSF of fibromyalgia patients

compared to all other groups including patients with neuropathic pain.

Conclusion: The increased levels of APOC1 and ENPP2 found in neuropathic pain and

fibromyalgia patients may shed light on the underlying mechanisms of these conditions.

Further investigation is required to elucidate their role in maintaining pain and other main

symptoms of these disorders.

Keywords: cerebrospinal fluid, neuropathic pain, fibromyalgia, antibody suspension bead

arrays, APOC1, ENPP2

Introduction
Pain conditions such as fibromyalgia and neuropathic pain cause substantial

suffering,1 disability,2 and great societal costs.3 In addition, they are difficult to

treat4,5 and sometimes difficult to diagnose.6–8 Progress has been made in clinical

classification and diagnostic criteria for neuropathic pain 9,10 and fibromyalgia,11,12

but there is a need for better understanding of the pathophysiology and for more

effective treatments.13–17 Currently, there are no biological tests on which to base

pain diagnoses, treatment choices or to understand the pathophysiology of the

individual pain patient. Such markers that reflect the pathophysiology of individual

pain patients would be important tools for pain clinicians, scientists, and pharma-

ceutical companies to aid in diagnosis, treatment selection, and to guide and

monitor the development of new treatments. Although cerebrospinal fluid (CSF)
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collection is an invasive procedure, CSF is in direct con-

tact with the brain and spinal cord and changes in CSF

protein levels may reflect pathological processes in the

central nervous system.18

Neuropathic pain is often described as a particularly

unpleasant form of pain19 with shooting, shock-like, ach-

ing, cramping, crushing, smarting, and burning features.20

Neuropathic pain is caused by lesion or disease of the

somatosensory nervous system 21 and affects 1–10% of

the general population.22–29 Previous investigations of

CSF from neuropathic pain patients have typically ana-

lyzed one or a few interesting markers (mainly proteins) in

small sample cohorts. Several studies have found differ-

ences in the levels of one or more proteins including

inflammatory markers between neuropathic pain patients

and controls30–35 while other studies showed no significant

differences.36,37

Fibromyalgia affects around 2% of the population and

is characterized by widespread pain and generalized hyper-

algesia for mechanical pressure.38 Fibromyalgia patients

often suffer from psychological distress, sleep and mem-

ory disturbances, and fatigue.38 There are many theories

behind pathophysiology of FM, but the etiology is still

uncertain. The current view is that the clinical presentation

of fibromyalgia depends on central phenomena rather than

peripheral dysfunction and substantial evidence exists for

abnormalities in sensory signaling, including reduction of

descending control and changes in key neurotransmitters

associated with central sensitization.10 However, altered

levels of cytokines, anti-inflammatory lipids, and promi-

nent alterations both in muscle tissue and circulating pro-

teins have been reported39–44 as well as small nerve fiber

impairment in FM.45 A wide range of proteins including

inflammatory markers were found altered in the CSF of

fibromyalgia patients.46–53

Biomarker profiles that can be used to characterize

similarities and differences between chronic pain conditions

would be valuable for understanding the pathophysiological

mechanisms and give new leads for treatment development.

In a recent mass spectrometry (MS) investigation of CSF

samples, we demonstrated altered levels of several proteins

associated with satisfactory spinal cord stimulation (SCS)

treatment.54 Here, we applied the antibody suspension bead

array technology that offers a flexible platform for parallel

protein detection using only 15 µL of crude biological

sample. It has previously been used to study CSF and

plasma within other neurological diseases such as multiple

sclerosis, amyotrophic lateral sclerosis, and Alzheimer’s

disease.55–57 In the present study, we identified CSF pro-

teins associated with pain pathophysiology by comparing

patients with neuropathic pain and fibromyalgia to CSF

from controls without chronic pain.

