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Background: Precise control and induction of the differentiation of stem cells to osteoblasts

by artificial biomaterials are a promising strategy for rapid bone regeneration and

reconstruction.

Purpose: In this study, gold nanoparticles (AuNPs)-loaded hydroxyapatite (HA-Au) nano-

composites were designed to guide the osteogenic differentiation of human bone marrow-

derived mesenchymal stem cells (hMSCs) through the synergistic effects of both AuNPs and

HA.

Materials and methods: The HA-Au nanoparticles were synthesized and characterized by

several analytical techniques. Cell viability and proliferation of hMSCs were characterized

by CCK-8 test. Cellular uptake of nanoparticles was observed by transmission electron

microscope. For the evaluation of osteogenic differentiation, alkaline phosphatase (ALP)

activity and staining, Alizarin red staining, and a quantitative real-time polymerase chain

reaction (RT-PCR) analysis were performed. In order to examine specific signaling pathways,

RT-PCR and Western blotting assay were performed.

Results: The results confirmed the successful synthesis of HA-Au nanocomposites. The HA-

Au nanoparticles showed good cytocompatibility and internalized into hMSCs at the studied

concentrations. The increased level of ALP production, deposition of calcium mineralization,

as well as the expression of typical osteogenic genes, indicated the enhancement of osteo-

genic differentiation of hMSCs. Moreover, the incorporation of Au could activate the Wnt/β-

catenin signaling pathway, which seemed to be the molecular mechanism underlying the

osteoinductive capability of HA-Au nanoparticles.

Conclusion: The HA-Au nanoparticles exerted a synergistic effect on accelerating osteo-

genic differentiation of hMSCs, suggesting they may be potential candidates for bone repair

and regeneration.

Keywords: gold nanoparticles, hydroxyapatite, nanocomposites, osteoblast differentiation,

bone regeneration

Introduction
Many critical bone defects arising from high-energy trauma, congenital malformations,

infection or tumor resection can seldom be repaired by self-healing, thus eventually

result in limb discrepancy, deformation, and dysfunction.1,2 Plenty of research has

focused onmethods to accelerate the reconstruction or repair of damaged bone tissues.3

Due to rapid advancement in nanoscience and nanotechnology in the past decades,
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nanoparticle-based biomaterials have been attracting exten-

sive attention in the field of tissue engineering, biological

technology, and biomedical sciences.4–6 Among these nano-

particles, hydroxyapatite (HA) is one of the most popular

biomaterials in many biomedical applications, especially in

bone tissue engineering.7–9 This is because its inorganic

component is similar to the native bone matrix, which

endows this material with outstanding biocompatibility,

osteoinductivity, osteoconductivity, bone-bonding ability,

and excellent biodegradability.10–12 However, HA is not

able to completely satisfy the demands of regenerative med-

icine for bone repair. The limited ability of HA to mobilize

endogenous stem cells in order to guide autologous bone

tissue regeneration limits the expansion of its application in

the field of bone tissue engineering.13 Therefore, it is neces-

sary to develop new efficient HA-based nanocomposites to

address these problems.

