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Background: Acute liver failure is an inflammation-mediated hepatocyte injury.

Mesenchymal stem cell (MSC) transplantation is currently considered to be an effective

treatment strategy for acute liver failure. Exosomes are an important paracrine factor that

can be used as a direct therapeutic agent. However, the use of bone marrow mesenchymal stem

cell-derived exosomes (BMSC-Exos) in the treatment of acute liver failure has not been

reported.

Purpose: Here, we established a model of hepatocyte injury and apoptosis induced by D-

galactosamine and lipopolysaccharide (D-GalN/LPS) to study the protective effect of

BMSC-Exos on hepatocyte apoptosis, and further explored its protective mechanism.

Methods: BMSC-Exos was identified by transmission electron microscopy (TEM), nano-

particle tracking analysis (NTA) and Western blot. Laser confocal microscopy was used to

observe the uptake of Dil-Exos by hepatocytes. D-GalN/LPS-induced primary hepatocytes

were pretreated with BMSC-Exos in vitro, and then the cells were harvested. The apoptosis

of hepatocytes was observed by TUNEL staining, flow cytometry and Western blot. Electron

microscopy and mRFP-GFP-LC3 and Western blot was used to observe autophagy.

Results: BMSC-Exos increased the expression of autophagy marker proteins LC3 and

Beclin-1 and promoted the formation of autophagosomes. After BMSC-Exos treatment, the

expression levels of the proapoptotic proteins Bax and cleaved caspase-3 were significantly

decreased, while the expression level of the anti-apoptotic protein Bcl-2 was upregulated.

However, when the autophagy inhibitor 3MA was present, the effect of BMSC-Exos on

inhibiting apoptosis was significantly reversed.

Conclusions: Our results showed for the first time that BMSC-Exos had the potential to

reduce hepatocyte apoptosis after acute liver failure. In particular, we found that BMSC-Exos

attenuated hepatocyte apoptosis by promoting autophagy.

Keywords: bone marrow mesenchymal stem cells, exosomes, D-GalN/LPS, apoptosis,

autophagy, acute liver failure

Acute liver failure (ALF) is a clinical syndrome caused by inflammation-mediated

hepatocyte injury accompanied by hepatocyte apoptosis and necrosis.1 It is caused

by the hepatitis virus, hepatotoxic drugs and hepatic ischemia–reperfusion injury.2

Clinically, it is characterized by critical illness, rapid development, and high

mortality. So far, there are no specific and effective therapeutic drugs or treatments

other than liver transplantation. Hepatocyte apoptosis is an important pathological
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manifestation of early ALF. If hepatocyte apoptosis can be

inhibited, it is expected to delay or even block the pro-

gression of ALF.3

Cell transplantation may be a promising strategy to

improve hepatocyte apoptosis and liver function recovery

after ALF. In recent years, with the development of regen-

erative medicine and stem cell technology, stem cell-based

cell transplantation has brought a new dawn for patients

with ALF.4 Bone marrow mesenchymal stem cells

(BMSCs) are widely involved in immune regulation due

to their wide range of sources, and have fewer associated

ethical problems.5 Under certain conditions, they can dif-

ferentiate into adipocytes, chondrocytes, bone cells, cardi-

omyocytes and nerve cells.5 Hepatocytes and the like are

widely used in tissue engineering and regenerative medi-

cine. Studies have shown that MSC transplantation has

good efficacy and safety in the treatment of ALF.6,7 The

beneficial effects of bone marrow mesenchymal stem cell

transplantation are mainly mediated by hepatocyte differ-

entiation or by hepatocyte fusion, paracrine effects, and

immunomodulatory effects.8,9 However, direct transplan-

tation of stem cells into target tissues remains challenging.

