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Background: Phototherapy, including photothermal therapy (PTT) and photodynamic ther-

apy (PDT), is a promising noninvasive strategy in the treatment of cancers due to its highly

localized specificity to tumors and minimal side effects to normal tissues. However, single

phototherapy often causes tumor recurrence which hinders its clinical applications.

Therefore, developing a NIR-guided dendritic nanoplatform for improving the phototherapy

effect and reducing the recurrence of tumors by synergistic chemotherapy and phototherapy

is essential.

Methods: A fluorescent targeting ligand, insisting of ICG derivative cypate and a tumor

penetration peptide iRGD (CRGDKGPDC), was covalently combined with PAMAM den-

drimer to prepare a single agent-based dendritic theranostic nanoplatform iRGD-cypate-

PAMAM-DTX (RCPD).

Results: Compared with free cypate, the resulted RCPD could generate enhanced singlet

oxygen species while maintaining its fluorescence intensity and heat generation ability when

subjected to NIR irradiation. Furthermore, our in vitro and in vivo therapeutic studies

demonstrated that compared with phototherapy or chemotherapy alone, the combinatorial

chemo-photo treatment of RCPD with the local exposure of NIR light can significantly

improve anti-tumor efficiency and reduce the risk of recurrence of tumors.

Conclusion: The multifunctional theranostic platform (RCPD) could be used as a promising

method for NIR fluorescence image-guided combinatorial treatment of tumor cancers.
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Introduction
Phototherapy on cancer treatment has attracted increasing interests on cancer

treatment for its simplicity, high efficiency, high selectivity to tumor tissue, and

minimal trauma to normal tissue. Phototherapy contains two major species, photo-

dynamic therapy (PDT) and photothermal therapy (PTT).1–6 Specifically, PDT is a

phototoxic therapy wherein the photosensitizer is excited with light of a specific

wavelength to generate singlet oxygen (1O2) and other reactive oxygen species

(ROS) that can produce light toxic effects.7 PTT takes advantage of photothermic

agents to absorb lights at certain wavelengths, and then transform it to heat at tumor

site, thereby killing cancer cells via hyperthermia or thermal ablation.8 However,

phototherapy alone cannot kill cancer cells entirely due to the uneven heat distribu-

tion and hypoxic condition within the tumor.9 It can only cure early tumors and

small lesions, but for advanced cancers, phototherapy alone could cause local
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recurrence and distant metastasis.10,11 To overcome these

drawbacks and enhance antitumor efficiency, the use of

comprehensive treatment composed of different methods

has become a new trend in cancer treatment. Recently,

synergistic chemo-phototherapy has demonstrated its abil-

ities to enhance therapeutic efficacies and reduce unde-

sired side effects in pre-clinical animal studies, and shown

unique advantages compared with conventional

chemotherapy.9,12 The mechanisms of combined treatment

of chemo-phototherapy are complicated. Apart from the

direct sum of damages caused by both modalities, the

resultant effects on the tumor vasculature and the induc-

tion of immune responses all contribute to the anticancer

effects of chemo-phototherapy. In particular, phototherapy

could permeabilize tumor vasculature, which may result in

enhanced drug delivery; moreover, chemotherapy can

enhance the efficacy of phototherapy by targeting surviv-

ing cancer cells or by inhibiting regrowth of damaged

tumor blood vessels.9 Meanwhile, ROS and local

hyperthermia generated by phototherapy would activate

cancer cells sensitive to the chemotherapy drugs.13,14

Recently, several multifunctional theranostic systems

have been developed for achieving combinatorial chemo-

phototherapeutic treatment of cancer.15–23 NIR light lies in

the “optical transparency window” of biological tissues

due to its low autofluorescence and reduced light scatter-

ing, which promotes deeper penetration and reduced

phototoxicity to live organisms.24–26 Hence, PDT and

PTT agents exhibited strong absorbance in the near infra-

red (NIR) region (700–1000 nm) are essential for achiev-

ing chemo-phototherapy. The main approach for

construction of these systems is based on the integration

of separate PDT agents and PTT agents into nanocarriers,

which results in complex theranostic systems with limited

translational potentials.27–29 Thus, there is a desire to

develop single agent-based nanoparticles for synergistic

chemo and phototherapy, which can simultaneously exhi-

bit strong PDT efficacy during its PTT process. ICG, a

FDA approved and clinically used NIR cyanine dye, may

be a good candidate for this criterion. Since ICG or ICG

derivatives are known to exhibit both PDT and PTT

effects, and could exhibit strong absorbance in NIR region,

tremendous studies have been reported using ICG or ICG

derivatives for combined anticancer chemo-phototherapy.-
30–44 However, most of the reports focused on the combi-

nation of only part function of phototherapy (PDT or PTT

only) with chemotherapy, which may reduce the resultant

therapeutic effects.30–36 For the studies of combined

phototherapy (PDT+PTT) with chemotherapy, the NIR

dyes were usually encapsulated in the nanocarriers,

which could reduce the PDT effect due to the self-aggre-

gation of NIR dyes.37–41 Miao et al prepared photo-decom-

posable nanoparticles by covalently binding ICG

derivative cypate to PEG.45 Although the nanoparticles

were not used for synergistic chemo-phototherapy, the

self-assembly PEGylated cypate exhibited enhanced PDT

effect compared with free cypate, which motivated us to

use our previously reported triplet modality dendritic

nanoplatform (iRGD-cypate-PAMAM, RCP) for enhanced

combination of chemo- and photo-therapy. RCP combined

a hydrophobic cyanine dye cypate with dendrimer

(PAMAM) and modified with a tumor penetration peptide

iRGD to improve hydrophilicity and reduce the self-aggre-

gation of cypate.46 We speculate that the dispersion of

cypate onto the outer space of dendrimers would reduce

the self-quenching of cypate, therefore increase its fluor-

escence intensity and PDT effect. Hence, in this paper, we

mainly focus on the ROS and heat generation of RCP to

investigate its PDT and PTT effects. Besides, to reduce the

tumor recurrence, a broad-spectrum chemotherapeutic

drug DTX (Docetaxel) was encapsulated into the inner

space of RCP that can combine chemotherapy with photo-

therapy and alleviate adverse effects of DTX by improving

its in vitro and in vivo stabilities. Based on the above-

mentioned design and mechanism, we hypothesized that

this multi-mechanism theranostic platform could reduce

the recurrence rate of cancer and enhance anti-tumor

efficiency.