Methods
Subjects
In this study, we analyzed a total of 199 CSF samples from

neuropathic pain patients, fibromyalgia patients, and two

types of controls (Table 1). The first set of neuropathic

pain patients (denoted NP1) included 14 individuals that

were recruited from Uppsala University Hospital (mean

age 57 (47–68), four males). They suffered from long-

lasting neuropathic pain (median 10 years, range 3–23

years) and had permanently implanted spinal cord stimula-

tion (SCS) since more than 3 months (median 3 years,

range 1–10 years) with self-reported good pain relief. For

Table 1 Patient and experimental overview

Patient group N N female Age range (mean; median) Collection site

Stage 1

Neuropathic pain (NP1) 14 11 46–68 (56; 55) Uppsala, Sweden

Minor urology surgery (C1) 95 4 21–81 (60; 65) Cluj, Romania

Stage 2

Neuropathic pain (NP2) 11 6 39–65 (55; 57) Linköping, Sweden

Healthy controls (C2) 11 6 44–57 (52; 54) Linköping, Sweden

Minor urology surgery (C3) 28 9 21–89 (51; 55) Cluj, Romania

Fibromyalgia (FM) 40 40 25–61 (47; 48) Oslo, Norway

Total 199 76 (38%)

Notes: Summary of all sample sets included in this study. C1 and C3 control samples were from the same patient population but were divided into two groups for inclusion

in both experimental stages.
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these patients, samples were collected both when the sti-

mulation was turned on and off.54

The second set of patients (denoted NP2) were 11 adults

suffering from chronic (≥6 months) neuropathic pain due to

trauma or surgery. These individuals participated in a clin-

ical trial of intrathecal bolus injections of the analgesic

ziconotide (ClinicalTrials.gov identifier NCT01373983),

the mean age was 55 years (range 39–65) and six of the

individuals were females. All samples were collected prior

treatment at Linköping University Hospital in Sweden.

The fibromyalgia (FM) patients included in the study

were 40 females (ages 20–60) suffering from FM as

defined by the 1990 criteria of the American College of

Rheumatology (ACR). Patient recruitment and sampling

were performed at the privately operated Red Cross

Hospital in Olso, Norway.

To find disease-associated proteins, the samples from

the patients were compared to samples from two sets of

controls. The largest control group consisted of 123 indi-

viduals undergoing spinal anesthesia for minor urological

surgery at Cluj Hospital, Romania (C1 and C3, see Study

design). Samples were collected according to the same

protocol as in Uppsala, Sweden and although comparable

in age, these individuals were mostly males. The other

control cohort (C2) consisted of healthy volunteers

matched to the NP2 patients and was collected simulta-

neously as the patients in Linköping, Sweden.

The sample collection procedures of all samples, from

patient recruitment via lumbar puncture to aliquoting and

storage, are detailed in Supplementary methods.

Study design
The experiments in this study were performed in two

stages. The first stage of analysis included the NP1

patients from Uppsala, Sweden (n=14) and a subset of

the Romanian controls (denoted C1, n=95). In the second

stage, we analyzed the independent cohort of neuropathic

pain CSF samples (NP2, n=11) and the samples from

fibromyalgia patients (FM, n=40). These were compared

to control samples from the healthy volunteers (C2, n=11)

and the 28 additional controls from the Romanian cohort

(denoted C3).

Creating the bead array
A bead microarray was customized and created using 100

antibodies from the Human Protein Atlas project (www.

proteinatlas.org). These antibodies targeted 55 unique pro-

teins that were selected based on an earlier mass

spectrometry investigation of protein levels associated with

satisfactory SCS treatment,54 see Table S1. Immobilization

of antibodies to beads was performed as previously

described58 with one specific antibody assigned to a certain

bead identity.