Gold nanoparticles (AuNPs) have been considered to

be prominent nanomaterials in the field of biomedicine,

due to their unique optical properties, superior biocompat-

ibility, facile synthesis method, and various strategies for

surface modification.14–17 Various nanocomposites based

on AuNPs have been synthesized for biological imaging,

targeted drug and gene delivery, photothermal and photo-

dynamic therapy, biosensors and tissue engineering.6,18–21

Moreover, increasing evidence suggests that AuNPs are

promising osteoinductive biomaterials for bone tissue

engineering and regeneration.22–25 It was found that

AuNPs induced osteogenic differentiation of human bone

marrow-derived mesenchymal stem cells (hMSCs), inhibi-

tion of adipogenic differentiation after endocytosis into the

cytoplasm and mitogen-activated protein kinase signaling

pathway played an important role in this process.22 In

addition, chitosan-conjugated AuNPs with different con-

centrations also had osteoinductive capability to guide

differentiation of human adipose-derived stem cells

(ADSCs) to osteoblasts.23 Similarly, osteogenic activity

and mineralization of osteoblasts could be significantly

enhanced by AuNPs.24,25 However, it is noteworthy that

the properties of AuNPs, particularly the size and shape,

have a great effect on the osteoinductive capability of

AuNPs.24,26,27 Ko et al , investigated the effect of various

sizes (15, 30, 50, 75, and 100 nm) of Au nanoparticles on

the osteogenic differentiation of ADSCs and finally

demonstrated that 30 and 50 nm AuNPs appeared to be

more efficient in promoting differentiation of ADSCs to

osteoblasts than the other sizes studied.26 Conversely, it

has been reported that the AuNPs with 20 nm diameter had

more positive effects on osteogenic differentiation toward

osteoblasts than the AuNPs with 40 nm diameter.24

Moreover, Li et al, reported that the shape as well as the

size of AuNPs exert significant effects on the osteogenic

differentiation in stem cells.27 Au nanospheres with 40 and

70 nm diameters and Au nanorods with 70 nm diameter

significantly enhanced the differentiation of hMSCs to

osteoblasts while Yes-associated proteins played an impor-

tant role in this process. However, another study reported

that although AuNPs with 45 nm diameter enhanced the

differentiation of stem cells into osteoblasts the most

compared with other smaller sizes, AuNPs with 5 nm

diameter did not show any osteoinductive capability, and

even significantly blocked osteogenic differentiation.28

These facts indicate that the osteoinductive properties of

AuNPs with various sizes and shapes are quite different

and further research is needed to improve the performance

of AuNPs for bone regeneration and tissue engineering.

Accordingly, in this study, we aimed to develop multi-

functional AuNPs-loaded HA (HA-Au) nanocomposites in

order to combine the merits of the twomaterials to achieve a

synergistic effect of accelerating the osteogenic differentia-

tion of hMSCs. In this study, we synthesized and character-

ized the novel HA-Au nanocomposites for the first time.

Then, the cytocompatibility and osteogenic efficacy of the

HA-Au nanoparticles in hMSCs were evaluated. The poten-

tial molecular mechanism of HA-Au nanocomposites-

mediated osteogenic differentiation was also investigated.

The results clearly revealed that HA-Au nanoparticles can

synergistically promote differentiation of hMSCs to osteo-

blasts, which suggests that HA-Au nanoparticles might be a

promising therapeutic candidate as a bone regenerative

nanomaterial for bone repair. The preparation process and

related mechanism are illustrated in Scheme 1.

Materials and methods
Preparation of HA-Au nanoparticles
In this study, Au-loaded HA nanoparticles were synthe-

sized in the same way as our previous study.29 Briefly, the

HA nanoparticles were obtained using a hydrothermal

method. Calcium nitrate tetrahydrate (Ca(NO3)2•4H2O)

and di-ammonium hydrogen phosphate ((NH4)2HPO4)

were mixed in aqueous solution. Then, 25% ammonium

hydroxide solution was used for pH adjustment. After that,

the mixture was heated, washed, freeze-dried, and cal-

cined. On the other hand, the AuNPs were loaded on HA

nanoparticles by a deposition–precipitation method.
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HAuCl4•3H2O were dissolved in deionized water at a pH

of 9 by adding 0.1 M NaOH. Then, the HA nanoparticles

were mixed with the aqueous solution of HAuCl4. After

stirring and heating, the product was washed, lyophilized,

and calcined. The HA-Au nanoparticles were divided into

two groups based on the different contents of AuNPs (low

and high content were labeled as HA-Au1 and HA-Au2,

respectively).

Characterization of HA-Au nanoparticles
Transmission electron microscope (TEM; Tecnai G20

electron microscope, FEI, USA) was performed to deter-

mine the microstructure and the morphologies of the HA

and HA-Au nanoparticles. X-ray powder diffractometry

(XRD, D8A25, Bruker, Germany) was used to determine

the crystallinity and purity of the nanoparticles. Fourier-

transformed infrared spectroscopy (FTIR, Nicolet IS10,

USA) and X-ray photoelectron spectroscopy (XPS,

ESCALAB 250Xi, Thermo Fisher Scientific, USA) were

used to measure the chemical compositions and chemical

states of the nanoparticles.

Culture of hMSCs
hMSCs were purchased from Cyagen Biosciences, USA.

The hMSCs were plated in 75 cm2 tissue culture flasks and

cultured in the stem cell growth medium (Cyagen

Biosciences, USA) at 37°C with 5% CO2. The medium

was replaced every 3 days during cell culturing. After

growing to sub-confluence, cells were collected using

Trypsin-EDTA (0.25%), centrifuged, and resuspended in

growth medium for reseeding in new culture flasks. Cells

were used for further study after two to five passages. For

osteogenic induction, cells were trypsinized and cultured

in the growth medium overnight. After cells adherence, the

medium was changed to an osteogenic induction medium

(Cyagen Biosciences, USA) containing phosphate buffer

saline (PBS), HA or HA-Au nanoparticles, respectively.