Materials and methods
Materials
PAMAM dendrimer (ethylenediamine core, G5), 2ʹ,7ʹ-

dichlorodihy drofluorescein diacetate (DCFH-DA),

docetaxel (DTX), 1-ethyl-3-(3ʹ-dimethylaminopropyl) car-

bodiimide (EDC), N-hydroxysuccinimide (NHS), 1,3-

Diphenylisobenzofuran (DPBF) were all purchased from

Sigma-Aldrich (St. Louis, USA). Indocyanine Green (ICG)

derivative Cypate (MW 627.32) was prepared in our labora-

tory and iRGD was purchased from Shanghai GL Biochem.

Singlet Oxygen Sensor Green (SOSG) was purchased from

Invitrogen-Life Technologies (Carlsbad, CA, USA). Methyl

thiazolyltetrazolium (MTT), Lysotracker Green, Calcein

AM/PI assay kit, Annexin V-FITC/PI apoptosis staining kit

were purchased from Solarbio (Beijing, China). All other

analytical reagent grade chemical reagents used in the study
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were commercially acquired from Shanghai Chemical

Reagent Company (Shanghai, China). Human liver cancer

cell (HepG2) was purchased from American Type Culture

Collection (ATCC, Manassas, VA, USA). Cells were cul-

tured in Dulbecco’s Modified Eagle Medium (DMEM,

Sigma, USA) supplemented with 10% fetal bovine serum

(Solarbio, Beijing, China) and 1% penicillin–streptomycin

(Solarbio, Beijing, China). Cells were grown at 37°C under a

humidified atmosphere of 5% CO2 (v/v) in air. A DTX-

resistant human liver cancer cell (HepG2) was obtained by

cultivating human liver cancer cell (HepG2) cells in DMEM

supplemented with 10% of FBS and intermittent low and

increasing DTX concentrations (2−10 mg/L). The athymic

nude mice (nu/nu CD-1) (half male and half female) used in

this study were purchased from Daren Laboratory Animal

Co. Ltd. (Qingdao, China), which were 6–8 weeks old and

weighed about 18–22 g. All animal experiments were carried

out in compliance with the Animal Management Rules of the

Ministry of Health of the People’s Republic of China (docu-

ment no. 55, 2001) and were approved by the Animal Care

Ethics Committee of Qingdao University (Qingdao, China).

Preparation of the theranostic

nanoplatform
iRGD-cypate-PAMAM-DTX (RCPD) was synthesized

according to our previous report.46 In brief, iRGD-cypate

was firstly synthesized by amide reaction of cypate and

iRGD peptide. Then the –COOH of iRGD-cypate with

NHS/EDC system in DMF (molar ratio of iRGD-cypate:

NHS: EDC=1:1.5:1.5) was activated for 30 mins; and

reacted with 0.2 mmol dendrimer G5 in pH 6.0 PBS over-

night at room temperature. The product was purified by

dialysis (MWCO10000) for 1–2 d against pH 6.0 PBS to

remove the unreacted reagents, and then centrifuged to

remove unreacted iRGD-cypate.

iRGD-cypate-PAMAM-DTX (RCPD) was prepared

by adding methanol solution of DTX to an equal volume

of RCP in PBS (molar ratio of DTX: RCPD=10:1), and

stirred for 24 hrs at room temperature. Then the product

was purified by dialysis (MWCO10000) for 1–2 d

against pH 7.4 PBS to remove the unreacted reagents

and collected by centrifugation. The supernatant liquid

was collected to determinate the drug loading efficiency

by HPLC. The amount of encapsulated DTX was deter-

mined by subtracting the remnant DTX in the super-

natant liquid after drug loading from the initial amount

of DTX was added.

Characterization of the theranostic

nanoplatform
The absorption and fluorescence spectra of RCPD in PBS

buffer were measured using Beckman Coulter DU 640

spectrophotometers and Fluorolog-3 fluorometer, respec-

tively. All optical measurements were performed at room

temperature. The hydrodynamic size and zeta potential of

prepared complexes were measured by Mastersizer Nano-

ZS90 laser particle size analyzer (Malvern, UK). All mea-

surements were performed at 25°C after pre-equilibration

for 2 mins and each parameter was measured in triplicate.

The morphologies of RCPD were observed by TEM

(JEOL, JEM-1200EX).

In vitro PDT and PTTevaluation of RCPD
SOSG is used to detect 1O2 generation after laser irradia-

tion. SOSG is a specific fluorescence probe for detection

of 1O2, which could emit green fluorescence in the pre-

sence of singlet oxygen (excitation/emission max

∼504/525 nm). Firstly, 50 μL of the 25 μM stock solution

of SOSG in methanol and 150 μL of RCPD (0.02–0.16

mM cypate-equiv.) or cypate (0.16 mM) in PBS (pH=7.4)

were added to the parallel wells. Next, all wells were

irradiated with NIR light at different power density for

different time (808 nm, 0.3, 0.96, or 1.6 W/cm2, 1–7

mins), while PBS with or without NIR irradiation was as

control. All the samples were immediately analyzed with

Flex Station 3 (Molecular Devices) using an excitation of

504 nm and an emission of 525 nm.