CSF analysis
CSF samples were processed and analyzed through a

direct labeling approach as previously reported.55 In

short, CSF samples were diluted 1/2 in a protein-contain-

ing buffer (37.5 mg/mL bovine serum albumin (Sigma-

Aldrich) in PBS with addition of 15 mg/mL rIgG (Bethyl

Laboratories Inc., Montgomery, Texas, USA)) and a label-

ing solution with 10x molar excess of biotin (NHS-PEG4-

Biotin, Thermo Scientific) over total protein amount, to a

final volume of 30 µL. The reaction was terminated by

addition of 250x Tris-HCl over biotin amount. Before

applying samples to the bead array, they were further

diluted one-eighth in assay buffer (PVXCas) to an end

volume of 50 µL then heat treated at 56°C for 30 mins

in a water bath. Following cooling to ambient temperature

for 15 mins, 45 µL of sample was combined with 5 µL of

the bead array solution and incubation was performed

overnight. After washing off unbound proteins with

3×100 µL PBST (0.05% Tween-20), the interacting pro-

teins were cross-linked during 10 mins using paraformal-

dehyde (0.4% in PBS). A second wash was followed by

addition of detection reagent (streptavidin-conjugated R-

phycoerythrin, Invitrogen, 1:750 diluted in PBST) and

incubation was performed for 20 mins. Finally, the inter-

acting proteins were analyzed using a FlexMap3D instru-

ment (Luminex Corp., Austin, Texas, USA) and the

relative abundance reported as median fluorescent intensi-

ties per sample and bead identity.

Verification of protein identities by

immunocapturemass spectrometry (IC-MS)
Assessment of antibody selectivity was performed by IC-MS

as previously described.57 Briefly, antibodies coupled to

magnetic beads were incubated with CSF from pooled

human donors (Lee Biosolutions, Maryland Heights,

Missouri, USA) diluted in assay buffer 1:10. After incuba-

tion, beads were washed and proteins captured were reduced,

alkylated, and digested using trypsin and lysC (Promega,

Madison, Wisconsin, USA). Peptides were re-suspended in

buffer A (3% acetonitrile (ACN), 0.1% formic acid (FA) and

separated on the Ultimate 3000 Rapid Separation Liquid
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Chromatography (RSLC) nanosystem (Dionex, Sunnyvale,

California, USA). The analytical column was a 50 cm × 75

μm ID Easy spray (PepMap RSLC C18, Thermo Fisher). A

linear gradient of Buffer B (90% ACN, 5% DMSO, 0.1%

FA)was run in 50mins at 250 nL/min (from 3% to 43%).MS

analysis was performed using a Q-Exactive HF (Thermo

Fisher) operated in a data-dependent mode with higher

energy collision dissociation (HCD) on the top five most

abundant ions. Full MS scan (300–1600 m/z) was performed

at a resolution of 60,000. Database searching of raw data was

performed onMaxQuant. Search parameters were set as in 57

allowing for match between runs and label-free quantifica-

tion using the MaxLFQ algorithm integrated into

MaxQuant.59 Proteins identified in each IC-MS were com-

pared with IC-MS performed for unrelated antibodies. Z-

scores were calculated to rank the proteins enriched by

each antibody and plotted against LFQ intensities.

Statistical analysis
The intensities obtained from the antibody suspension

bead array analysis were subjected to statistical analysis

and visualization using R Studio (version 1.2.1335).60

Comparisons of protein levels were made within the

same experimental stage only, to avoid any contribution

to the results caused by inter-plate variation. For a general

data overview, a principal component analysis (PCA, R

package stats) of all groups was performed to assess gen-

eral data quality and to remove potential outliers from

further data analysis.

Multivariate data analysis was performed by projection

(MVDA) using SIMCA-P+, version 13.0 (Umetrics AB,

Umeå, Sweden).32,61 Data were log-transformed when

needed (using the transform function in SIMCA-P+) and

scaling was done according to the unit variance method.

Outlier detection for the multivariate model was per-

formed using Hotelling’s T2 (T2 Critical 99%) for strong

outliers and by distance to model in X-space (DModX) for

serious moderate outliers. Then, orthogonal partial least

squares – discriminant analysis (OPLS-DA) was used to

identify class-discriminating proteins. The significance of

OPLS-DA models was assessed by analysis of variance of

cross-validated predictive residuals (CV-ANOVA), and the

relative contribution of the proteins for group discrimina-

tion was determined by the predictive loadings and by the

corresponding loadings scaled as a correlation coefficient,

denoted p(corr), between the model and original data. An

absolute p(corr)≥0.5 was considered significant.62

For univariate analysis, statistical significance of group

differences was evaluated by the Wilcoxon rank sum test

(R package stats) and p-values below 0.05 after multiple

testing correction (FDR) were regarded as significant. To

select proteins of interest, the assays of the first stage were

repeated twice and proteins of interest selected based on

concordant significant differences.