For example, transplanted stem cells have been shown to

have a lower survival rate in ischemic tissue.10 Other risks,

such as cell dedifferentiation, immune rejection, and tumor

formation, further limit the clinical application of direct

stem cell transplantation for ALF.11

Recent studies have shown that transplanted stem cells

play a therapeutic role mainly through a paracrine mechan-

ism, and exosomes play an important role in this process.12

Exosomes are the smallest endocyte-derived membrane-

bound nanovesicles involved in complex intercellular

communication systems.13 They are released from differ-

ent types of cells under normal or pathological conditions

and affect the activity of the recipient cells by carrying an

activity signal. Exosomes contain not only cellular pro-

teins and lipids, but also host cell mRNA and miRNA.14

Since stem cell secretions seem to have greater benefits in

tissue regeneration and repair than stem cells themselves,

extracellular components, such as stem cell-derived exo-

somes, play an important role in their therapeutic effects

and have begun to attract attention.15 Bone marrow

mesenchymal stem cell-derived exosomes have been pro-

ven to be applicable to animal models of many diseases,

such as reducing myocardial ischemia, promoting skin

healing, promoting repair of damaged kidneys and nerves,

inhibiting liver differentiation, etc.16–19 Therefore, we

hypothesized that exosomes derived from bone marrow

mesenchymal stem cells will also reduce hepatocyte apop-

tosis after ALF.

Studies have shown that autophagy is critical for pro-

tection after ALF.20 Autophagy is a self-feeding phenom-

enon in cells that removes damaged organelles or long-

lived proteins mainly through the lysosomal pathway. It is

a major intracellular degradation system that can recover

and reuse damaged macromolecules and organelles. This

degradation contributes to the normal renewal of intracel-

lular components and organelles. It acts as a survival

mechanism for cells and plays an important role in cell

growth, survival, differentiation and homeostasis.21

Studies have shown that activation of autophagy plays an

important role in reducing tissue damage, and induction of

autophagy can effectively alleviate hepatocyte injury after

ALF.22 However, it is unclear whether BMSC-Exos can

promote autophagy activation.

In this study, we established a model of hepatocyte

injury and apoptosis induced by D-galactosamine and

lipopolysaccharide (D-GalN/LPS) to study the protective

effect of BMSC-Exos on hepatocyte apoptosis, and further

explored its protective mechanism against hepatocyte

apoptosis. Here, we showed that BMSC-Exos had the

potential to reduce hepatocyte apoptosis after ALF. In

particular, we found that BMSC-Exos attenuated hepato-

cyte apoptosis by promoting autophagy.

Materials and methods
Isolation and purification of bone

mesenchymal stem cells/exosomes
Exosomes were isolated from BMSC supernatant as pre-

viously described.23 The growth medium was collected

and centrifuged at 300× g for 10 mins, followed by cen-

trifugation at 2,000× g for 10 mins at 4 °C. After centri-

fugation, the cell supernatant was sterilized by filtration

through a 0.22 µm filter to remove cell debris. After that,

the upper layer of the supernatant was transferred to an

Amicon Ultra-15 centrifugal filter (Millipore, Burlington,

MA, USA) and centrifuge at 4,000× g at 4 °C until the

volume of the upper chamber was reduced to nearly

200 µL. The ultrafiltrate was washed twice with phos-

phate-buffered saline (PBS) and ultrafiltered again to

200 µL. For exosome purification, the liquid was loaded

onto a 30% sucrose/D2O pad in a sterile Ultra-Clear™

tube (Beckman Coulter, Brea, CA, USA) and centrifuged

at 4 °C, 100,000× g for 60 min in a Sorvall Avanti J-26XP

fixed angle rotor (Beckman Coulter). The supernatant
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partially containing BMSC-Exos was recovered using an

18g needle, diluted in PBS, and centrifuged at 4 °C,

4,000× g to centrifuge the filter unit until the final volume

reached 200 µL. The solution was stored at −80 °C or used

in another series of experiments. The BMSC-Exos protein

content was determined by the double octanoic acid

method (BCA; Thermo Fisher Scientific, Waltham, MA,

USA). A microplate reader (ELx800; Bio-Tek Instruments,

Inc., Winooski, VT, USA) was used to read the absorbance

at 562 nm.

Identification of exosomes derived from

bone mesenchymal stem cells
To analyze the characteristics of exosomes, a three-dimen-

sional map of the particle size, solid shape and relative

intensity of BMSC-Exos was tested using the NTA system.

The morphology of the obtained exosomes was observed

by transmission electron microscopy (TEM). Western blot-

ting was used to detect specific exosomal surface markers,

which were encapsulated in exosomes including CD9,

CD63 and CD81.