Singlet oxygen quantum yield (ΦΔ) of cypate and RCPD

were calculated as Equation ΦΔ (T)=ΦΔ (MB) (ST/SMB) (FMB/

FT),
47 where ΦΔ(MB) is the singlet oxygen quantum yield for

the standard methylene blue (MB, ΦΔ(MB)=0.52), “S” is the

rate of light absorption of DPBF at 410 nm in the presence of

samples and the standard upon irradiation, “F” is the absorp-

tion correction factor of samples and the standard, respec-

tively. F=1-10−OD, where OD represents the absorption value

of samples and the standard at irradiation wavelength. To

avoid chain reactions induced by quenchers (DPBF) in the

presence of singlet oxygen, the concentration of quencher

(DPBF) was lowered than 3×10−5 M. The subscripts “T” and

“MB” represent the sample and the standard, respectively.

An 808-nm laser device (CL808-20-F, Photons Co Ltd)

was employed. To evaluate the laser-induced temperature

increase, ① 200 μL of RCPD aqueous solution (0.02–

0.16 mM cypate-equiv.) was added into parallel wells of

96-well opaque plate. Then each well was irradiated with
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laser (1.6 W/cm2) for 6 mins; ② 200 μL of RCPD aqueous

solution (0.16 mM cypate-equiv.) was added into parallel

wells of 96-well opaque plate, and then each well was

irradiated with laser in different power density (0.3, 0.96,

or 1.6 W/cm2) for 6 mins; ③ 200 μL of RCPD (0.16 mM

cypate-equiv.) or cypate (0.16 mM) was added into parallel

wells of 96-well opaque plate, and then each well was

irradiated with laser (1.6 W/cm2) for 10 mins.

Temperature was monitored with a thermocouple thermo-

meter (TES Electrical Electronic Corp, WRNK-104) at

designated time intervals.

In vitro drug release study
In vitro drug release profile was studied using a dialysis

method in PBS (pH 7.4 and 5.5). In brief, RCPD (equivalent

to 400 μg of DTX) or PAMAM@DTX (equivalent to 400 μg
of DTX) and DTX suspension (400 μg) were placed in

dialysis tubing (MWCO 10000) in release medium (25 mL

of PBS) at 37°C and stirred at 100 rpm. At different time

intervals, 1 mL solution was withdrawn from released med-

ium and replaced with the same volume of fresh medium.

The samples were diluted, filtered through a 0.22 μm nylon

filter, and analyzed by HPLC. The drug encapsulation effi-

ciency (EE=(mass of drug loaded in dendrimers/mass of drug

fed initially)×100%) and drug loading content (DLC=(mass

of drug loaded in dendrimers/mass of drug-loaded dendri-

mers) ×100%) were analyzed by HPLC (Agilent 1260,

USA). Each sample was analyzed in triplicate.

Cellular uptakes and intracellular locations
Cellular uptakes and intracellular locations of RCPD in

HepG2 cells were studied by confocal microscopy. Cells

were seeded onto confocal petri dish at a density of 1×105

cells/mL and incubated at 37°C for 12 hrs. 200 μL of RCPD

aqueous solution (32 μM cypate-equiv.) was added into cell

culture media. After incubation for 1 hr, 2 hrs, 4 hrs, 12 hrs,

cells were washed with cold PBS, fixed with 4% parafor-

maldehyde for 15 mins, and stained with Lysotracker

Green. Cellular fluorescence was observed using a confocal

laser-scanning microscope (Nikon A1R MP, Japan).

Evaluation of PTT/PDTefficacies of RCPD

in cancer cells
Photothermal efficacy of RCPD was evaluated in HepG2

cells. Briefly, cells were seeded into 6-well plates with a

density of 1.5×106 cells/well and cultured for 24 hrs. After

that, the culture media were replaced with fresh culture

media containing free cypate or RCPD at a cypate con-

centration of 32 μM. After further incubation for 2 hrs,

1×106 cells were collected, suspended in 100 μL PBS, and

then treated with laser irradiation at a power density of

0.3 W/cm2 or 1.6 W/cm2 for 5 mins. During laser irradia-

tion, the temperatures of these cells were monitored every

30 seconds using a thermocouple thermometer.

To evaluate the photodynamic efficacy of RCPD, we

detected ROS production in HepG2 cells after treatment

using 2′,7′-dichlorofluorescin diacetate (DCFH-DA) as a

fluorescence probe. In detail, HepG2 cells were seeded

onto confocal petri dish at a density of 1×105 cells per

well. After 24 hrs incubation, cells were treated with

cypate or RCPD at a cypate concentration of 32 μM for

2 hrs. After washing with cold PBS, cells were irradiated

with a NIR laser (808 nm, 0.3 W/cm2 or 1.6 W/cm2) for

5 mins and then incubated with fresh media containing

DCFH-DA (10 μM) for 30 mins. In parallel, cells without

NIR dyes were considered as a control. Finally, cells were

imaged by laser scanning confocal microscopy and quan-

titative analysis by flow cytometry.

In vitro combination therapeutic efficacy

and cell apoptosis analysis
Synergistic cytotoxicity of PTT/PDT and chemotherapy

mediated by RCPD was assessed in DTX-resistant

human liver cancer cells by MTT assay. Briefly, cells

were seeded into 96-well plates at a density of 1×104

cells/well and incubated with culture medium, free DTX,

RCP, and RCPD for 2 hrs. After washing with cold PBS,

cells were irradiated with an 808-nm laser at designed

power density for 5 mins and incubated for another 24

hrs. Then cells were processed with MTT and the absor-

bance of each well was detected by a microplate reader

(Biorad, USA) at 490 nm. Meanwhile, cytotoxicity of RCP

and RCPD in DTX-resistant human liver cancer cells and

HepG2 cells at 24 hrs and 48 hrs were also detected.

