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Purpose: The pathogenicity in Candida spp was attributed by several virulence factors such

as production of tissue damaging extracellular enzymes, germ tube formation, hyphal

morphogenesis and establishment of drug resistant biofilm. The objective of present study

was to investigate the effects of silver nanoparticles (AgNPs) on growth, cell morphology

and key virulence attributes of Candida species.

Methods:AgNPs were synthesized by the using seed extract of Syzygium cumini (Sc), and were

characterized by UV-Vis spectrophotometer, Fourier-transform infrared spectroscopy (FTIR),

scanning electronmicroscopy (SEM), energy-dispersive X-ray (EDX), and transmission electron

microscopy (TEM). ScAgNPs were used to evaluate their antifungal and antibacterial activity as

well as their potent inhibitory effects on germ tube and biofilm formation and extracellular

enzymes viz. phospholipases, proteinases, lipases and hemolysin secreted by Candida spp.

Results: The MICs values of ScAgNPs were ranged from 0.125-0.250 mg/ml, whereas the

MBCs and MFCs were 0.250 and 0.500 mg/ml, respectively. ScAgNPs significantly inhibit

the production of phospholipases by 82.2, 75.7, 78.7, 62.5, and 65.8%; proteinases by 82.0,

72.0, 77.5, 67.0, and 83.7%; lipase by 69.4, 58.8, 60.0, 42.9, and 65.0%; and hemolysin by

62.8, 69.7, 67.2, 73.1, and 70.2% in C. albicans, C. tropicalis, C. dubliniensis, C. para-

psilosis and C. krusei, respectively, at 500 μg/ml. ScAgNPs inhibit germ tube formation in C.

albicans up to 97.1% at 0.25 mg/ml. LIVE/DEAD staining results showed that ScAgNPs

almost completely inhibit biofilm formation in C. albicans. TEM analysis shows that

ScAgNPs not only anchored onto the cell surface but also penetrated and accumulated in

the cytoplasm that causes severe damage to the cell wall and cytoplasmic membrane.

Conclusion: To summarize, the biosynthesized ScAgNPs strongly suppressed the multi-

plication, germ tube and biofilm formation and most importantly secretion of hydrolytic

enzymes (viz. phospholipases, proteinases, lipases and hemolysin) by Candia spp. The

present research work open several avenues of further study, such as to explore the molecular

mechanism of inhibition of germ tubes and biofilm formation and suppression of production

of various hydrolytic enzymes by Candida spp.

Keywords: ScAgNPs, virulence factors, hydrolytic enzymes, germ tubes, biofilm, LIVE/

DEAD staining.

Introduction
Candida spp. is one of the most common opportunistic human fungal pathogens, which

are responsible for 90–100% of mucosal infections and the fourth-leading cause of

nosocomial infections (candidemia and other forms of invasive candidiasis) that

attribute a 35–50% mortality rate in immunocompromised and critically ill
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individuals.1,2 Approximately 70% of women experienced

vaginal infections by Candida spp, 70% of AIDS patients

had oropharyngeal candidiasis, and 20% of them suffered

from recurrence.3 Extracellular hydrolytic enzymes, most

importantly proteinases, phospholipases, hemolysin, and

lipases, are believed to play an important role in Candida

overgrowth because these facilitate adherence, tissue pene-

tration, and the subsequent invasion to the host.4 The forma-

tion of biofilms, communities of adhered cells that are

embedded and encased in an extracellular polymeric matrix

on both kind of surfaces, either abiotic or biotic (such as

implanted medical devices and tissues), also play a major

role in pathogenicity.5 It is believed that cells in a biofilm

exhibit high resistance to antifungal drug and the host

immune system, primarily due to inadequate penetration of

antifungal agents.6 Due to the production of various extra-

cellular hydrolytic tissue-damaging enzymes, hyphae transi-

tion, and formation of highly drug-resistant biofilm in

isolates of Candida spp, innovative strategies are needed to

develop newer and safer antifungal agents with broad-spec-

trum activity that suppress and eradicate the virulence factors

involved in the pathogenicity of life threatening Candida

spp. In most cases candidiasis is treated with the existing

conventional antifungal drug that includes triazoles and poly-

ene. Over the past decade the improper and misuse of exist-

ing antifungal drugs have led to the development of drug-

resistant clinical isolates of Candida spp. Recently, nanome-

dicines have gained great attention to formulate nanoparticles

based on antimicrobial agents which have the potential to

combat microbial drug resistance either alone or in combina-

tion with existing drugs. The antimicrobial activity of bio-

genic AgNPs was well documented in the literature.7–21

However, there are very few studies available in the literature

on the inhibition of production of various extracellular

hydrolytic enzymes and germ tubes in Candida spp by

nanoparticles.22–24 Due to the scarcity in the literature on

the inhibition of production of various virulence factors by

Candida spp, herein for the first time we have reported the

potent inhibitory effects of green synthesized AgNPs on the

production of different virulence attributes of Candida spe-

cies isolated from oropharyngeal mucosa of HIV patients.

The objective of the present study was i) the green synthesis

of silver nanoparticles (AgNPs) using aqueous seed extract

of Syzygium cumini (Sc). ii) Characterization of as-prepared

ScAgNPs by a UV-Vis spectrophotometer, fourier-transform

infrared spectroscopy (FTIR), scanning electron microscopy

(SEM), energy-dispersive X-ray (EDX), and transmission

electron microscopy (TEM). iii) Evaluation of antifungal

and antibacterial activity of ScAgNPs against C. albicans,

C. tropicalis, C. parapsilosis, C. neoformans, S. aureus, and

E. coli using microbroth dilution, well diffusion, and time-

dependent growth assay methods. iv) Investigation of potent

inhibitory effects of green synthesized ScAgNPs on key

virulence factors such as germ tube formation and extracel-

lular enzymes viz. phospholipases, proteinases, lipases, and

hemolysin secreted by Candida spp. v) Visualization of

effects of ScAgNPs on biofilm formation by Congo red

agar and Confocal laser scanning microscopy (CLSM),

and vi) Examination of ultrastructural alteration caused by

ScAgNPs in C. albicans by TEM.