For the mechanism experiments, the hMSCs were pre-

treated with 10 μM ICG-001, one of the Wnt/β-catenin
signaling pathway inhibitors, and subsequently cultured

with HA-Au nanoparticles in osteoinductive medium.

Viability and proliferation of hMSCs
Cell Counting Kit-8 (CCK-8; KeyGEN bioTECH, Nanjing,

China) was used to determine the viability of hMSCs.

Briefly, the hMSCs were seeded in 96-well plates and

cultured in growth medium at 37°C with 5% CO2 overnight.

Then, HA-Au and HA nanoparticles were added into plates

at a series of concentrations (10, 50, 100, 200 μg/mL). After

incubation for 2 days, the cells were washed twice and then

HA-Au

Wnt

HA

Au

Endocytosis

Endosome

Frizzled

Dvl

GSK3β

HA-Au

Nucleus

Osteogenic
differentation

Osteogenesis

Runx2, ALP
Osteoprogenitor
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Mineralization
mature osteoblast
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Scheme 1 Schematical illustration showing the possible molecular mechanism for enhanced osteogenesis by HA-Au nanoparticles by activation of Wnt/β-catenin signaling

pathway as well as internalization into the hMSCs.

Abbreviations: HA-Au, gold nanoparticles-loaded hydroxyapatite; hMSCs, human bone marrow-derived mesenchymal stem cells.
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10 µL CCK8 reagent and 100 µL fresh medium were added

into each well. The hMSCs were cultured for another 4 hrs

in dark at 37°C with 5% CO2, and subsequently, their

absorbance at 450 nm was measured. As for the prolifera-

tion assay, the hMSCs were seeded in 96-well plates with

growth medium and incubated overnight under the same

conditions as the viability assay. Then, the growth medium

was replaced with osteogenic induction medium containing

HA and HA-Au nanoparticles at a concentration of 100 µg/

mL. After incubation for 3 and 7 days, the hMSCs prolif-

eration profile was determined using the CCK-8 (KeyGEN

bioTECH, Nanjing, China) assay as described above. The

results of cell viability and proliferation are shown as rela-

tive percentages compared to the control groups.

Nanoparticles internalization assay
To observe the intracellular localization of HA and HA-Au

in hMSCs, the hMSCs were cultured in six-well plate at

37°C with 5% CO2 for 24 hrs. After refreshing the culture

medium containing 100 mg/mL of HA or HA-Au nano-

particles and incubating for 3 days, hMSCs were obtained

and fixed using 2.5% glutaraldehyde overnight at 4°C.

Then, the cells were post-fixed using 1% osmium tetra-

oxide for 1 hr at 4°C and then dehydrated stepwise using a

series of ethanol concentrations (30%, 50%, 70%, 80%,

90%, 100%). Eventually, the cells were embedded in

epoxy resin and sectioned with an ultramicrotome.

Ultrathin sections were collected on copper grids to

observe the uptake and intracellular distribution of nano-

particles using TEM (Tecnai G20 electron microscope,

FEI, USA).

Alkaline phosphatase (ALP) activity assay
ALP Assay Kit (Beyotime, Shanghai, China) was used to

measure the ALP activity in hMSCs that were either

treated with or without nanoparticles. Based on the infor-

mation provided in the manufacturer’s specifications, the

hMSCs were seeded in 24-well plates in growth medium

and incubated at 37°C with 5% CO2. After adherence, the

hMSCs were cultured with HA or HA-Au nanoparticles at

a concentration of 100 µg/mL in osteoinductive medium

for 3, 7, and 14 days. Then, the cells were harvested after

washing twice with PBS. The cell suspension from each

sample was centrifuged at 1.5×104 rpm to collect the

supernatant. After that, the supernatant was added into

96-well plates and co-incubated with p-nitrophenyl phos-

phate solution for 20 mins. Finally, the reaction was halted

by adding stop solution and a microplate reader was used

to measure the absorbance corresponding with each sam-

ple at a wavelength of 405 nm.

ALP staining
ALP staining Kit (Beyotime, Shanghai, China) was used to

determine the intensity of ALP staining in hMSCs treated

with or without nanoparticles. The cells were cultured with

HA or HA-Au nanoparticles at a concentration of 100 μg/
mL in the osteoinductive medium for 3, 7, and 14 days as

described above. At the specified time-points, 4% paraf-

ormaldehyde was used to fix the hMSCs at room tempera-

ture for 20 mins. Then, the fixed cells were washed twice

and incubated with ALP staining reagent in accordance

with the manufacturer’s specifications. The results of ALP

activity and staining in hMSCs treated with either HA or

HA-Au nanoparticles were showed as relative percentages

compared to the control groups.