Synergistic PDT/PTT-chemotherapy effects of RCPD

on HepG2 cells were further verified using Calcein AM

and propidium iodide (PI) co-staining. Briefly, HepG2

cells were incubated with culture medium, free DTX,

cypate, RCP, and RCPD, and then irradiated at a power

density of 0.3 W/cm2 or 1.6 W/cm2 for 5 mins. After laser

irradiation, cells were incubated for another 24 hrs and

stained with a mixed solution of calcein AM and PI at

room temperature for 15 mins, followed by washing with

PBS for thrice. The stained cells were examined under

laser scanning confocal microscopy. Excitation
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wavelength was set at 490 nm for calcein AM and 535 nm

for PI.

Cell apoptosis was detected in HepG2 cells by the flow

cytometry to further study synergistic effect of PTT/PDT

and chemotherapy of RCPD. Briefly, cells were seeded in

6-well plates at a density of 3×105 cells/well and incubated

with culture medium, free DTX, cypate, RCP, and RCPD.

Some samples were irradiated at a power density of

0.3 W/cm2 or 1.6 W/cm2 for 5 mins. After further incuba-

tion for 24 hrs, all cells were processed with Annexin V-

FITC apoptosis detection kit (Solarbio, China) in accor-

dance with the manufacturer's protocol and finally ana-

lyzed by a flow cytometry.

In vivo PDT/PTT efficacy of RCPD
Athymic nude mice (half male and half female) were sub-

cutaneously inoculated in the dorsal left side with 1×107

HepG2 cells, and tumors were allowed to become estab-

lished over time. For evaluation of PTT efficacy, HepG2

tumor-bearing mice were intravenous injected separately

with normal saline (as the control group), RCP and RCPD

at the cypate and DTX dose of 6.7 and 5 mg/kg. After

24 hrs, tumors in these mice were exposed to an 808-nm

laser at a power density of 0.3 W/cm2 and 1.6 W/cm2 for 5

mins. During the laser irradiation, temperature changes

were recorded every 30 seconds by a thermocouple thermo-

meter. For evaluation of PDT efficacy, SOSG was used as a

fluorescence probe to detect intratumoral 1O2 production.

Briefly, 200 μL of normal saline, free DTX, RCP, and

RCPD were injected into the vessel of mice. Then tumors

were injected 50 μL SOSG (25 μM) and exposed to laser

irradiation as above described after 24 hrs, all mice were

sacrificed and tumors were collected for cryosection at 6 hrs

after irradiation. Finally, tumor sections were visualized by

a laser scanning confocal microscopy.

In vivo synergistic anticancer efficacy of

RCPD
HepG2 tumor-bearing mice were randomly divided into

seven groups with at least 5 mice each group and sepa-

rately received treatments of normal saline, NIR light, free

DTX, RCPD, RCP with laser irradiation (1.6 W/cm2),

RCPD with laser irradiation (0.3 W/cm2 or 1.6 W/cm2).

All treatments were administered every 5 days via intra-

venous injection. cypate and DTX doses were 6.7 and 5

mg/kg, respectively. The laser irradiation was carried out

on the tumors for 5 mins. The tumor volumes and body

weights of these mice were measured every other day for

20 days. For histopathological examination, the aforemen-

tioned tumors were fixed in 4% paraformaldehyde,

embedded in paraffin, and cut into 5-mm-thick sections.

Finally, these sections were stained with H&E and imaged

by a fluorescence microscope.

Statistical analysis
Data were analyzed using descriptive statistics, single-

factor analysis of variance (ANOVA), and presented as

mean values ± standard deviation (SD) from three to five

independent measurements. The comparison among

groups was performed by the independent sample

Student’s t-test. The differences were considered signifi-

cant at a level of P<0.05.

Results and discussion
Synthesis and characterization of RCPD
It has been reported that hydrophobic free cypate could

easily form H-aggregate, and subsequently cause strong

intramolecular Förster resonance energy transfer (FRET)

effect due to close proximity, which resulted in self-

quenching and reducing 1O2 generation.46 Covalent of

cypate onto the amino group of dendrimers may disperse

the cypate moieties and reduce their self-quenching.

Hence, in this study, we prepared a multifunctional nano-

platform iRGD-cypate-PAMAM-DTX (RCPD) to enhance

PDT and achieve synergistic phototherapy and chemother-

apy with increased cancer treatment capacity. The synth-

esis procedures of RCPD have been illustrated in

Figure 1A. Particularly, cypate was firstly reacted with

iRGD via amidation, and then the resulted iRGD-cypate

was reacted with PAMAM by amide reaction to form RCP

dendrimers. Finally, DTX was encapsulated into the inner

core of RCP dendrimers. Absorption and fluorescence

spectra of RCPD shown in Figure 1B showed that the

absorption contained a monomer peak at 790 nm and a

dimer peak at 730 nm, and the corresponding fluorescence

spectra showed the maximum emission wavelength at 820

nm, which demonstrated that the resulted nanoplatform

could be used for NIR imaging. Dynamic light scattering

(DLS) measurements of RCP and RCPD showed a narrow

size distribution with an average hydrodynamic diameter

of 120.37±5.63 nm and 150.67±12.58 nm, respectively

(Figures S1 and 1C), and the morphological characteristics

of RCPD are a uniform spherical shape (Figure S2).

Moreover, the zeta potential decreased to +5.02 mV
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(Figure S1) compared to non-modified PAMAM (+12.4

mV). The lower surface charge will reduce the interaction

of the delivery system with macrophages during systemic

circulation and decrease its toxicity related to cellular

membrane damage effect.