Results
In this study, we have performed CSF profiling using an

affinity proteomics approach in order to investigate 55

proteins with potential relevance for pain pathophysiology

and pain treatment. Our sample set consisted of in total 199

CSF samples from 65 patients and 134 controls (Table 1).

In the first experimental stage, we analyzed CSF from 14

patients with neuropathic pain on and off SCS treatment

(NP1) and 95 controls without pain pathology that under-

went minor urological surgery (C1). To validate the results,

an independent set of CSF samples from patients with

neuropathic pain (NP2) were analyzed together with

matched controls (C2) as well as additional control subjects

from the Romanian site (C3).

Multivariate protein signatures
To explore disease-associations in a multivariate manner,

we performed OPLS-DA analysis of the complete datasets

generated in both stage I and stage II. In the first stage, 10

outliers (eight controls and two patients) were removed

after initial PCA, rendering a final PCA model with four

latent variables, R2=0.60, and Q2=0.52. Then, an OPLS-

DA model was computed to discriminate between NP1

and C1 (referred to as model 1, four latent variables,

R2=0.85, Q2=0.67, and p<0.001) and the proteins with

significant contribution to the model (|p(corr)| ≥0.5) were
apolipoprotein C-I (APOC1), keratin 1 (KRT1), apolipo-

protein A1 (APOA1) and neurexin-1 (NRXN1) (Figure 1

and Table S2A). It was not possible to generate an OPLS-

DA model comparing neuropathic pain patients to healthy

controls from the same center (NP2 vs C2), indicating

subtle differences in protein levels between groups.

Nevertheless, models were calculated for NP2 compared

to C3 (referred to as model 2, five latent variables,

R2=0.98, Q2=0.86, and p-value<0.001) with 14 proteins

contributing significantly (Table S2B). When comparing

the results from model 1 and 2, the protein with significant

contribution in both models was APOA1. Although not

significant, APOC1, KRT1, and NRXN1 were just under
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the significance threshold with |p(corr)| of 0.38, 0.44, and

0.49, respectively.

For fibromyalgia, one patient sample was identified as an

outlier and removed. Two OPLS-DAmodels were then com-

puted, one comparing the fibromyalgia patients to C2

(referred to as model 3 with five latent variables, R2=0.95,

Q2=0.75, p-value <0.001 and C3 (referred to as model 4 with

five latent variables, R2=0.94, Q2=0.80, p-value<0.001).

Model 3 were based on seven significantly contributing

proteins (Table S2C), but in model 4 only autotaxin (or

ectonucleotide pyrophosphatase/phosphodiesterase family

member 2, ENPP2) contributed significantly.

Increased levels of APOC1 in neuropathic

pain patients
In the first analysis stage, we observed no significant

differences between samples collected from patients on

and off SCS treatment using univariate statistics (data

not shown). In the comparison between patients and

controls, the two proteins APOC1 and secretogranin-1

(CHGB also referred to as SCG1) were found at signifi-

cantly higher levels in the CSF of neuropathic pain

patients off SCS treatment (NP1) compared to controls

(C1). In addition, NRX1, APOA1, dickkopf-related pro-

tein 3 (DKK3), superoxide dismutase 1 (SOD1), comple-

ment factor H (CFH), prostaglandin-H2 D-isomerase

(PTGDS), complement component C7 (C7), and hemo-

pexin (HPX) were observed at lower levels in the patients

(p-value<0.05, Table 2).