Calcium deposition assay
Alizarin red S (ARS) staining kit (Cyagen Biosciences

Inc., USA) was used to determine the quantity of calcium

deposition in hMSCs. The hMSCs were incubated with

HA or HA-Au nanoparticles at a concentration of 100 μg/
mL in the osteoinductive medium. At the specified time-

points (14 and 21 days), 4% paraformaldehyde was used to

fix the cells at room temperature. Then, the samples were

washed twice with distilled water and treated with ARS

staining solution for 20 mins, followed by washing with

distilled water and air-drying. The mineralized nodules in

each sample were observed using an optical microscope.

After that, the stained samples were air-dried and extracted

using 10% cetylpyridinium chloride at 25°C for 30 mins.

Finally, for quantitative analysis, a microplate reader was

used to measure the absorbance corresponding with each

sample at a wavelength of 405 nm.

Real-time polymerase chain reaction

(PCR) analysis
The expression of marker genes of osteogenic differentia-

tion and Wnt/β-catenin signaling pathway was evaluated

using real-time quantitative PCR. The hMSCs were cul-

tured with HA or HA-Au nanoparticles at a concentration

of 100 μg/mL treated with or without Wnt/β-catenin inhi-

bitor ICG-001 for 3 and 7 days. Then, the total RNA from

each group’s cells was collected using TRIzol reagent,

extracted using RNAprep pure Cell/Bacteria Kit

(TIANGEN, Beijing, China) and transcribed into cDNA

Liang et al Dovepress

submit your manuscript | www.dovepress.com

DovePress
International Journal of Nanomedicine 2019:146154

Powered by TCPDF (www.tcpdf.org)

http://www.dovepress.com
http://www.dovepress.com


using PrimeScript RT Reagent Kit (Takara Bio, Otsu,

Japan). Finally, real-time PCR was performed to amplify

the cDNA samples. The results were normalized to β-actin
and the 2-ΔΔCt method was used to analyze the mRNA

expression levels.

Western blotting analysis
Western blotting assays were performed to test the expres-

sion of proteins related to Wnt/β-catenin signaling pathways.
Briefly, the hMSCs were cultured with HA or HA-Au nano-

particles at a concentration of 100 μg/mL and with or without

Wnt/β-catenin inhibitors for 3 and 7 days. Proteins were

extracted using RIPA lysis buffer (Beyotime Institute of

Biotechnology) and the concentration was determined using

a BCA™ protein assay. Equal amounts of protein were

fractionated using gel electrophoresis and blotted onto nitro-

cellulose membranes. After blocking with 5% nonfat milk,

the membranes were incubated overnight with the primary

antibody at 4°C. Then, the membranes were washed three

times with TBST and incubated with the secondary antibody

for 1 hr. Finally, the protein expression was measured using

enhanced chemiluminescence reagents. Glyceraldehyde-3-

phosphate dehydrogenase protein was used as reference.

Statistical analysis
All data are expressed as mean ± standard deviation (SD).

Statistical analysis was performed using Student’s t-test or

one-way analysis of variance. Statistical differences are

presented with (*) or (+) for p<0.05 and (**) or (++) for

p<0.01.

Results and discussion
Synthesis and characterization of Au-loaded

HA nanoparticles
The Au-loaded HA nanoparticles were synthesized using a

deposition–precipitation method. By varying the concentra-

tion of HAuCl4•3H2O in the synthesis process, HA-Au

nanoparticles with different Au contents (labeled as HA,

HA-Au1, HA-Au2, respectively) were obtained. It was

clearly indicated in the TEM images (Figure 1A–C) that

the shape of HA nanoparticle was rod measuring about 80–

100 nm in length and nearly 20–30 nm in width in all

groups. According to the statistical analysis of 200 AuNPs

using TEM, the Au nanospheres, with average diameters of

4.7±0.7 nm (Figure 1C), were uniformly distributed in the

HA nanoparticles. The amount of Au nanoparticles in HA-

Au2 (Figure 1C) was visibly greater than that in HA-Au1

(Figure 1B). The XRD patterns of these nanoparticles are

shown in Figure 1D. The diffraction peaks and planes were

characteristic of HA (JCPDS: 09–0432).30 The 2 theta

angles of 25.9° correspond to the (002) crystal plane of

HA and the three diffraction peaks at 31°–33° correspond

to the (211), (112), and (300) crystal plane of HA. As shown

in Figure 1E, FTIR spectra tests of the nanoparticles were

performed to confirm the presence of HA in all samples.

