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Purpose: Mesoporous silica (MS) have been considered as a biocompatible compound and

found to have various pharmaceutical applications. Recently, novel approaches in applica-

tions of MS as antidote agents were introduced. In this study, the capacity of ethylenedia-

minetetraacetic acid modified mesoporous silica (MS-EDTA) was evaluated in in vitro and in

vivo adsorption of copper (Cu).

Methods: The MS-EDTAwas characterized by fourier transform infrared (FT-IR) and X-ray

diffraction, while surface area was determined by N2 adsorption–desorption technique.

Morphological studies were observed by high resolution-transmission electron microscopy

and field emission-scanning electron microscopy and the sizes were determined by dynamic

light scattering. The capacity of these particles for copper adsorption was investigated in

vitro in both 1.2 and 7.2 pH. In in vivo animal study, the Cu adsorption efficiency of MS-

EDTA in Cu-overdosed mice was evaluated. In this case, an animal model of acute copper

poisoning was prepared.

Results: The MS-EDTA with surface area of 352.35 was synthesized. Scanning electron

microscope showed spherical particle formation with less than 500 nm in size. Transmission

electron microscope images showed porous and honeycomb structure. FT-IR spectroscopy

showed an appropriate formation of functional groups. Particle efficiency was investigated

for Cu adsorption. MS-EDTA in both media showed a high adsorption capability for Cu (II)

adsorption in pH=1.2 and pH=7.2. In addition, the study of Langmuir, Freundlich, and

Redlich–Peterson adsorption models showed that copper adsorption by MS-EDTA followed

the Freundlich model with multi-layer adsorption. In vivo evaluation showed that MS-EDTA

could alleviate the symptoms of acute copper poisoning by lowering Cu plasma levels.

Conclusion: Structural evaluation showed successful formation of MS-EDTA. In vitro

analysis demonstrated that supreme Cu adsorption occurs in both pH conditions (7.2 and

1.2), and was especially more favorable in simulated intestinal pH (7.2). The in vivo studies

in animal models with acute Cu poisoning showed that MS-EDTA could be a potent antidote

agent.
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Introduction
Physicochemical features of nanoscale materials and structures, including surface-to-

volume ratio, surface chemistry, optical, electrical, thermal, and magnetic properties,

make nanotechnology beneficial for medical and pharmaceutical purposes.1 Having a

technology with the ability of controlled absorption, carry, release, sensing, and/or

separation of certain substances (such as drugs or therapeutic agents) in vivo or ex
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vivo is worthwhile to gain diagnostic or therapeutic goals.2,3

To achieve this, requires biocompatible particles with iden-

tical sizes, adjustable pore sizes and volumes, large inter-

acting surface area, and acceptable capacity of

functionalization, desirable biodistribution, lifetime, and

toxicity.4,5 Liposomes,6 micelles,7 dendrimers,8 magnetic

nanoparticles,9 gold nanoparticles,10 quantum dots,11 and

carbon nanotubes12 are those which may present some,

but not all, of these features. However, porous materials

are capable of displaying these necessary features.13

Mesoporous solid particles’ surface area is absolutely

enormous; in some cases, reaching 1000 m2g−1.14

Mesoporous silica nanoparticles (MSNs) are size-tunable

nanoparticles that possess well-ordered pores with sizes of

2–50 nm and a large surface area that can be functiona-

lized or interact with drugs, ions or other molecules.15

Silica is used as a food additive and in cosmetics, and

also has been categorized as “Generally Recognized as

Safe” by FDA.16 Moreover, several studies have been

shown that MSNs have high biocompatibility and that

some specific doses (up to 100 µg.mL−1) do not have

any toxicity.15 For instance, Qianjun et al, evaluated the

effects of MSN size on in vivo biodistribution and urinary

excretion and concluded that MSNs with different particle

sizes (80–360 nm) accumulate mainly in the liver and

spleen with a minority of them in the lungs and a few in

the kidney and heart and also that MSNs cause no tissue

toxicity after 1 month.17

MSNs have tunable pores with high surface area and

good functionality, making them a desirable encasement for

a wide range of molecules.18 MSNs can be synthesized by

different chemical methods using either hard or soft and

organic or non-organic templates, but mostly is completed

by soft templates, such as block copolymers and surfactants

that are amphiphilic molecules.15 Structure, composition,

pore size and volume, and functional groups can be designed

and tailored during synthesis by controlling moieties stoi-

chiometry, surfactant types, and reaction conditions.19

Therefore, different types of MSNs have been synthesized

and studied, including MCM-41 (Mobil Composition of

Matter/No. 41), MCM-48 (Mobil Composition of Matter/

No. 48), MCM-50 (Mobil Composition of Matter/No. 50)