In the second stage analysis, none of the 10 proteins

showed significant differences between the NP2 patients

and both control groups although APOC1 (detected by anti-

body HPA051518) showed near significant and concordant

trends with higher CSF levels in patients compared to both

C2 and C3 (Figure 2, uncorrected p-values 0.3 and 0.05,

respectively).When comparing the pain patients and controls

collected at the same site (NP2 and C2), the protein osteo-

glycin (OGN) was significantly altered before correction for

Figure 1 Score plot of multivariate model discriminating neuropathic pain patients and controls. Visualization of the first three latent variables from OPLS-DA model 1,

neuropathic pain patients (NP1, green dots) vs controls (C1, blue dots). The t[1] axis represents interclass variation, whereas the two other two axes (to[1] and to[2])

represent intra-class variation.
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multiple testing (uncorrected p-value 0.006). However, this

protein was found at similar levels in patients and controls in

the comparison of NP1 and C1 (p-value 0.8).

Increased levels of ENPP2 in fibromyalgia

patients
To explore proteins with potential association to fibro-

myalgia pathology, profiles of fibromyalgia patients (FM)

were compared to the two separate control groups ana-

lyzed in the second stage (C2 and C3). Summarizing the

results, APOC1 and ENPP2 (antibody HPA053652) were

the two proteins with concordant differences in patients

compared to the control groups, both observed with higher

levels in the patients (Figures 2 and 3). For APOC1, the

difference was statistically significant in the comparison

with C3 (p-value 0.005) while comparison to C2 was not

significant after p-value correction (uncorrected p-value

0.03). The levels of ENPP2, on the other hand, were

significantly higher in patients compared to both control

groups (0.0001 for FM vs C2 and 0.000003 for FM vs C3).

Levels of ENPP2 were also increased in fibromyalgia

patients compared to those with neuropathic pain (NP2,

p-value 0.0000003)

Antibody validation by IC-MS
We applied immunocapture mass spectrometry (IC-MS) in

order to verify the selectivity of the antibodies targeting

APOC1 (HPA051518) and ENPP2 (HPA053652). Both anti-

bodies captured and enriched their intended target when

Table 2 Proteins with significantly altered levels in neuropathic pain patients

Gene Protein Antibody p-value Adj. p-value Fold change

APOC1 Apolipoprotein-C1 HPA051518 0.00001 0.0001 1.1

CHGB Secretogranin 1 HPA012602 0.0003 0.01 0.1

NRXN1 Neurexin-1 HPA059963 0.00001 0.0001 -0.3

APOA1 Apolipoprotein-A1 HPA046715 0.00001 0.0001 -0.6

DKK3 Dickkopf related protein 3 HPA011164 0.0001 0.001 -0.3

SOD1 Superoxide dismutase 1 HPA001401 0.0001 0.001 -0.8

CFH complement factor H HPA053326 0.0007 0.01 -0.2

PTGDS Prostaglandin HPA004938 0.001 0.01 -0.2

C7 complement component C7 HPA067450 0.002 0.01 -0.3

HPX Hemopexin HPA068847 0.004 0.01 -0.3

Notes: Proteins with altered CSF levels between patients and controls in stage 1 comparing NP1 to C1.
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Figure 2 CSF levels of APOC1 in (A) neuropathic pain patients (NP1) compared to controls (C1) in the first stage and (B) for neuropathic pain patients (NP2) and

fibromyalgia (FM) compared to controls (C2 and C3) in the second analysis stage. Significant differences are indicated with p-values. MFI – median fluorescence intensity.
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incubated with CSF from healthy donors (Figure S1).

APOC1 was the protein mostly enriched by HPA051518

(z-score 2.59, LFQ intensity 1,765,450,000) but also

APOA1 and apolipoprotein E (APOE) were detected.

ENPP2 was identified as captured by the HPA053652 anti-

body (z-score 2.60, LFQ Intensity: 54,462,500) together with

the additional proteins Collagen alpha-3(VI) chain

(COL6A3), Myosin heavy chain 7 (MYH7), and prothrom-

bin (F2) (Figure S1). See Table S3 for all Z-scores and LFQ

intensities.

Discussion
In this study, we performed protein profiling of human

CSF samples. We measured levels of 55 proteins pre-

viously identified to have a potential role in pain treatment.

Our study material consisted of samples from 199 indivi-

duals of which 25 were patients with neuropathic pain, 40

patients with fibromyalgia and 134 controls.