BMSC-Exos uptake
For fluorescent labeling of BMSC-Exos, 4 mg/mL Dil

solution (molecular probe) was added to PBS (1:200)

and incubated according to the manufacturer’s instruc-

tions. Excess dye from labeled exosomes was removed

by ultracentrifugation at 100,000× g for 1 hr at 4 °C and

washed three times by resuspending the pellet in PBS. The

final pellet was resuspended in PBS. Dil-Exos were co-

cultured with hepatic cells for 12h or 24 h, and then the

cells were washed with PBS and fixed in 4% paraformal-

dehyde. The uptake was then observed by laser confocal

microscopy.

Isolation and culture of rat hepatocytes
The liver of the experimental rats was removed under

aseptic conditions and transferred to a plate. After gently

tearing off the liver capsule, the liver was rinsed with

normal saline and cut into thin tissue blocks with small

scissors. The liver tissue blocks were then transferred to

0.25% trypsin (in PBS) and cold digested at 4 °C for 10–

12 h, then homogenized with a 200-mesh sieve, and a

single cell suspension was generated with a certain amount

of PBS. The cell suspension was then placed in a 25 mL

centrifuge tube, centrifuged at 1000 rpm for 5 min, then

the supernatant was discarded, and the centrifugation was

repeated another three times. Liver parenchymal cells were

collected and cultured in DMEM containing 10% fetal

bovine serum. The density of isolated hepatocytes was

adjusted to 1×105 mL, and the liver cell suspension was

plated into 6-well (5 mL per well) and 24-well (1 mL per

well) culture plates. After culture in a CO2 incubator at

37 °C for 12 h, the hepatocytes were all adherently grown

for experimental use. The study was approved by the

Ethics Committee of Medical college of Qingdao univer-

sity. All procedures were conducted in accordance with the

guidelines of the National Institutes of Health Laboratory

Animal Care and Use Guidelines.

Apoptosis assays by TUNEL/DAPI

staining and flow cytometry: annexin V/PI

double staining
After D-GaIN/LPS (44 μg/mL D-GalN and 100 ng/mL

LPS) treatment, cultured hepatocytes with or without

BMSC-Exos (100 ug/mL) for 24 h. TUNEL (Roche,

Basel, Switzerland) was added according to the manufac-

turer’s instructions and incubated at 37 °C for 30 min in

the dark. The cells were then incubated for 5 min with

DAPI (Beyotime Institute of Biotechnology, Jiangsu

China) and observed under an inverted fluorescence

microscope. Randomly-selected fields of view and repre-

sentative images were selected for apoptotic cell counts

and total cell counts. The rate of TUNEL-positive cells in

each zone was calculated.

Further verification of apoptosis was performed by

flow cytometry. After hepatic cell treatment, cells were

harvested by centrifugation at 1500 rpm for 5 min. The

hepatic cells were washed twice with PBS, then resus-

pended in FITC-labeled Annexin V (5 µL; BD

Biosciences, Franklin Lakes, NJ, USA) and PI (5 µL;

BD Biosciences) and reacted in the dark for 5 mins.

Apoptosis was detected by flow cytometry after washing

three times with PBS.

Western blot analysis
Total protein was extracted from cells, and the protein

concentration was measured using a BCA assay. The sam-

ples were subjected to sodium dodecyl sulfate gel electro-

phoresis, and the separated proteins were transferred onto

a polyvinylidene difluoride membrane and blocked with

5% bovine serum albumin for 1 h at room temperature.

The main antibodies used were cleaved caspase-3

(1:1,000, rabbit IgG; Cell Signal Technology, Danvers,
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MA, USA), Bcl-2 (1:1,000, rabbit IgG; Abcam,

Cambridge, MA, USA), Bax (1:1,000, rabbit IgG;

Abcam, USA), beclin-1 (1:1,000, rabbit IgG; Abcam),

LC3B (1:1,000, mouse IgG1; Abcam), GAPDH (as a

gel-loading control, 1:1,000 and rabbit IgG; Abcam).

Membranes were then incubated with horseradish perox-

idase-conjugated anti-rabbit IgG and anti-mouse IgG anti-

bodies (1:2,000, Thermo Fisher Scientific) for 120 min,

followed by visualization of the bands using an enhanced

chemiluminescence reagent (Thermo Fisher Scientific).

Protein expression levels were determined by densitometry

using Image J software.