MCM-48, HMS (hexagonal mesoporous silica), SBA-15

(Santa Barbara Amorphous), and so on.20

MCM-41 is an ordered and uniform two-dimensional

mesoporous silica (MS) that is widely studied.

Cetyl-trimethylammonium bromide (CTAB) is the surfac-

tant commonly used to synthesize MCM-41.21 Generally,

nano-sized particles (e.g. MSNs) internalize into cells by

endocytosis, and the internalization pathway is highly

dependent on structural and chemical properties of

nanomaterials such as shape, size, and surface functiona-

lization. There is some evidence that suggests clathrin-

mediated endocytosis and caveolae-mediated endocytosis

as the main internalization route of MSN.15

Altogether, MSNs are one of the best potential candidates

for applications such as catalysis,22 sensors,23 drug deliv-

ery systems,24 imaging agents,25 separation,26 micro-

extraction,27 and as potent adsorbent.28

A therapeutic substance that counteracts the toxicity

mechanisms of a specified xenobiotic is an antidote.

Antidotes are playing an important role in the treatment of

poisoning.29 Recently, MSNs have also been used as an

antidote agent that can adsorb toxic agents in or out of

cells. In the study that was conducted by Farjadian et al,

MCM-41 was used as potential adsorbent of acetaminophen

and phenobarbital while showed a better performance com-

pared to activated charcoal that was the traditional method.30

Subsequently, in 2017, ethylenediaminetetraacetic acid

(EDTA)-modified MSN was used to remove iron toxicity in

an animal model.31 MS materials have shown high potential

in heavy metals adsorption. In a study MS, iron oxide nano-

composites were used to remove heavy metals, with success-

ful results in adsorbing Ni, Cd, Cr, Zn, and Pb ions.32 Also,

EDTA-modified MSNs were used to adsorb Pb in different

pH, and a favorable adsorption performance was gained as a

result.33

Wilson disease is an autosomal recessive disorder

caused by a mutation in the ATP7B gene34 with a relative

prevalence of one in every 30,000 births.35 Copper is accu-

mulated in various organs and tissues, such as the liver and

brain,36 and can induce a wide range of symptoms, such as

brain disorders.35 The usual drug for this disease is oral D-

penicillamine, a chelating agent for copper.

Although this drug can adsorb extra copper, many side

effects have been observed with its use, including immuno-

logic reactions, skin lesions (such as epidermolysis bullosa),

systemic lupus erythematosus, nephrotic syndrome,

Goodpasture syndrome, Ehlers-danlos syndrome, myasthe-

nia gravis, polymyositis, and thrombocytopenia. Also, in

some patients, clinical symptoms such as dystonia and

Parkinson have been seen with penicillamine consumption.37

Recent studies on antidotes have shown that functiona-

lized MSNs can be applied as an appropriate antidote for

overdose of iron. Farjadian et al, sought to adsorb iron by

using MSN-EDTA and has provided great results.31 It is
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predicted that MSNs could adsorb other metals, such as

copper, and therefore, one could contemplate their use as a

suitable antidote for copper in copper toxicity. This study

aims to synthesize and evaluate the kinetics and isotherms

of EDTA-functionalized mesoporous silica particles (MS-

EDTA) as an adsorbent of Cu(II) in gastrointestinal pH

simulated in vitro conditions and Cu-overdosed mice.

Methods and materials
Materials
CTAB, tetraethoxysilane (TEOS), 3-aminopropyl triethox-

ysilane (APTES), thionyl chloride (SOCl2), copper sulfate

pentahydrate (CuSO4.5H2O), dimethyl sulfoxide (DMSO),

and ethylenediaminetetraacetic acid were purchased from

Merck chemical company (Sigma-Aldrich). Hydrochloric

acid (HCl), ethanol, and acetone were bought from Kimia

Mavad (Tehran, Iran).