Increased levels of APOC1 in CSF of

neuropathic pain patients
The analysis of the first neuropathic pain cohort and con-

trols demonstrated that APOC1 levels were significantly

increased in patients. We also found a non-significant

increase of CSF APOC1 in the verification sample set as

well as an increase of APOC1 in fibromyalgia patient

samples compared to both control groups.

The source of alterations in APOC1 levels may be

central or peripheral. Peripheral APOC1 is mainly synthe-

sized in the liver, circulates in the blood bound to lipopro-

tein particles and is involved in cholesterol and lipid

homeostasis.63 APOC1 deriving from the central nervous

system is produced by astrocytes, microglia, and endothe-

lial cells.64 Less is known about the role of apolipoproteins

in the central nervous system (CNS).65 The blood-brain

barrier (BBB) and the blood-spinal cord barrier (BSCB)

limit the exchange of lipoprotein particles between the

blood and the CNS, but HDL-like particles are able to

cross. Thus, APOC1 CSF level alterations such as reported

here may be caused by APOC1 having traversed CNS

barriers in HDL-like particles as part of a normal cross-

barrier communication or through “leakier” brain or spinal

cord barriers induced by nerve injury.66,67 A recent study

of rodents suggested that the lumbar spinal cord is the

source of increased serum levels of apolipoproteins after

nerve injury.68 This suggests that even local spinal cord

increases of apolipoproteins can be reflected not only in

CSF but also in the blood a long time after injury. This

further suggests that apolipoprotein levels in serum or

plasma could be suitable as markers of ongoing pain

relevant processes in the spinal cord.

We have recently found signs of inflammation in the

CSF of neuropathic pain patients 69 as well as in the serum

of patients with sciatic pain one year after disc hernia.70

APOC1 can modulate inflammatory processes71 and may

35
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Figure 3 CSF levels of ENPP2 in (A) neuropathic pain patients (NP1) compared to controls (C1) in the first stage and (B) for neuropathic pain patients (NP2) and

fibromyalgia (FM) compared to controls (C2 and C3) in the second analysis stage. Significant differences are indicated with p-values. MFI – median fluorescence intensity.
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play a role in chronic inflammation.72–75 APOC1 enhances

the toll-like receptor 4 (TLR4)-dependent inflammatory

response75,76 that induce production of pro-inflammatory

cytokines and reactive oxygen species,77,78 and is an impor-

tant part of glial activation in rodent models of neuropathic

pain.77,79–82 Neuropathic pain-like behaviors can be

reversed by intrathecal injection of TLR4 antagonists.83

TLR4 can be activated by endogenous ligands,84 cell pro-

ducts released upon injury85 and in neuropathic pain mod-

els, additional cofactors are required to enhance TLR4-

dependent signaling.86 Since the BSCB is more permeable

after nerve injury 67 it may allow entry of several such

ligands. Thus, we hypothesize that the high levels of

APOC1 we find in neuropathic pain patient CSF in this

study may contribute to increased TLR4 activity which can

explain parts of the prolonged glial activation and signs of

central neuroinflammation seen in neuropathic pain

conditions.53 Interestingly, TLR4 antagonists, as well as

small molecule modulators, are being investigated as drug

candidates for pain treatment.87 but paradoxically, APOC1

has also been found to be immunosuppressive.88 These

apparently contradicting results are not fully understood.

Another interpretation is that the increased levels of

APOC1 observed reflect an ongoing CNS degeneration

and regeneration in persistent neuropathic pain conditions.

Apolipoproteins are known to contribute to nerve cell

regeneration by local delivery of lipids and other unknown

mechanisms.68 Lipid metabolism is central to CNS home-

ostasis, especially due to myelin which is required for

optimal neuronal and network function. Several studies

have shown that APOC1 and APOE are closely linked

both genetically 89,90 and functionally.91 Levels of other

apolipoproteins have recently been shown to be altered in

neuropathic and discogenic pain patient CSF compared to

controls32,92 as well as after nerve injury in rat models.68,93

In the present investigation, APOE levels were not found

to be significantly altered in fibromyalgia or neuropathic

pain, although there are at least four previous studies

linking APOE gene variants and APOE levels to risk of

persistent pain.94–97 To our knowledge, there are no pre-

viously published results directly linking APOC1 to per-

sistent pain or its treatments.