Double-labeled adenovirus mRFP-GFP-

LC3 transfection and autophagy detection
The extracted hepatic cells were seeded and cultured in

confocal dishes for 4 days, and then mRFP-GFP-LC3

lentivirus (Han Heng Biology, China) was transfected

according to the manufacturer’s protocol. Then, the cells

were divided into three groups: control group, D-GaIN/

LPS group; pretreated BMSC-Exos; treated PBS-washed

cells, then fixed with 4% paraformaldehyde, and fluores-

cence was observed using a laser scanning confocal micro-

scope (LSM 510; Zeiss, Oberkochen, Germany). The

number of yellow spots represents autophagic bodies and

red spots represent autophagic lysosomes. The number of

autophagosomes and autolysosomes were quantified using

IN Cell Investigator software.

TEM assessment of autophagy
After the cells were treated, the adherent hepatocytes were

digested with trypsin and then centrifuged. The superna-

tant was discarded and the cell pellet was fixed with a

precooled 2% glutaraldehyde solution at 4 °C for 2 h. The

cells were stained with 2% uranyl acetate solution for 2 h

and then dehydrated in 50%, 70%, 90% and 100% acet-

one. The cells were embedded and ultrathin sections were

observed under an electron microscope (FEI Tecnai,

Hillsboro, OR, USA).

Statistical analysis
Data and images were processed and analyzed using IBM

SPSS Statistics v17.0. Data are expressed as mean ±

standard deviation of at least three independent experi-

ments. Data were analyzed using Student’s t-tests. All

tests were bilateral, with an asterisk (*) and a pound sign

(#) indicating a p-value <0.05.

Results
Identification of BMSC-Exos
Exosomes were isolated from the BMSC culture superna-

tant by a combination of ultrafiltration centrifugation and

ultracentrifugation. The purified BMSC nanoparticles were

identified by TEM, nanoparticle tracking analysis (NTA)

analysis and Western blotting. Typical exosomal structures

were observed by TEM (Figure 1A). NTA analysis showed

that these nanoparticles have a particle size distribution

between 20 and 150 nm, similar to previous reports

(Figure 1B). In addition, Western blotting results showed

that the specific exosomal surface markers CD9, CD63, and

CD81 in BMSC-Exos were positive, which further con-

firmed the existence of exosomes (Figure 1C). All of the

above analyses indicated that exosomes extracted from

BMSCs were successfully isolated and identified.

BMSC-Exos localization in cells
To further investigate whether BMSC-Exos can be taken

up by hepatocytes, Dil-Exos were incubated with hepato-

cytes in vitro and the uptake was observed by fluorescence

microscopy. After 12h or 24 h of incubation, it was

observed that Dil-Exos had been taken up by the liver

cells and transferred to the cytoplasm (Figure 2A, B).

Taken together, these data indicated that BMSC-Exos can

be taken up by hepatocytes.

BMSC-Exos inhibit D-GaIN/LPS-induced

hepatocyte apoptosis
Studies have shown that D-GaIN/LPS can cause large-scale

death of liver cells after intraperitoneal injection of mice.

Therefore, we used D-GaIN/LPS to induce hepatocyte apop-

tosis to mimic hepatocyte injury after ALF in vivo. We used

TUNEL to study hepatocyte apoptosis. As shown, after

administration of D-GaIN/LPS, hepatocytes exhibited a rela-

tive apoptotic ratio.We then evaluated the protective effect of

BMSC-Exos in the D-GaIN/LPS-induced hepatocyte apop-

tosis model. The results showed that after application of

BMSC-Exos (100 µg/mL), the number of TUNEL-positive

neurons decreased significantly, indicating that BMSC-Exos

had a protective effect on D-GaIN/LPS-induced hepatocyte

apoptosis (Figure 3A, B).

Next, we further evaluated apoptosis using Annexin

V-FITC/PI double staining flow cytometry to determine

the early and late apoptotic rate of cells. As shown in

Figure 3C, exposure to D-GaIN/LPS significantly

increased apoptosis compared with the control group,
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while administration of BMSC-Exos significantly atte-

nuated the apoptosis of D-GaIN/LPS in hepatocytes

(Figure 3C, D).

Western blotting results showed that after exposure to

D-GaIN/LPS for 24 h, the proapoptotic proteins Bax and

cleaved caspase-3 were decreased after co-treatment with
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BMSC-Exos, while when Bcl-2 and other anti-apoptotic

proteins were co-incubated with BMSC-Exos, the level of

apoptotic proteins was elevated (Figure 3E, F).