Preparation of amino-functionalized

MCM-41 (MS-NH2)
MS-NH2 was prepared according to a reported procedure.38

Briefly, 6.6 mmol of CTAB was dissolved in 100 mL of 1:1

deionized (DI) water/ethanol solution, then 13 mL of

ammonia was added. After obtaining a clear solution,

3.085 mL of TEOS and 0.37 mL of APTES was added

dropwise to the solution over 10 mins while stirring. The

solution was stirred for 2 hrs at 80°C to produce a white

mixture. The product was washed three times with DI water

and ethanol, then was dried overnight (at 60°C) in an oven.

Acidic ethanol (6 mL HCl/200 mL ethanol) was used to

extract the surfactant templates (48 hrs, 90°C).

Preparation of EDTA-functionalized

MCM-41 (MS-EDTA)
The preparation of MS-EDTAwas performed according to

the reported procedure.31 Briefly, 1.7 g EDTA was dis-

solved in 20 mL of DMSO, then 0.42 mL of thionyl

chloride (SOCl2) was added dropwise. After 10 mins, 1

g of MS-NH2 was added to the solution and stirred for 20

hrs at room temperature. Samples were centrifuged (3×10

mins, 5000 rpm) and washed three times with ethanol and

acetone, then dried by freeze-dryer.

Characterization
Morphology of particles was characterized by high resolu-

tion-transmission electron microscopy (HR-TEM) by

JEOL JEM 2010 instrument. Field emission-scanning

electron microscopy (FE-SEM) was performed with

Zeiss Merlin PV instrument to determine the size of par-

ticles and energy-dispersive X-ray spectroscopy (EDX) to

determine the type of elements in the sample. Dynamic

light scattering (DLS), by Microtrac, was used to deter-

mine hydrodynamic diameter. Fourier transform infrared

spectroscopy (FT-IR) with KBr by BRUKER (Germany)

was performed to obtain an infrared spectrum of absorp-

tion or emission of particles, X-ray diffraction (XRD) was

performed by 40 kV MPD 3000 instrument to obtain

detailed information about structure properties. Copper

adsorption by MS-EDTA was investigated by Varian

atomic absorption spectroscopy (AAS). Physical and che-

mical composition of particles and also the Brunauer

Emmett Teller (BET) technique have been performed by

Micromertics TriStar II plus (America) to measure parti-

cles surface area.

Adsorption tests
To determine the copper adsorption by MS-EDTA, sam-

ples containing CuSO4/MS-EDTA with concentration

ratios of CuSO4 (mmol)/MS-EDTA (NH2+EDTA) mmol:

0.2, 0.5, 1, 2.5, 5, 7.5, 10, 50, 150, 500, 1000, and 25,000

were prepared in pH=1.2 and pH=7.2 mediums. Samples

were mixed at 40°C for 2 hrs in a shaker. After adsorption,

the samples were investigated by AAS.

To determine the copper adsorption isotherm adsorp-

tion capacity, Equation 1 was utilized:

q ¼ C0�Ceð ÞV=m (1)

In this equation, m (g) is the sorbent’s mass (MS-EDTA).

C0 (mmol L−1) is the initial concentration of copper, Ce

(mmol L−1) is the concentration of copper at equilibrium,

V (L) is solution volume, and q is the amount of copper

adsorption per MS.

Adsorption isotherm models
Three adsorption models Langmuir, Freundlich, and

Redlich–Peterson were applied to fit with derived amounts

of adsorbed coppermass (mmol per gram) ofMS-EDTA.39,40

The Langmuir isothermmodel is based on Equation 2, which

is describing a continuous monolayer adsorption process

surrounding homogeneous solid adsorbent.

q ¼ qmKlCe= 1þKlCeð Þ (2)

In the equation mentioned above, q (mmol/g) is the

adsorbed copper mass (mmol) of MS-EDTA (g−1) at equi-

librium. Kl and qm are the empirical constant of adsorption
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(L mmol−1) and qm maximum uptake amount (mmol g−1),

respectively.

The Freundlich isotherm model based on Equation 3.