To enable synergistic phototherapy and chemother-

apy of RCPD, release profile of DTX was needed to be

investigated first. The drug encapsulation efficiency and

loading content of DTX were found to be approximately

27.8% and 5.91%, respectively. DTX released from

RCPD was monitored in phosphate buffer saline (PBS

with different pH). DTX suspension release was consid-

ered as control. As shown in Figure 1D, about 90.19%

of DTX was released from DTX suspension within 24

hrs. In contrast, DTX was released from RCPD in a

sustained manner under both pH5.5 and pH 7.4 condi-

tions. Compared with PAMAM@DTX, the release of

DTX from RCPD was much slower. For instance,

23.65% of DTX was released from PAMAM@DTX,

while only 21.2% DTX from RCPD within 12 hrs.

This may due to the presence of iRGD-cypate on the

dendrimer surface, which could make a long release

path for the drug or create a coat around the dendrimers

that decreases diffusion of drug from dendrimers. In

acetate buffer (pH 5.5), about 49.2% of drug was

released from RCPD within 24 hrs, while only 26.71%

of DTX was released in 24 hrs in PBS (pH 7.4). The

difference between the releasing rates in the two buffers

may attribute to the different degrees of protonation of

the internal tertiary amine group of PAMAM under

different pH conditions. Particularly, protonation of ter-

tiary amine group of PAMAM is increased under acidic

pH conditions, leading to the charge repulsion in the

molecular chains of PAMAM and subsequently swell

the PAMAM chains significantly. As a result, DTX can

be released from the dendrimer interior in a faster man-

ner. Additionally, the faster release in PBS (pH 5.5) is

beneficial to the release of DTX in tumor tissues since

the tumors hold the similar pH environment. Besides,

the slow release of DTX in PBS (pH 7.4) demonstrated

that the drugs could be well protected and premature

drug leakage in blood circulation can be avoided.

Cypate-iRGD

Covalent
binding

DTX
Integrin

PAMAM RCP RCPD

Tumor RCPD

NI
R 

la
se

r

Tumor disappear

0.30

0.25

0.20

0.15

0.10

0.05

0.00
500 600 700 800 900

1200

1000

800

600

400

200

0

20

15

10

5

0
10 100 1000

Size (nm)

N
um

be
r(

%
)

RCPD

100

80

60

40

20

0
0 10 20 30 40 50

Time (h)

RCPD(PH=7.4)
DTX

PAMAM@DTX
RCPD(PH=5.5)

C
um

m
ul

at
iv

e 
re

le
as

e 
(%

)

Wavelength (nm)

A
bs

or
ba

nc
e

Fl
uo

re
sc

en
ce

 in
te

ns
ity

 (a
. u

.)
Cypate

iRGD

PDT

PTT
Heat

DTX
Chemotherapy

O2

1O2

H
2
N

O

O

O

O O

O

O

OO

O

O

O

NH

NH

NH
NH2

NH
2

NH
HN

HN
HN

HN

HN

S S

N
N
H

N
H

HS

HOOHO

O OH O

N

OH

N

ανβ3

A

B C D

Figure 1 (A) Schematic representation of the synthesis of theranostic platform RCPD for combined chemo-photo treatment of cancer cells. (B) UV−Vis absorption and

fluorescence spectra of RCPD. (C) Size distribution of RCPD. (D) Drug release profiles of DTX from DTX suspension, RCPD (pH=5.5 or 7.4), PAMAM@DTX.

Ge et al Dovepress

submit your manuscript | www.dovepress.com

DovePress
International Journal of Nanomedicine 2019:144936

Powered by TCPDF (www.tcpdf.org)

http://www.dovepress.com
http://www.dovepress.com


In vitro photodynamic efficiency and

photothermal efficiency
The ability to generate 1O2 is an important indicator for

evaluating photodynamic effect. Here, we examined the

ability of RCPD to generate 1O2 in response to NIR laser

irradiation by measuring singlet oxygen quantum yield

(ΦΔ) and fluorescence intensity of SOSG. Cypate and

RCPD were irradiated with a portable laser of power

density at 1.6 W/cm2 for 5 mins. PBS with the same

irradiation was used as a control. As shown in

Figure 2A, fluorescence intensity ratio of RCPD/PBS

was higher (~2.85-fold) compared with cypate/PBS under

NIR irradiation. Singlet oxygen quantum yield (ΦΔ) of

cypate and RCPD was calculated as 0.17 and 0.44

(~3.67-fold to ICG, ~2.59-fold to cypate) according to

equation ΦΔ (T)=ΦΔ (MB) (ST/SMB) (FMB/FT).
47,48 These

results demonstrated RCPD could enhance 1O2 generation

of cypate, indicating that the cypate moieties in RCPD

were not close packed. In addition, 1O2 is rapidly produced

from RCPD in the beginning 1 min, and the generation

rate maintained stable within 5 mins (Figure S3), indicat-

ing that enough ROS could be generated for PDT at 1–5

mins. By increasing the power density of NIR light and

concentration of RCPD, 1O2 generation was enhanced

accordingly. As shown in Figure 2B and C, compared

with 0.3 W/cm2, the fluorescence intensity of SOSG is

3.21-fold higher when irradiated with NIR laser at 1.6

W/cm2, and singlet oxygen production rose by 3.76

times with the concentration of RCPD increased from

0.02 mM to 0.16 mM (cypate-equiv). The reason was

that the content of cypate and excited cypate was gradually

increased with increasing concentration of RCPD and

power density of NIR light. The abovementioned results

indicated that RCPD showed distinctive singlet oxygen

production which varied with power density and

concentration.