These data indicated that BMSC-Exos protected hepa-

tocytes from D-GaIN/LPS-induced apoptosis.

BMSC-Exos induce autophagy activation
Because autophagy plays an important role in protection

from liver injury, we examined the effect of BMSC-Exos on

autophagy activation. D-GaIN/LPS induces autophagy in

hepatic cells.24 As in the pretreatment method, hepatocytes

were treated with D-GaIN/LPS and continued to be cultured

with or without BMSC-Exos, and autophagy-related indica-

tors were detected. TEM showed that a certain number of

autophagosomes appeared in hepatocytes after D-GaIN/LPS

treatment. Compared with the D-GaIN/LPS group and the

control group, the number of autophagosomes was higher in

BMSC-Exo-treated cells (Figure 4A, B). To better illustrate

autophagy, we transfected hepatocytes with the mRFP-

GFP-LC3 virus and observed autophagy flux using a laser

confocal microscope. In this assay, autophagosomes were

labeled with red and green fluorescence (yellow spots);

autophagic lysosomes were labeled with red fluorescence

(red spots). The results showed that the BMSC-Exos group

had more yellow and red spots than the D-GaIN/LPS group

(Figure 4C, D). Subsequently, we used Western blotting to

further detect autophagy-related proteins. The results

showed that treatment with BMSC-Exos increased the

expression of the autophagy-related proteins LC3II and

Beclin-1 (Figure 4E, F). These data indicated that BMSC-

Exos activated hepatocyte autophagy.

BMSC-Exos reduce hepatocyte apoptosis

by activating autophagy
Considering the key role of autophagy in hepatocyte

apoptosis, we wondered whether BMSC-Exos rely on

autophagy to reduce apoptosis after liver injury.

Hepatocytes were treated with BMSC-Exos in the pre-

sence or absence of the autophagy inhibitor 3MA by

exposure of hepatocytes to D-GaIN/LPS-established

injury and apoptosis models. The results were consistent

with the above; after the application of BMSC-Exos, the

number of TUNEL-positive hepatocytes was significantly

reduced (Figure 5A, B). However, when the autophagy

inhibitor 3MA was present, the inhibition of apoptosis by

BMSC-Exos was significantly reversed (Figure 5A, B).

Annexin V-FITC/PI double staining flow cytometry was

consistent with TUNEL results (Figure 5C, D). Next, we

went on to use Western blotting to further verify that

3MA inhibited the increase of BMSC-Exo-mediated the

autophagy marker proteins LC3II and the anti-apoptotic

protein BCL-2, and reversed the decline of pro-apoptotic

protein cleaved caspase-3 (Figure 5E-H). Taken together,

these results indicated that activation of autophagy by

BMSC-Exos helped to reduce hepatocyte apoptosis.

Discussion
The pathological manifestation of ALF is that a large

number of hepatocytes are severely damaged and undergo

apoptosis or necrosis, hepatocyte proliferation is inhibited,

liver function is severely impaired, and multiple organ

failure can result.25 D-GalN/LPS is widely used to estab-

lish a mouse ALF model and to evaluate the protective

effect of drugs on ALF.26 This study demonstrated for the

first time that BMSC-Exos could attenuate D-GalN/LPS-

induced hepatocyte injury and apoptosis by inducing

autophagy activation.

With the rapid development of cell transplantation

therapy, bone marrow mesenchymal stem cells have the

advantages of strong self-renewal ability, strong differen-

tiation ability and low immunogenicity, and have therefore

attracted wide attention.27 Studies have shown that bone

marrow mesenchymal stem cells have unique liver func-

tion protection activity, which can promote liver function

recovery after ALF.28,29 However, it has also been sug-

gested that only 1% of transplanted bone marrow

mesenchymal stem cells can be successfully transferred

to the target tissue where they are needed. A large number

of transplanted bone marrow mesenchymal stem cells are

trapped in the lungs after intravenous injection.30

Therefore, although bone marrow mesenchymal stem cell

therapy has achieved some success in various animal dis-

ease models, due to the huge physiological differences

between humans and animals, many problems remain to

be solved before being approved for clinical applications.