This model is applied to characterize heterogeneous sys-

tems in multiple adsorption layers.

q ¼ KfCe
1=n (3)

In this equation, Kf is Freundlich adsorption constant

[mmol g−1(L mmol−1)1/n]. 1/n represents adsorption inten-

sity; when its value is between 0 and 1, there is equal

adsorption chances and energies for all active sites.

Redlich–Peterson is an isotherm model; a combination

of both Langmuir and Freundlich model equations. This

isotherm is based on Equation 4.

q ¼ ACe= 1þ BCe
gð Þ (4)

In Equation 4, A and B are the capacity and the equation

constant, respectively. Also, “g” lies between 0 and 1. If

“g” was 1, this model would be the same as the Langmuir

adsorption model, and if “g” value was between 0 and 1, it

would be similar to the Freundlich model.

Kinetic models
To investigate the effect of time on copper adsorption by

MS (mmol g−1), a sample with Cu/MS-EDTA; 150 (Cu

mmol/MS-EDTA mmol) was prepared. Then, adsorption

kinetic models (i.e. pseudo-first-order, pseudo-second-

order, and intraparticle diffusion model) were studied to

predict the rate of adsorption. The pseudo-first-order equa-

tion is described as follows:

Ln q�qtð Þ=q ¼ �K1t (5)

In this equation, qt is the amount of Cu adsorbed (mmol g−1)

at any time, q is the mass of adsorbed copper (mmol g−1) in

equilibrium, t (min) and K1 (min−1) is time and constant of

adsorption rate at equilibrium, respectively.

Pseudo-second-order equation based on Equation 6.

t=qt ¼ 1=k2q
2þ1=qt (6)

In the equation above, k2 (mmol g−1 min−1) is the adsorp-

tion rate constant at equilibrium, while t, q, and qt are

defined in Equation 5.

Intraparticle diffusion model is stated in Equation 7.

qt ¼ ktt
1=2þC (7)

In Equation 7, C is the border layer thickness; t and qt are

defined before.

In vivo animal model
The effect of MS-EDTA nanoparticles was evaluated against

acute copper toxicity in mice.41 For this purpose, animals

were allotted in the following groups (n=6/group): (A)

Copper-treated animals which received 5000 mg/kg of cop-

per sulfate by gavage;41 (B) Copper + MS-EDTA nanoparti-

cles (1 mg/kg, gavage); (C) Copper + MS-EDTA

nanoparticles (10 mg/kg, gavage); and (E) Copper + EDTA

(10 mg/kg, gavage). The investigated antidotes were admi-

nistered 2 hrs after copper intoxication. Serum and liver

tissue Cu levels, in addition to serum biomarkers of organ

injury, were monitored 24 hrs after copper administration.

All the experiments using laboratory animals were per-

formed in conformity with the guidelines for care and use

of experimental animals approved by an ethics committee in

Shiraz University of Medical Sciences, Shiraz, Iran (#1396-

01-74-14350). A MindrayBS-200® chemistry analyzer

(Guangzhou, China) and standard kits (Pars Azmun®,

Tehran, Iran) were used to measure plasma biomarkers of

organ injury.42 Plasma Cu levels weremeasured using atomic

adsorption spectroscopy.

Results
The main aim of this study was the potential application of

MS-EDTA in the treatment of copper poisoning in paradigms

like Wilson disease (Figure 1). For this purpose, MS-EDTA

was synthesized. Firstly, MS-NH2 was prepared by the co-

condensation method in the presence of a surfactant template

(CTAB) in ammonia solution while TEOS and APTES were

applied as silane coupling agents. To introduce EDTA into

MS pore walls, the carboxyl functional group of EDTAwas

activated by thionyl chloride (thionyl chloride/EDTA; 1:1),

and MS-NH2 was admixed with activated EDTA solution to

obtain MS-EDTA.

Morphology and characterization of

MS-EDTA
The FT-IR spectrums show symmetric and asymmetric

stretching bonds of Si–O groups that appear at 790 and

1065 cm−1, respectively. Furthermore, the N-C=O band at

1480–1520 cm−1 and 1630 cm−1 is respectively related to

amide and carboxylic acid (C=O) functional groups

(Figure 2). BET calculations have shown MS-EDTA with a

surface area of 352.35 m2g−1 and pore size of 2.4 nm, while a

drastic change is observed when compared with theMS-NH2

surface area that was calculated to be 921.51 m2g−1. Herein,

the surface area decrease could be attributed to the successful
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introduction of EDTA in MS-NH2 pores. The MS-EDTA

crystallographic information which was received by low

angle XRD has shown the expected crystallinity of mesopor-

ous material by revealing a sharp peak at 0.8° for the (100)

xyz directions and a broader peak at 2.5° resulting from

additional Brag reflections (Figure 3).