To evaluate in vitro photothermal efficiency, cypate

and RCPD were exposed to 808 nm laser at a power

density of 1.6 W/cm2; the temperature changes during

the exposure were monitored and recorded. As shown in

Figure 2D, the temperature profiles of both cypate and

RCPD had a quick rising phase and reached a plateau at

75°C within 3 mins of irradiation. Temperature of cypate

began to drop rapidly after 5 mins whereas the temperature

of RCPD dropped slowly and stabled at about 66°C, which

is due to the poor photostability of cypate and resulted in

PBS/PBS ***
**

Cypate/PBS
RCPD/PBS

Cypate
PBS

Dark NIR Light Concentration(mM) Power density(W/cm2)

0
0 0.02 0.04 0.08 0.16 0 0.3 0.96 1.6

1000

2000

3000

4000

5000

6000

0

20
0 100 200 300

Time (s)
400 0 100 200 300

Time (s)

0 50 100 150 200 250 300 350 400
Time (s)

400500 600

30

40

50

Te
m

pe
ra

tu
re

 (º
C

)

Te
m

pe
ra

tu
re

 (º
C

)

60

70

80

90

20

30

40

50

60

70

80

90

Te
m

pe
ra

tu
re

 (º
C

)

20

30

40

50

60

70

80

90

3

S
O

S
G

 fl
uo

re
sc

en
ce

 ra
tio

S
O

S
G

 fl
uo

re
sc

en
ce

(a
.u

.)

0

1000

2000

3000

4000

5000

S
O

S
G

 fl
uo

re
sc

en
ce

(a
.u

.)

6

9
A

D E F

B C

RCPD
0.16mM

PBS
0.3 W/cm2

0.96 W/cm2

1.6 W/cm2

0.08mM
0.04mM
0.02mM
PBS
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photobleaching when exposed to NIR light.50 While under

the same conditions, the PBS control showed a tempera-

ture increase of only 8.5°C. The results showed that RCPD

had the potential to first raise the temperature and then

maintain the elevated temperature at cancer site. Further

experiments were carried out by varying the concentration

of RCPD and laser densities (from 0.3 to 1.6 W/cm2). As

shown in Figure 2E, higher concentrations of RCPD

resulted in faster temperature elevations and higher tem-

perature values. When the power density of the laser beam

was lowered to 0.3 W/cm2, no obvious rise in temperature

was detected. The RCPD irradiated at 0.3 W/cm2 showed a

temperature increase of only 10.0°C, exhibited no PTT

effect (Figure 2F). Thus, by varying laser power density,

therapeutic application of RCPD could be tuned from PDT

to combinatorial PDT–PTT treatment. Overall, these

results suggested that RCPD had an excellent potential to

act as a synergistic phototherapy nanoplatform with double

tunable PDT and PTT properties. Hence, RCPD at a con-

centration of 0.16 mM (cypate-equiv) and irradiated with a

portable laser at 1.6 W/cm2 for 5 mins could completely

ablate the tumor.

Cell uptake and internalization of RCPD
The cellular uptake and internalization of RCPD in αvβ3-
positive HepG2 cells was studied by confocal microscopy.

As shown in Figure 3A, green image shows cell lysosome

stained with lysotracker green and red image shows cypate

fluorescence in RCPD. RCPD were internalized into cells

after 1 hr post-incubation, and fluorescence intensity

reached a maximum for 2 hrs incubation, and then gradu-

ally diminished over time (Figure 3B). Hence, we chose to

irradiate the cells with NIR laser after incubation for 2 hrs

with RCPD. These results indicated that RCPD could be

efficiently taken up by cancer cells and escaped from

lysosome to kill cancer cells.

Intracellular generation of ROS and heat
The level of intracellular ROS generation of RCPD in

HepG2 cells upon NIR irradiation was assessed using a

ROS-detecting fluorescent probe (DCFH-DA). As expected,

RCPD-treated cancer cells exposed to NIR light (808 nm,

1.6 W/cm2, 5 mins) exhibited stronger fluorescence inten-

sity than cypate-treated cancer cells because of the reduc-

tion of aggregation in cypate, indicative of a high level of

intracellular ROS generation (Figure 4A). No ROS was

generated in the control group and RCPD-treated cells in

absence of NIR irradiation. A flow cytometry analysis

further confirmed the significant increase of ROS genera-

tion in RCPD-treated cancer cells compared with free

cypate (Figure 4B). The generation of ROS was accompa-

nied by an increase of temperature in RCPD (increase to

44.7°C) or free cypate (increase to 44.4°C) treated cells.

However, the temperature in free cypate-treated cells cannot

be maintained for a long time (Figure 4C). This may be due

to the photobleaching of cypate, and the results were con-

sistent with the in vitro data. These in vitro cell studies

demonstrated that RCPD could kill cancer cells through the

combined effects of intracellular generation of ROS and

hyperthermia.

In vitro combination therapeutic efficacy

of RCPD
Synergistic cytotoxicity of RCPD-mediated combination

treatment of PTT/PDT and chemotherapy were assessed

in HepG2 cells and DTX-resistant human liver cancer cells
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by performing MTT assay. In our previous study, RCP had

no significant cytotoxicity at different concentrations (0.1,

1, 10, 100, and 1000 μM) used in cell experiments.46 As

shown in Figure S4, cell viability of RCPD at 31 μg/mL

(2.3 μM DTX-equiv.) was 54.05% and 45.07% after 24 hrs

and 48 hrs, which reduced to 35.54% and 23.52% at 500

μg/mL (37.2 μM DTX-equiv.) separately. As expected, the

growth inhibition effect was enhanced as the drug loading

concentrations increased. Furthermore, the cell viabilities

of RCPD in DTX-resistant HepG2 cells were higher than

the normal HepG2 cells at the same concentration for both

24 hrs and 48 hrs. Then we tested the therapeutic effect of

RCPD upon laser irradiation in DTX-resistant HepG2 cells

and the results were shown in Figure 5B. Specifically, NIR

laser irradiation at power densities of 1.6 W/cm2 had no

obvious influence on cell growth at 24 hrs.49 The laser

power density of 0.3 W/cm2 was specifically chosen based

on our solution studies (Figure 2F) to evaluate only the

photodynamic effect of RCPD. The cytotoxicity of RCPD

with PDT (16.84%) was nearly identical to that of free

DTX (18.51%). In addition, the cytotoxicity of RCP with

PDT and PTT (phototherapy only, 808 nm, exposed to 1.6

W/cm2 NIR laser, 11.51%) was higher than RCPD with

PDT, which was probably due to the fact that PTT was

more lethal than chemotherapy alone. Remarkably, RCPD

with PDT and PTT (808 nm, exposed to 1.6 W/cm2 light,

6.62%) exhibited significantly stronger cytotoxicity than

any other treatments. which indicated the sensitivity of

DTX-resistant HepG2 cells to PDT and hyperthermia.50

Therefore, the combined chemo-phototherapy could be an

efficient approach for treatment of multidrug-resistant can-

cer cells.