Increased levels of ENPP2 in CSF of

patients with fibromyalgia
The ENPP2 protein was found to be significantly increased

in CSF from patients with fibromyalgia when compared to

both groups of controls as well as patients with neuro-

pathic pain. To our knowledge, a direct relation between

ENPP2 and fibromyalgia has not been reported previously,

but ENPP2 inhibitors have been patented for treatment of

fibromyalgia.98 ENPP2 has also been demonstrated to

increase in CSF from patients with chronic fatigue syn-

drome (CFS),99 a condition that shares characteristics with

fibromyalgia. There are also reports of important pain

modulating the activity of two of the main products of

ENPP2.100

ENPP2 is an enzyme with lysophospholipase D activity

that catalyzes the formation of the lipid mediator lysopho-

sphatidic acid (LPA) from lysophosphatidylcholine.101 A

recent publication states that LPA signaling is the mechanism

behind neuropathic pain and also refers to unpublished obser-

vations that LPA signaling appears to play a crucial role in

fibromyalgia.102 Under normal conditions, LPA promotes

healing after tissue trauma and negatively regulates ENPP2

transcription. In a high cytokine environment, LPA can induce

ENPP2 expression to increase overall LPA concentrations in a

positive feedback loop.103 LPA is an important pro-inflamma-

tory mediator in the spinal cord. Neuroinflammation can cause

neurodegeneration104 and it has been reported that blocking

LPA can improve recovery after spinal cord injury as LPA has

been shown to cause nerve demyelination.105,106 Distal

demyelinating polyneuropathy has been reported in a subset

of fibromyalgia patients107 and at least six studies have

reported peripheral small fiber abnormalities in fibromyalgia

patients.108–113 Heterozygous mutant mice (ENPP2+/−)
display a 50% decrease in ENPP2 activity, reduced LPA

production and, interestingly, better recovery from neuropathic

pain-like behaviors after injury.114–116 Therefore, ENPP2 has

been of interest as an upstream target of LPA and for the

treatment of neuropathic pain.117 It is noteworthy that we

observed no increase of ENPP2 in neuropathic pain patients;

however, the present investigation does not contain any infor-

mation of potential changes in ENPP2 activity levels or pro-

duction of its metabolites.

ENPP2 has a functional domain118 which regulates oli-

godendrocyte process outgrowth and branching.119–121

ENPP2 can also act on sphingosylphosphorylcholine to

produce sphingosine-1-phosphate (S1P)122 which has been

found to modulate spinal nociceptive processing123 and

excitability of dorsal root ganglion sensory neurons.124,125

Concentrations of CSF S1P have also been reported as

decreased in an animal model of acute and inflammatory

pain.126 Neuronal S1P1 receptors play an important role in

nociceptor regulation and S1P signaling is a suspected
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mediator of the onset of thermal hypersensitivity and hyper-

algesia associated with inflammation.127 Central S1P has

been shown to have anti-nociceptive effects, but there

appear to be many points of regulation and the interactions

are not fully understood as reviewed by others.128 An

untargeted metabolomics investigation of a rodent neuro-

pathic pain model suggests that altered levels of sphingoli-

pids are part of the chronic pain pathophysiology.129

A hypothesis that can be generated from our result is

that the high levels of ENPP2 indicate elevated levels of

LPA or S1P, mediators which were not measured in this

study. If so, these inflammatory agents could damage or

alter activity of components of the patient’s nervous tissue

and contribute to their pain and other symptoms. Because

CFS patients were also reported to have high ENPP2

levels,99 another hypothesis is that ENPP2 levels somehow

reflect the impaired sleep quality commonly described in

both CFS and fibromyalgia. It could also be so that

increased levels of ENPP2 are a secondary effect due to

alterations in other factors regulating the clearance of

proteins.130

Target identification by IC-MS
IC-MS analysis was performed to evaluate the selectivity