The MS-EDTA morphological features, size, and

shape, are investigated using FE-SEM (Figure 4) and

HR-TEM (Figure 5) images. The FE-SEM image of

MS-EDTA shows that most of the particles have a sphe-

rical shape and are monodispersed. These observations

reveal that particles have sizes less than 500 nm with

rough surfaces. In addition, TEM images confirm the for-

mation of spherical porous structures with well-ordered

pores. Also, EDX analysis was carried out to determine

the amount of organic layer formation (i.e. aminopropyl

and EDTA) in the MS-EDTA walls (Figure 6).

DLS provides the average size of nano-spheres based on

the intensity of particles in the fluid environment. The aver-

age particle size in the sample is about 471 nm (Figure 7).

Cu adsorption
Based on the results, Cu adsorption percentage by the MS in

pH 1.2 and 7.2 is found to be higher than 80% and 95%,

Figure 1 Schematic illustration of MS-EDTA administration in the treatment of copper toxicity.

Abberviation: MS-EDTA, ethylenediaminetetraacetic acid modified mesoporous silica.
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respectively. Results are shown in Figure 8(A, B). In vitro

adsorption evaluations were carried out in pH 1.2 (the same

as pH of stomach environment) and pH 7.2 (the same as

intestinal pH). The adsorption isotherm graphs are plotted

based on the amount of q (mmol/g) against the concentration

of copper in equilibrium (mmol L−1). Adsorption is described

in a wide range of concentrations. Figure 9(A, B) indicates

adsorption data that is fitted with Langmuir and Freundlich

adsorption models, so the parameters extracted from the

three models and their comparison are given in Table 1.

Using the Redlich–Peterson model (n<1), it is deter-

mined that copper adsorption by MS follows the

Freundlich model with multi-layer adsorption. In this

way, with the formation of the primary EDTA complexes

with Cu (II) and the entry of the sulfide ions, it is created

to absorb other copper ions, and copper ions can be

embedded in multi-layers of the MS-EDTA.

Kinetic models
Three kinetic models of the pseudo-first-order, pseudo-

second-order, and intraparticle diffusion were used to

investigate copper adsorption by MS-EDTA that are

shown in Figures 8–12. The results show that Cu (II)

adsorption by the MS-EDTA in the first 2 hrs corresponds

to the intraparticle diffusion model. At this time, Cu(II)

Figure 2 FT-IR spectroscopy of MS-NH2 and MS-EDTA.

Abbreviations: FT-IR, fourier transform infrared; MS-EDTA, ethylenediaminetetraacetic acid modified mesoporous silica.

Figure 3 XRD pattern of MS-EDTA.

Abbreviations: XRD, X-ray diffraction; MS-EDTA, ethylenediaminetetraacetic acid

modified mesoporous silica.

Figure 4 FE-SEM image of MS-EDTA.

Abbreviations: FE-SEM, field emission-scanning electron microscopy; MS-EDTA,

ethylenediaminetetraacetic acid modified mesoporous silica.
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enter the MS-EDTA pores without interacting with func-

tional groups and then conforms to the pseudo-second-

order model, the Cu(II) could bond to the functional

groups in the porosity and the adsorption increases. The

parameters obtained from the pseudo-second-order kinetic

model are shown in Table 2.

In vivo animal model
Herein, an animal in vivo study attempts to evaluate the

Cu adsorption efficiency of MS-EDTA in Cu-overdosed

mice. In this case, an animal model of acute copper poi-

soning was prepared by IV injection of copper sulfate

(5000 mg/kg) to the mice. As a result, the Cu level of

serum and plasma markers of liver injury, including LDH,

ALT, and AST were elevated in the Cu-treated group. As it

was discovered, serum Cu and the biomarkers of injury in

Cu-treated mice are significantly reduced by administra-

tion of either EDTA or synthesized MS-EDTA. The effects

of MS-EDTAwere not dose-dependent in the current study

(Figure 13). The MS-EDTA treated group was consider-

ably more effective in comparison with EDTA. Although

the serum Cu level in the antidote-treated mice is a bit

higher than the control level, periodic antidote administra-

tion could bring normal serum Cu level back (Figure 14).