The results revealed that the characteristic bands at 563 and

601 cm−1 corresponded to the P–O bending in HA.31,32

Figure 1F shows the XPS spectra of HA, HA-Au1, and

HA-Au2, respectively. Both HA-Au1 and HA-Au2 contain

Ca, O, N, C, and Au elements. The high-resolution Au4f

spectra of HA-Au1 and HA-Au2 are shown in Figure 1G.

These results show that the AuNPs were successfully

loaded onto the HA nanorods for both HA-Au1 and HA-

Au2 groups.

Cell viability, proliferation, and cellular

uptake assay
To investigate the biotoxicity of HA-Au nanoparticles, the

viability of hMSCs incubated with HA-Au nanoparticles at

varying concentration was analyzed. The viability of the

HA, HA-Au1, and HA-Au2 nanoparticles was assessed

using the CCK8 assay. As shown in Figure 2A, it was

obvious that all the nanoparticles did not have a significant

effect on the viability of hMSCs at concentrations of 10,

50, and 100 μg/mL after culturing for 2 days. However,

when the concentration of HA-Au nanoparticles increased

to 200 μg/mL, the cell viability reduced significantly.

These findings indicate that the HA-Au nanoparticles

showed cytotoxicity to hMSCs in a concentration-depen-

dent manner. This result was consistent with that of pre-

vious reports, which indicated that HA nanocomposites

could be safely used at low concentration.33,34 Based on

these results, HA-Au nanoparticles at a concentration of

100 μg/mL, the maximum safe concentration was used in

cell proliferation experiments.

In order to further confirm the biocompatibility of

HA-Au nanoparticles, we determined the effect of these

nanoparticles on the proliferation of hMSCs. After incu-

bation for 3 and 7 days in the osteoinductive medium,

the cell number increased in a time-dependent manner in

all the experimental groups, indicating that both the HA

and HA-Au nanoparticles used in this study had good

biocompatibility with hMSCs at the concentration of

100 μg/mL (Figure 2B). In addition, HA-Au2
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nanoparticles displayed a slight positive effect on cell

proliferation of hMSCs during prolonged culture, when

compared with the control groups. This might be

explained by the good biological activity of AuNPs

loaded on HA nanoparticles. Some other reports have

revealed that AuNPs with different sizes can enhance

cell viability and proliferation rate more than the control

group.26,28 Therefore, HA-Au2 nanoparticles at the con-

centration of 100 μg/mL were used for the rest of the

studies.
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Figure 1 TEM images of (A) HA, (B) HA-Au1, and (C) HA-Au2 (scale bar, 50 nm). (D) XRD, (E) FT-IR, (F) XPS analysis of HA, HA-Au1, and HA-Au2. (G) The high-

resolution spectra of Au4f for HA-Au1 and HA-Au.

Abbreviations: TEM, transmission electron microscope; HA, hydroxyapatite; HA-Au, gold nanoparticles-loaded hydroxyapatite; XRD, X-ray powder diffractometry; FT-IR,

fourier-transform infrared spectroscopy; XPS, X-ray photoelectron spectroscopy.
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To identify uptake of HA and HA-Au nanoparticles in

hMSCs, the cells were cultured in the osteoinductive med-

ium containing these nanoparticles for 3 days. As dis-

played in the TEM images (Figure 3A–D), the HA-Au

nanoparticles were partially taken up by single hMSCs

and internalized in the cell matrix. Most of the internalized

HA and HA-Au nanoparticles were detected inside endo-

somal vesicles of hMSCs and did not enter the nucleolus.

This result indicated that these nanoparticles entered the

hMSCs through the endocytic pathway. Moreover, the
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Figure 2 (A) Cell viability of hMSCs incubated with PBS (control), HA or HA-Au in growth medium at concentrations of 10, 50, 100, and 200 μg/mL for 2 days. (B) Cell
proliferation of hMSCs incubated with PBS (control), HA or HA-Au in osteogenic induction medium at the concentration of 100 μg/mL for 3 and 7 days (*p<0.05,
comparison between control group and other groups).

Abbreviations: hMSCs, human bone marrow-derived mesenchymal stem cells; HA, hydroxyapatite; HA-Au, gold nanoparticles-loaded hydroxyapatite.

Figure 3 TEM images of HA (A, C) and HA-Au (B, D)-internalized hMSCs show that the particles can be uptaken by cells (black dots in white boxed areas in A and B (scale

bar, 1 μm), with corresponding amplified images of C and D (scale bar, 500 nm).