To visually evaluate the combination treatment effect,

DTX-resistant HepG2 cells with various treatments were

further tested by the LIVE/DEAD Kit, in which Calcein-

AM and PI were used to stain the live and dead cells with

green and red fluorescence. The images of cells after

treatments are shown in Figure 5A. Weak red fluorescence
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and strong green fluorescence was observed in the cells

treated with PBS and NIR light, and red fluorescent signals

were clearly visible in the cells treated with RCPD, free

DTX, RCPD (0.3 W/cm2), cypate (1.6 W/cm2), and RCP

(1.6 W/cm2), and fluorescence intensity in these groups are

gradually enhanced. Remarkably, cells treated with RCPD

(1.6 W/cm2) almost entirely died. The results suggested

that chemotherapy combined with phototherapy (PDT

+PTT) performed the strongest ability to kill tumor cells,

while RCPD, free DTX, cypate, RCPD with PDT and

phototherapy (PDT+PTT) alone could only kill cells par-

tially; PBS and NIR light had no significant cytotoxicity

on cells.

Apoptosis of HepG2 cells was detected by flow cyto-

metry to further quantitatively analyze the antitumor effects

in different treatment conditions and investigate anti-tumor

mechanisms. As shown in Figure 5C and D, the percentage

of viable cells of both control (87.6%) and NIR laser group

(1.6 W/cm2, 81.3%) were much higher than that of RCPD-

treated cells. The percentage of apoptotic cells and necro-

tic/dead cells followed the order: RCPD (21.5%) < DTX

(21.7%) < RCPD (0.3 W/cm2, 44.7%) < cypate (1.6 W/cm2,

48.6%) < RCP (1.6 W/cm2, 53.3%) and < RCPD

(1.6 W/cm2, 56.2%). This result was consistent with the

Calcein-AM/PI kit result.

The above results clearly testified that RCPD could

generate both 1O2 and heat inside cells upon exposure to

NIR, confirming the activation of PDT and PTT mechan-

ism. Moreover, the therapeutic mechanism can be

switched from PDT only (0.3 W/cm2) to combinatorial

phototherapy (1.6 W/cm2) by changing the laser power.

Synergistic therapeutic results indicated combined chemo-

photo therapy was more cytotoxic to cancer cells than

phototherapy or chemotherapy alone. Moreover, RCPD

with PDT and PTT (1.6 W/cm2) had a good effect on

solving multi-drug resistance owing to the auxiliary role

of phototherapy. Moreover, combination treatment of che-

motherapy and phototherapy (PDT+PTT) had higher apop-

tosis and necrotic rate than any other treatment, indicating

RCPD exposed to NIR laser could directly kill tumor cells

by activating the apoptotic pathway.

In vivo tumor-targeting and synergistic

chemo-photo therapeutic efficacy
Biodistribution and in vivo tumor-targeting ability were

investigated by NIR imaging system. Cypate-PAMAM

(CP) or RCP (0.5 mg/kg equivalent to cypate) was admi-

nistered via the tail vein to HepG2 tumor-bearing mice.

Figure S5 showed that only a weak fluorescence signal

was observed in the tumor region in mice treated with CP.

In contrast, RCP exhibited much higher fluorescence sig-

nal in the tumor region after 4 hrs post-injection and the

fluorescence intensity gradually increased with time pro-

longed and maintained up to 24 hrs, demonstrating RCP

could preferentially localize at tumor sites through EPR

effect and active targeting mediated by iRGD.

With tumor uptake of RCP having been demonstrated,

we further assessed PTT/PDT efficacy of RCPD in HepG2

tumor-bearing mice. SOSG was used as a fluorescence

probe for detecting intratumoral 1O2 production. Confocal

images of SOSG-stained tumor sections are shown in

Figure 6A; tumors treated with NIR laser, DTX, and

RCPD without NIR irradiation exhibited almost no green
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Figure 6 (A) The confocal images of SOSG-stained sections at 6 hrs after various treatments. Scale bars represent 100 μm. (B) Temperature change curves in tumors
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fluorescence signals. However, after laser irradiation, the

tumors showed strong green fluorescence signals at 6 hrs

post-injections of RCP and RCP. These results demon-

strated that RCP and RCPD with NIR laser can trigger the

generation of large amounts of 1O2. For the changes of

tumor temperature, RCP and RCPD with laser irradiation

(1.6 W/cm2) can quickly increase tumor temperature to 50°

C, which was sufficient for tumor ablation. However,

RCPD with laser irradiation (0.3 W/cm2) can only increase

tumor temperature to about 38.4°C, which had same effect

compared with PBS, as shown in Figure 6B. All these

results suggested that RCPD with laser irradiation

(1.6 W/cm2) had strong in vivo PDT/PTT efficacy.

Therapeutic efficacy following intravenous injection

and subsequent NIR irradiation was evaluated by measur-

ing tumor volume and bodyweight. We found that no

obvious inhibition of tumor growth was observed in saline

alone or saline + NIR (1.6 W/cm2) groups, and tumor

volumes in these two groups were similar (Figure 7A).