Altogether, MS-EDTA Cu adsorption capability is a pro-

mising feature that could handle Cu-overdose in cases

such as Wilson disease treatment.

Discussion
MS-EDTA was synthesized by the co-condensation method

and characterized. The nitrogen adsorption–desorption

method illustrated type IV isotherm for MS-EDTA the

Figure 5 HR-TEM images of MS-EDTA.

Abbreviations: HR-TEM, high resolution-transmission electron microscopy; MS-EDTA, ethylenediaminetetraacetic acid modified mesoporous silica.

Figure 6 EDX analysis of MS-EDTA.

Abbreviations: EDX, energy-dispersive X-ray spectroscopy; MS-EDTA, ethylene-

diaminetetraacetic acid modified mesoporous silica.

Figure 7 Particle size distribution histogram of MS-EDTA.

Abbreviation:MS-EDTA, ethylenediaminetetraacetic acid modified mesoporous silica.
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characteristic of the mesoporous structure. Also, using this

method, the surface-to-volume ratio was about 352.35 m2/g,

the pore size was 2.4 nm,17 and the pore volume capacity

was 0.11 cm3/g. It should be noted that the surface area of

the MS-NH2 was 921.51 m2/g, which resulted in a signifi-

cant decrease in EDTA loading. SEM shows spherical

particle formation with less than 500 nm in size, and the

DLS confirms this information (471 nm). Based on the

TEM, it became clear that the particles had a porous mor-

phology and a honeycomb structure. In a synthesized

MS-EDTA, a broad exponential peak in the reflection is

observed in the region of 0.7 to about 1 in 2-theta, which is

characterized by the MS structure and confirms the data

obtained from the TEM. To investigate the presence of the

desired functional groups at the internal surface of the

porosity, FT-IR was performed, and it confirmed that

the EDTA is bonded to the porosity surface and functional

groups are available. On the other hand, based on the data

obtained from thermogravimetric analysis, the amount of

EDTA loaded in the MS cavities was 0.4 mmol/g, which

Figure 8 Adsorption percentage of copper by MS-EDTA in pH 7.2 (A) and in pH 1.2 (B).
Abbreviation: MS-EDTA, ethylenediaminetetraacetic acid modified mesoporous silica.

Figure 9 Adsorption isotherm of copper on MS-EDTA in aqueous media with pH 7.2 (A) and in pH 1.2 (B).
Abbreviation: MS-EDTA, ethylenediaminetetraacetic acid modified mesoporous silica.

Table 1 The parameters extracted from the three adsorption models and their comparison with Cu(II) adsorption on MS-EDTA

Redlich–Peterson parameters Freundlich parameters Langmuir parameters

A B g R2 n Kf R2 qm Kl R2

MS-EDTA, pH=1.2 18,713 46 0.076 0.9923 293.75 519.44 0.9866 26,300.6 0.0156 0.9919

MS-EDTA, pH =7.2 40,842×106 41×106 0.034 0.9906 244.13 1198.53 0.9945 45,023.3 0.0245 0.9959

Abbreviation: MS-EDTA, ethylenediaminetetraacetic acid modified mesoporous silica.
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fully matches the results of EDX. Particle efficiency was

investigated for copper adsorption in pH=1.2 and pH=7.2.

MS-EDTA in both media showed a high adsorption

capability for Cu (II) adsorption, however, because of the

protonation of the amine group at pH=1.2, in a medium

with pH similar to the stomach area, it showed less adsorp-

tion and, conversely, in the environment with pH the same

as the intestinal environment with pH=7.2 shows a higher

adsorption. The high adsorption of copper with MS-EDTA

can be explained by the multi-layer adsorption of copper

salt. The EDTA structure at pH=7.2 has a negative charge

and four non-protonated carboxyl groups that can be

actively combined with copper. However, even with the

protonation of the amine group in the acidic environment,

MS-EDTA also shows good adsorption in pH=1.2. In

addition, the study of Langmuir, Freundlich, and

Redlich–Peterson adsorption models showed that copper

adsorption by MS-EDTA follows the Freundlich model

with multi-layer adsorption, in which copper is adsorbed

with EDTA and formed a complex between them.