Exosomes are small vesicles released by cells whose

surface antigens are characterized by cell origin. These

vesicles may play a key role in cellular communication

by transmitting RNA, proteins and bioactive lipids.31 A

large number of studies have confirmed that different types

of MSC-Exos have functions of angiogenesis, cell protec-

tion, inflammation regulation and anti-apoptosis.32,33

MSC-Exos have been used in many fields such as cardio-

vascular disease, kidney damage, immune diseases,

tumors, and nervous system diseases.17–19 However,
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there are few research reports concerning the treatment of

liver disease. In regenerative medicine, exosomes may be

more advantageous than stem cells because they avoid all

the limitations of direct stem cell transplantation.34 Stem

cell transplantation therapy may work through a paracrine

mechanism.35 Therefore, we hypothesized that direct
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administration of bone marrow mesenchymal stem cell

exosomes could overcome the limitations and challenges

of direct administration of stem cells. We conducted a

series of experiments in vitro to prove our hypothesis.

First, we successfully extracted bone marrow mesenchy-

mal stem cells and isolated high concentrations of exo-

somes from their supernatant. Exosomes with a diameter

of 20–150 nm were then identified using NTA and further

verified by TEM and by analysis of the specific exosomal

surface markers CD9, CD63, and CD81.

The pathophysiological mechanism of ALF is com-

plex, and hepatocyte apoptosis is an important pathologi-

cal manifestation of early ALF.36 After hepatocyte injury,

the expression of the proapoptotic proteins Bax and

cleaved caspase 3 was upregulated, while the expression

of the anti-apoptotic protein Bcl-2 was downregulated.

The study revealed that D-GaIN/LPS can cause large-

scale death of liver cells after intraperitoneal injection of

mice.37 We extracted rat liver cells as research materials

and further tested BMSC-Exos on D-GaIN/LPS-induced

hepatocyte apoptosis. In vitro TUNEL and flow cytometry

results showed that co-incubation with BMSC-Exos

reduced D-GaIN/LPS-induced hepatocyte apoptosis, as

evidenced by our Western blot results, which showed

down-regulation of proapoptotic-related markers in injured

cells and up-regulation of anti-apoptotic markers. These

results showed that BMSC-Exos inhibited D-GaIN/LPS-

induced hepatocyte apoptosis.

The role of autophagy as a degradation pathway is critical

in regenerative medicine. Many reports indicate that basal or

physiological autophagy contributes to the maintenance of cell

homeostasis and the quality control of proteins and subcellular

organelles.38 Pathological conditions or cellular stress can

induce autophagy as a cell’s adaptive and protective mechan-

ism to promote survival.39 After autophagy, the expression of

the autophagy-related proteins LC3II and beclin-1 was up-

regulated.40,41 Studies have shown that in a rat model of ALF,

an increase in autophagy can reduce damage to cells by treat-

ing the components of the lesion.22 It is worth noting that

autophagy induction as a self-protection mechanism has been

confirmed in an experimental model of cell damage induced

by ALF.22,42 Baixauli et al noted that exosomes have a novel

function that synergizes with autophagy-lysosomal pathways

to alleviate intracellular stress conditions and are critical for

maintaining intracellular protein and RNA homeostasis.43

However, whether BMSC-Exos can activate autophagy of

target cells to prevent tissue damage has not been reported.

Here, our in vitro electron microscopy and mRFP-GFP-LC3

lentiviral transfection results showed that co-incubation with

BMSC-Exos increased D-GaIN/LPS-induced autophagy, as

evidenced by our Western blot results. Results showed that

BMSC-Exos can induce autophagy in hepatocytes. To demon-

strate whether BMSC-Exo-mediated autophagy is critical for

inhibition of apoptosis, we pretreated hepatic cells with the

autophagy-specific inhibitor 3MA. The results indicated that

autophagy inhibition reduced the anti-apoptotic effect of

BMSC-Exos. In general, these data indicated that BMSC-

Exos inhibited apoptosis by inducing autophagy after hepato-

cyte injury.

In summary, this study demonstrated for the first time that

BMSC-Exos could effectively reduce D-GaIN/LPS-induced

hepatocyte apoptosis. In particular, we found that BMSC-

Exos could induce autophagy and protect hepatic cells from

damage caused by various stresses by mediating autophagy.

Therefore, we believe that BMSC-Exos may inhibit the

development of ALF by preventing the apoptosis of hepatic

cells by autophagy, and our findings lay a solid theoretical

foundation and realistic basis for the future clinical research

of BMSC-Exos as a new biological treatment for ALF.
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