All other treatments significantly inhibited the tumor

growth. Compared to free DTX, RCPD had a higher

inhibitory effect due to their good tumor-retention
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capability. During the first 10 days, tumors with treatments

of PDT+PTT (RCP+1.6W/cm2), RCPD+PDT (RCPD

+0.3W/cm2), and RCPD+PDT+PTT (RCPD+1.6W/cm2)

were significantly inhibited after laser irradiation. But

unfortunately, the tumors treated with PDT+PTT (RCP

+1.6W/cm2), RCPD+PDT (RCPD+0.3W/cm2) rapidly

recurred afterward, indicating that there were some tumor

cells survived from PTT/PDT treatment. Low generation

of singlet oxygen due to severe hypoxia in tumor center

and limited diffusion distance of ROS produced by PDT in

cytoplasm greatly limit the therapeutic effect, hence photo-

therapy alone easily caused tumor recurrence.51–53

However, the recurrence rate of RCPD+PDT (RCPD

+0.3W/cm2) was much lower than that of PDT+PTT

(RCP+1.6W/cm2), which should be attributed to the che-

motherapy efficacy of RCPD. Moreover, RCPD+PDT

+PTT (RCPD+1.6W/cm2) mediated combination treat-

ment of PTT/PDT and chemotherapy showed the most

potent antitumor efficacy and almost no tumor recurred

in the treated mice until 20 d thereafter.

The body weights of mice were measured at time

intervals after initial treatments. The results demonstrated

that RCPD+PDT+PTT exerted photo-chemotherapeutic

synergistic efficacy. As shown in Figure 7B, all mice

displayed no obvious decreases in body weights, suggest-

ing the high biosafety of these treatments. The photos of

mice with these treatments are shown in Figure 7C. The

burn scars were clearly observed in mice at 20 d after

treatments. After laser irradiation, tumors treated with

PDT+PTT recurred obviously at the edge of laser spot at

11 d and gradually grew to large sizes after the last treat-

ment. To further evaluate treatment effect induced by these

treatments, tumor sections were stained with H&E for

histopathological observation. As shown in Figure 7D,

nuclear pyknosis and nuclear fragmentation were observed

in tumors treated with free DTX and RCPD, and further-

more, nuclear lysis and tumor necrosis were visible in

tumors with treatments of PDT+PTT, RCPD+PDT and

RCPD+PDT+PTT after laser irradiation. These results

demonstrated that RCPD+PDT+PTT could effectively

ablate tumor and prevent tumor recurrence.

Phototherapy can directly kill tumor cells as a local

treatment modality. However, tumor cells that survived

from PDT can result in regrowth of tumor cells and

tumor vessels. Chemotherapy can further damage tumor

cells and prevent their regrowth.9 Therefore, RCPD

exposed to NIR light could combine phototherapy and

chemotherapy together to be a more effective systemic

anti-cancer treatment option. Such combination treatments

have been tested clinically and demonstrated an enhanced

anti-tumor response compared to either phototherapy or

chemotherapy alone.54,55

Conclusion
In conclusion, iRGD-cypate-PAMAM-DTX (RCPD) is a

new multifunctional nanoplatform to facilitate cancer

treatment and reduce the risk of recurrence by combining

chemo-phototherapy of cancer cells. The presented results

indicated that RCPD had strong in vitro and in vivo PTT/

PDT efficacy and could transform PDT to combinatorial

PDT–PTT treatment by varying laser power density.

Furthermore, in vitro cell studies demonstrated that

RCPD displayed a potential to reverse overcome multi-

drug resistance in HepG2 cancer cells, with more nano-

particles transport into the tumor cells. In vivo antitumor

studies demonstrated that compared with phototherapy

alone, the combined chemo-phototherapy treatment could

significantly reduce the risk of recurrence and enhance

anti-tumor efficiency.37–41,55 All the experimental results

proved that the combination of phototherapy and che-

motherapy of RCPD is an effective approach to achieve

excellent therapeutic effect of tumors. We propose that our

nanoplatform can be a promising strategy for cancer ther-

apy with a great potential for clinical application.

Abbreviation list
iRG, DCRGDKGPDC; DTX, Docetaxel; PAMAM, polya-

mindoamine; CP, Cypate-PAMAM; RCP, iRGD-cypate-

PAMAM; RCPD, iRGD-Cypate-PAMAM-DTX; DMF N,

N-Dimcthylformamide; EDCI, 1-ethyl-3-(3ʹ-dimethylami-

nopropyl) carbodiimide; NHS, N-hydroxysuccinimide;

DPBF, 1, 3-Diphenylisobenzofuran; FBS, Fetal bovine

serum; DLS, Dynamic light scattering; TEM, Transmission

electron microscopy; DCFH-DA, 2′,7′-dichlorofluorescin

diacetate; MTT, Methyl thiazolyltetrazolium.
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Figure S1 (A) Size distribution of RCP (B) Zeta potential of RCPD, RCP and PAMAM.

Figure S2 TEM image of RCPD. Scale bar is 100nm.
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Figure S3 Singlet oxygen generation at different time by RCPD (0.16 mM cypate-

equiv) after NIR irradiation (808 nm laser diode, 1.6 W/cm2).
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Figure S4 Cytotoxicity on HepG2 cells incubated with different concentrations of RCP or RCPD at (A) 24 h, (B) 48 h. Cytotoxicity on Paclitaxel resistant HepG2 cells

incubated with different concentrations of RCP or RCPD at (C) 24h, (D) 48h. The doses of DTX in all above experiments was 2.3-37.2 µM.
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Figure S5 NIR images of HepG2 tumor xenograft bearing nude mice after intravenous injection CP or RCP and main organs excised from the tumor mice 24 h after

intravenous injection of CP or RCP.
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