Abbreviations: TEM, transmission electron microscope; hMSCs, human bone marrow-derived mesenchymal stem cells; HA, hydroxyapatite; HA-Au, gold nanoparticles-

loaded hydroxyapatite.
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cellular morphology and structures of cell organelles in

hMSCs were not significantly affected by the internalized

HA and HA-Au nanoparticles.

ALP production and calcium deposition
The ALP assay was conducted to evaluate if the HA-Au

nanoparticles improved osteogenic differentiation activity

in hMSCs. It has been reported that ALP is a specific

marker during the early stage of osteogenic differentiation

and generally reaches maximum expression level at 2

weeks.35 Therefore, both quantitative and qualitative

methods were used to measure ALP levels. After culturing

in osteogenic induction medium containing HA and HA-

Au nanoparticles for 3, 7, and 14 days, the hMSCs were

collected for ALP staining and ALP activity assay. As

shown in Figure 4A, the intensity of ALP staining in all

groups was the highest after culturing for 14 days. During

the early stage (3 days), the HA-Au nanoparticles-treated

group did not show a significant difference in ALP stain-

ing compared with the HA group. However, the intensity

of ALP staining in HA-Au nanoparticles-treated group

was significantly higher than that of the HA group on

day 7 and 14. These findings indicated that HA-Au nano-

particles exhibited more intense ALP staining than HA

nanoparticles and controls during the 14-day experiments.

The ALP activity assay was performed in the same

way as ALP activity. As expected, the ALP activity results

revealed the similar trends as the ALP staining assay, as

shown in Figure 4B. HA-Au nanoparticles-treated hMSCs

had significantly higher ALP expression level than that of

other groups. The HA-Au nanoparticles group expressed

the highest ALP level. These results indicate that HA-Au

nanoparticles could synergistically accelerate the osteo-

genic differentiation in hMSCs at an early stage.

Mineralized nodules were the final stage markers in the

process of osteogenic differentiation.36 Typically, when the

cells started to mineralize, calcium depositions were

formed and reached their maximum quantity after cultur-

ing for 2–3 weeks.37 After culturing with or without HA

and HA-Au nanoparticles in the osteoinductive medium

for 14 and 21 days, the cells from each group were pre-

pared for ARS staining in order to identify the mineralized

nodules formation. As shown in Figure 5A, calcium

deposition was expressed as red nodule-like staining. The

amount of calcium deposition showed a continual increase

during the 21-day period in all experimental groups.

However, there was more mineralized nodule formation

in hMSCs cultured with HA-Au nanoparticles than those

in the HA and control groups, indicating that Au and HA

nanoparticles had synergistic effects on calcium deposi-

tion. For quantitative analysis, we used the intensity of

ARS extracted from the stained plates to confirm the

calcium staining pattern (Figure 5B). The microplate

reader was used to measure the optical density (O.D.)

values of the corresponding sample. The HA-Au nanopar-

ticles-treated group had the highest O.D. value. These

results indicate that HA-Au nanoparticles strongly pro-

mote mineralization of hMSCs. In relation to this study,

Figure 4 ALP staining (A) and ALP activity assay (B) of hMSCs after incubation with PBS (control), HA or HA-Au in osteogenic induction medium at the concentration of

100 μg/mL for 3, 7, and 14 days (scale bar: 100 μm. *p<0.05, **p<0.01, comparison between control group and other groups. +p<0.05, ++p<0.01, comparison between HA

group and HA-Au group).

Abbreviations: ALP, alkaline phosphatase; hMSCs, human bone marrow-derived mesenchymal stem cells; PBS, phosphate buffer saline; HA, hydroxyapatite; HA-Au, gold

nanoparticles-loaded hydroxyapatite.
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a recent report indicated that calcium phosphate containing

gold nanoparticles (GNP-CPC) displayed significant posi-

tive effects in the promotion of osteogenic differentiation

by increasing the ALP activity and mineralized nodules of

hDPSCs.38

Osteogenic gene expression
Osteogenic differentiation is a complex biological process