Following the formation of this complex, copper ions

Figure 10 Pseudo-first-order model in pH 1.2 and 7.2.

Abbreviation:MS-EDTA, ethylenediaminetetraacetic acid modified mesoporous silica.

Figure 12 Intraparticle diffusion model; (A) pH 7.2 and (B) pH 1.2.

Abbreviation: MS-EDTA, ethylenediaminetetraacetic acid modified mesoporous silica.

Figure 11 Pseudo-second-order model in pH 1.2 (A) and pH 7.2 (B).
Abbreviation: MS-EDTA, ethylenediaminetetraacetic acid modified mesoporous silica.
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adsorb sulfate ions and allow the re-adsorption of another

layer of copper ions onto sulfate ions, which greatly

increases the adsorption capacity. The study of three kinetic

models, pseudo-first-order, pseudo-second-order, and intra-

particle diffusion, showed that copper adsorption by MS-

EDTA in the first 2 hrs complies with the intraparticle

diffusion model. During this time, copper ions enter the

MS pores without interacting with functional groups. After

that corresponds to the pseudo-second-order model, at

which time the copper ions with the functional groups in

the porosity bonded and the adsorption increased. In vivo

evaluation showed that MS-EDTA could be recognized as a

potent antidote agent in acute copper poisoning. Although

EDTA could reduce the Cu level of plasma but significant

results obtained by treatment with MS-EDTA. On the other

hand, as MS-EDTA particle might show an affinity for other

metal ions rather than Cu,31 disturbances in vital metal ions

(e.g. Fe, Mg, and Zn) might occur in their chronic admin-

istration (e.g. in experimental models of Wilsons disease).

Hence, these metal ions could be administered as supple-

mentary agents to prevent electrolytes and ion disturbances.

Conclusion
We conclude that EDTA-functionalized MS is spherical par-

ticles whichwere synthesized in co-condensationmethod and

with well-ordered honeycomb pores, have an eligible

surface-to-volume ratio, pore size, and the pore volume capa-

city for effective adsorption of copper ions. Particle efficiency

was investigated for copper adsorption in pH=1.2 (same as

stomach environment pH), and pH=7.2 (same as intestinal

environment pH) and a high adsorption capability was

observed in both media for copper adsorption, especially in

pH 7.2mediumwhichwasmuchmore satisfying attributed to

the negatively charged functional groups. The in vivo evalua-

tion showed the potential effect ofMS-EDTA in the reduction

of Cu plasma level in mice with Cu acute poisoning. Thus,

Table 2 Parameters derived from kinetic adsorption for MS-EDTA

q K2 R2

MS-EDTA, pH=1.2 0.47 0.003 0.99

MS-EDTA, pH=7.2 1.34 0.082 0.99

Abbreviation: MS-EDTA, ethylenediaminetetraacetic acid modified mesoporous

silica.

Figure 13 Plasma biomarkers of organ injury in copper-treated mice including (A) alanine aminotransferase (ALT), (B) aspartate aminotransferase (AST), and (C) lactate

dehydrogenase (LDH) along with Cu level were assessed 24 hrs after Cu administration. Data are presented as mean ± SD (n=6). ***Indicates significantly different as

compared with the Cu group (P<0.001) “a” indicates significantly different as compared with the control group (P<0.05).
Abbreviations: MS-EDTA, ethylenediaminetetraacetic acid modified mesoporous silica; ns, not significant.

Figure 14 Serum Cu(II) level in overdosed mice. ***Indicates significantly different

as compared with the Cu group (P<0.001). “a” indicates significantly different as

compared with MS-EDTA-treated groups (P<0.01).
Abbreviations: MS-EDTA, ethylenediaminetetraacetic acid modified mesoporous

silica; ns, not significant.
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MS-EDTA can be recognized as an antidote of copper poi-

soning cases. On the other hand, these particles might be

useful for decreasing complications associated with Cu accu-

mulation in the body (e.g. in Wilson’s disease). Therefore,

evaluating the biological activity of MS particles in experi-

mental models ofWilson’s diseasemight help to develop safe

therapeutic options against this complication in humans.
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