of antibodies targeting APOC1 and ENPP2 and in both

cases, the intended targets were detected. The additional

proteins present may represent competitors (off-target

interactors) or proteins in a complex with the target and

so co-immunoprecipitated with it. The alignment of the

three sequences APOC1, APOA, APOE performed by

CLUSTALO shows a low identity 1.52%. APOC1-

APOA1: 7.72%. APOC1-APOE: 4.42% between APOC1

and the two apolipoproteins. This would poorly support an

off-target binding while the hypothesis that APOC1 may

be captured in a complex with APOA and APOE is par-

tially supported by literature.131–133

Even though several other proteins appear to be

enriched by the ENPP2 antibody with similar z-score

values, only ENPP2 and PLG were exclusively identified

in the IC-MS experiment performed using HPA053652.

The low LFQ intensity associated with PLG and also to

the other proteins indicate that they may represent con-

taminant proteins. As shown in other studies,134 several

contaminant proteins are identified in immunoprecipitation

experiments and only the screening of a higher number of

negative control and replicates allows discrimination of

co-immunoprecipitating proteins from background. In

this experimental setting, results from only 16 different

IC-MS experiments have been compared (data not shown).

In conclusion, the data of IC-MS are supportive for the

validation of the two antibodies targeting APOC1 and

ENPP2 used in the bead array screening, and further

studies would be required to investigate if they are cap-

tured in a complex with other proteins.

Study limitations
CSF more closely mirrors the microenvironment of the cen-

tral nervous system than plasma. However, lumbar puncture

involves a medical risk for study subjects and access to both

patient and healthy control CSF material is limited.

We have analyzed samples from multiple clinical loca-

tions and countries (Sweden, Norway, and Romania). Pre-

analytical parameters such as collection tube type, sample

volume, time from collection to centrifugation, freezing

cycles, and storage temperature can affect the detectable

proteome135,136 as can geographical differences and popula-

tion lifestyle. In order to reduce the contribution of these

factors to variation, the same CSF sample collection and

handling protocol were used in Sweden and Romania and

the person performing the lumbar punctures for the control

samples in Cluj, Romania was trained with the clinicians in

Uppsala, Sweden. Despite this, we did observe differences

in protein profiles between samples from the different

clinics. Therefore, we included additional control groups,

compared the control groups to each other and filtered out

differences derived from sampling site. There was a differ-

ence in both centrifugation protocol and sample freezer

storage time between the Norwegian sample set and the

others of 15 years. Enroth et al, analyzed plasma samples

with a difference of 26 years in sample storage time and

reported that for 10% of the proteins, sample storage time

could explain 5–35% of the observed variance in protein

level.137 It is not clear if ENPP2 belongs to the group of

proteins that are affected by sample storage time, or how

storage time effects in CSF differ from that of plasma, as

plasma contains 100–200 times more protein than CSF.

There was also a gender bias among the included sub-

jects. The sample set from minor urology surgery patients

naturally contains more males than females. All the fibro-

myalgia CSF samples were from female patients, yet they

were compared to samples from mixed sex groups. Sex has

not proven to influence CSF proteins in our previous inves-

tigations with the exception of the expected difference in

prostate-specific antigen.138 Nevertheless, to address this

potential bias we performed group comparison analysis
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with only female participants and the data generated in

stage II. The results showed that the levels of ENPP2

were significantly higher also in patients compared to both

the female neuropathic pain patients and the female controls

(Figure S2). As is typical in persistent pain, most patients in

the study were on medications.2 Although interference can-

not be ruled out, there are indications from other studies that

drugs do not necessarily interfere with the protein profile in

CSF50 or on glial activation in patients.139

Conclusion
We found increased levels of APOC1 in CSF of both

patients with neuropathic pain and fibromyalgia while

increased levels of ENPP2 were found only in the CSF

of patients with fibromyalgia. Available literature supports

the involvement of lipids in both neuropathic pain and

fibromyalgia pathophysiology and supports further inves-

tigation of these proteins and their mediators to determine

their potential role in human pain pathophysiology.
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