involving the expression of several regulated genes and

specific marker genes at different stages. For a more ana-

lytical approach, the effects of HA-Au nanoparticles on

bone sialoprotein (BSP), and collagen type I (COL1),

ALP, runt-related transcription factor 2 (Runx2) osteopon-

tin (OPN) and osteocalcin (OCN) mRNA expression

levels in hMSCs were measured. Runx2, an osteogen-

esis-related transcriptional factor, was able to initiate

osteogenic differentiation and activate other osteogenesis-

related genes and phenotypic markers.39 COL1 was

formed during the proliferation of osteoblasts and played

an important role in bone matrix.40 ALP, another crucial

regulator of early stage osteogenic differentiation, initiated

the progress of mineralization and gradually decreased in

expression during the later stages of differentiation.41 BSP,

an indicator of osteogenesis, played an active role in

promoting bone formation.42 OCN and OPN were key

markers of calcium deposition in the extracellular matrix

and mineralization during the late stage of osteogenic

differentiation.43 After 3 and 7 days, mRNA expression

of these osteogenesis-related genes was significantly

enhanced in the HA-Au nanoparticles-treated groups

(Figure 6). Compared with HA-Au groups, three of the

osteogenic markers (COL1, ALP, OCN) in the HA groups

did not show significant differences in expression during

the early stages (3 days). However, over a prolonged

period (7 days), as Au nanoparticles began to function,

the expression levels of the genes examined in hMSCs

treated with HA-Au nanoparticles were significantly

higher than those in the pure HA group.

Based on integrated real-time PCR results, HA-Au nano-

composites proved to synergistically promote osteogenic

differentiation in hMSCs, as reflected by the high expression

levels of typical osteogenesis-related genes. Another recent

study widely investigated composite biomaterials based on

AuNPs and HA nanoparticles. miR-29b-loaded AuNPs were

developed as a delivery system for synergistically promoting

osteoblastic differentiation.44 HA-based composites (HA-

gelatin-chitosan-fibrin-bone ash) have been synthesized and

characterized for bone tissue engineering applications.9

Effects of HA-Au nanoparticles on the

Wnt/b-catenin signal pathway
Recent evidence showed that mechanical stimuli from

nanoparticles may regulate the direction of stem cells dif-

ferentiation via activating related signaling pathways.22,45 It

has been reported that Wnt/β-catenin signaling pathway,

which plays an important role in the process of osteogenic

differentiation of stem cells, can be activated by mechanical

stimulation.46–48 Therefore, the HA-Au nanoparticles may

serve as mechanical stimuli to induce the differentiation of

hMSCs to osteoblasts via activating the Wnt/β-catenin sig-

naling pathway. In this study, β-catenin was identified as a

crucial regulator in this signaling pathway using Western

blotting experiments and real-time PCR assays. As shown

in Figure 7A–C, using Western blot and real-time PCR

Figure 5 ARS staining (A) and calcium deposition assay (B) of hMSCs after incubation with PBS (control), HA or HA-Au in osteogenic induction medium at the

concentration of 100 μg/mL for 14 and 21 days. (scale bar: 100 μm. *p<0.05, **p<0.01, comparison between control group and other groups. +p<0.05, ++p<0.01, comparison

between HA group and HA-Au group).

Abbreviations: ARS, Alizarin Red S; hMSCs, human bone marrow-derived mesenchymal stem cells; PBS, phosphate buffer saline; HA, hydroxyapatite; HA-Au, gold

nanoparticles-loaded hydroxyapatite.
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evaluation we found that HA-Au nanoparticles significantly

enhanced the expression of β-catenin in hMSCs. The non-

phosphorylated β-catenin protein tended to transfer into the
nucleus and combine with target genes, thus regulating the

Wnt/β-catenin signaling pathway.49,50 Further studies

showed that HA-Au nanoparticles dramatically increased

expression levels of the downstream molecule axin-2

(Figure 7D). These results suggest that Wnt/b-catenin sig-

nal pathway is involved in the process of osteogenic differ-

entiation in hMSCs induced by HA-Au nanoparticles.

In addition, we investigated whether the osteogenic

effect of HA-Au nanoparticles was mediated via mod-

ification of Wnt/b-catenin signal pathway. The hMSCs

were pretreated with the Wnt/β-catenin signaling path-

way inhibitor ICG-001, and subsequently co-cultured

with HA-Au nanoparticles for further osteogenic differ-

entiation. As expected, ICG-001 reversed the HA-Au

nanoparticles-induced enhancement of β-catenin activity

(Figure 7E–H). In accordance with this result,

the enhanced osteogenic differentiation by HA-Au

2.0

A B C

A B C

1.5

1.0

0.5

0.0
3

Culture time (days) Culture time (days)

* *

*

**

Con 3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

2.0

1.5

1.0

0.5

0.0

5

4

3

2

1

0

3.0

2.5

2.0

1.5

1.0

0.5

0.0

HA
HA-Au

Con
HA
HA-Au

Con
HA
HA-Au

Con
HA
HA-Au

Con
HA
HA-Au

Con
HA
HA-Au

**+

**

**

**+

+

** **++

+

++

**

**

*

++

**

** **

R
el

at
iv

e 
m

R
N

A
/A

LP
R

el
at

iv
e 

m
R

N
A

/B
S

P

R
el

at
iv

e 
m

R
N

A
/R

un
x2

R
el

at
iv

e 
m

R
N

A
/C

O
L1

R
el

at
iv

e 
m

R
N

A
/O

P
N

R
el

at
iv

e 
m

R
N

A
/O

C
N

Culture time (days)

7 3 7

Culture time (days)
3 7

Culture time (days)
3 7

Culture time (days)

3 73 7

2.0

1.5

1.0

0.5

0.0

Figure 6 The expression of osteogenic differentiation specific genes in hMSCs after incubation with PBS (control), HA or HA-Au in osteogenic induction medium at the

concentration of 100 μg/mL for 3 and 7 days: ALP (A), Runx2 (B), COL1 (C), BSP (D), OCN (E) and, OPN (F). (*p<0.05, **p<0.01, comparison between control group and

other groups. +p<0.05, ++p<0.01, comparison between HA group and HA-Au group).

Abbreviations: hMSCs, human bone marrow-derived mesenchymal stem cells; PBS, phosphate buffer saline; HA, hydroxyapatite; HA-Au, gold nanoparticles-loaded

hydroxyapatite; ALP, alkaline phosphatase; Runx2, runt-related transcription factor 2; COL1, collagen typeⅠ; BSP, bone sialoprotein; OCN, osteocalcin; OPN, osteopontin.

Figure 7 Western blot and RT-PCR results showed that HA-Au increased the expression of β-catenin and β-catenin target gene axin-2 in hMSCs (A–D). Meanwhile, β-catenin and
axin-2 expression levels were significantly reduced when ICG-001 was added (E–H). (*p<0.05, **p<0.01, comparison between control group and other groups).

Abbreviations: RT-PCR, real-time polymerase chain reaction; hMSCs, human bone marrow-derived mesenchymal stem cells; HA, hydroxyapatite; HA-Au, gold nanopar-

ticles-loaded hydroxyapatite.
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nanoparticles was significantly inhibited when ICG-001

was administered (Figure 7). These results revealed that

ALP production and calcium deposition in hMSCs trea-

ted with HA-Au nanoparticles dramatically decreased

after the addition of ICG-001 (Figure 8A–D).

Moreover, ICG-001 also abolished the nanoparticles-

mediated promotion of the expression of Runx-2,

OCN, and OPN (Figure 8E–G). Collectively, these

observations strongly suggest that the enhanced osteo-

genic differentiation of hMSCs by HA-Au nanoparticles

might be regulated via the Wnt/b-catenin signaling path-

way. Furthermore, the positive effects of HA-Au nano-

particles on osteogenic differentiation in hMSCs were

inhibited following ICG-001 administration.

Conclusion
In the present study, a novel HA-Au nanoparticle compo-

sites were developed and its in vitro biocompatibility and

osteogenic induction effect in hMSCs was assessed for

the first time. Although the underlying mechanism has

not yet been confirmed, the results indicate that HA-Au

nanoparticles can be internalized into hMSCs to activate

the Wnt/β-catenin signaling pathway, leading to the

acceleration of osteogenic differentiation in hMSCs.

However, a more detailed mechanism and the in vivo

efficacy are still obscure and require further investiga-

tion. In conclusion, this study suggests that HA-Au nano-

composites can be potential candidates for scaffolding in

bone tissue regeneration.
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Figure 8 Wnt/β-catenin inhibitor reversed effects of HA-Au on osteogenic differentiation of hMSCs. hMSCs osteogenic differentiation was assessed by ALP staining (A, B)
and ARS staining (C, D) after culture for 7 and 21 days, respectively. The mRNA levels of Runx2 (E), OCN (F) and OPN (G) were determined by RT-PCR. (*p<0.05,
**p<0.01, comparison between the control group and other groups).

Abbreviations: hMSCs, human bone marrow-derived mesenchymal stem cells; HA, hydroxyapatite; HA-Au, gold nanoparticles-loaded hydroxyapatite; ALP, alkaline

phosphatase; ARS, Alizarin Red S; Runx2, runt-related transcription factor 2; OCN, osteocalcin; OPN, osteopontin; RT-PCR, real-time polymerase chain reaction.
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