Materials and methods
Preparation of the seed extract and

biosynthesis of ScAgNPs
The fresh seeds of Syzygium cuminiwere washed with sterile

water, and air-dried. About 10 g of seeds were ground to fine

powder and dissolved in 100 mL sterile water, vigorously

vortexed, and then boiled for 20 minutes. After cooling, the

solutions were filtered byWhatman No. 1 paper (Maidstone,

UK) and then the filtrate was collected and stored at 4°C.25

For the synthesis of AgNPs, 25 mL of aqueous seed extract

was transferred into 75 mL of 1 mM silver nitrate (AgNO3,

Sigma Aldrich, St. Louis, MO, USA) solution. The mixture

was kept at room temperature overnight. The change in color

of the solution from pale yellow to dark brown was an

indication of the formation of AgNPs. The solution was

washed with double distilled water three times at 14,000

rpm for 10 minutes to separate the AgNPs.25

Characterization of ScAgNPs
The biosynthesized SCAgNPs were characterized by UV-Vis

spectroscopy (LAMBDA 25, Perkin Elmer, USA), FT-IR

spectrometer (SHIMADZU-8400, Japan), energy dispersive

X-ray spectroscopy (JED-2300, Japan), scanning electron

microscopy (SEM, JSM-6510LV, Jeol Ltd., Tokyo, Japan)

and transmission electron microscopy (TEM, 2100, Jeol) by

following the protocol of our previous study.26

Strains
The clinical isolates of Candida (C. albicans, C. tropicalis,

C. dubliniensis, C. parapsilosis, and C. krusei) and bacter-

ial (S. aureus and E. coli) strains used in this study were

collected from the department of Microbiology, Jawaharlal

Nehru Medical College and Hospital, Aligarh Muslim

University, Aligarh, India.
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Antimicrobial activity of ScAgNPs
The zone of inhibition (in mm) test for Candida spp and

bacterial stains were carried out on Sabouraud Dextrose

Agar (SDA, Hi-Media, Mumbai, India) and Mueller

Hinton Agar (MHA, Hi-Media) plates, respectively, by

well diffusion methods, as described in a previous

study.26 The MICs, MBCs, and MFCs values of

ScAgNPs against tested strains were examined by

microbroth dilution method, as previously described

with slight modification.26 Further, the effects of

ScAgNPs on the growth curve of Candida spp at dif-

ferent time interval and different concentration were

determine as described in our previous study.26

Effect of ScAgNPs on virulence factors of

Candida spp
Phospolipase activity of untreated and ScAgNPs treated

Candida isolates (C. albicans, C. tropicalis, C. dubliniensis,

C. parapsilosis, and C. krusei) was assessed as described

previously.24,27 The anti-proteinase activity of different con-

centration of green synthesized ScAgNPs against proteinase

positive Candida spp were carried out by following the proto-

col of our previous study.24 Lipase activity of control and

ScAgNPs treated experiments was carried out using the pre-

viously reported protocols.28,29 The lysis efficacy of human red

blood cells by C. albicans after treatment with varying con-

centration of ScAgNPs was analyzed as previously described

methods with some modification.7,30 Further, the effect of

ScAgNPs on the germ tube formation by C. albicans was

examined as a method previously reported with some

modification.24

Effect of ScAgNPs on C. albicans biofilm
The effects of different concentration of ScAgNPs on C.

albicans biofilm were assessed by Congo Red Agar method

(qualitatively), as described in our previous study with slight

modification.31 Furthermore, the inhibitory effect of

ScAgNPs on biofilm formation of C. albicans was quantita-

tively analyzed and visualized by CLSM (FV1000, Olympus

Latin America, Miami, FL, USA) using LIVE/DEAD stain-

ing, ie, Con-A-FITC (Sigma Aldrich) and propidium iodide

(Sigma Aldrich).24

Effects of ScAgNPs on C. albicans
morphology and ultrastructure: TEM

analysis
The morphological and ultrastructural alteration in C. albi-

cans cells after treatment with ScAgNPs were examined

by TEM (2100, Jeol). The sample preparation and analysis

methods were similar to those described previously.24

Results and discussion
Structural characterization of

biosynthesized ScAgNPs
In the present study, aqueous seed extract of Sygyzium

cumini, a traditional medicinal plant, has been used as a

reducing and stabilizing agent for the green synthesis of

AgNPs. The bioreduction of Ag+ ions to Ag0 by seed extract

of Sygyzium cumini and formation of AgNPs was confirmed

by UV-Vis absorbance spectroscopy, which showed an

intense peak at 474.45 nm due to surface plasmon resonance

(Figure 1) and is supported by the results of Banerjee and
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Figure 1 UV–Vis spectrum of AgNPs synthesized by aqueous seed extract of Sygyzium cumini.
Abbreviation: AgNPs, silver nanoparticles.
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Narendhirakannan.32 The FTIR spectra (Figure 2) showed a

broad peak at 3,436.88 cm−1, indicating the presence of

hydroxyl group of polyphenolic component in seed extract.32

It has been reported that the seed extract of S. cumini con-

tains a large amount of polyphenols, flavonoids, and gallic

acid.33 The peak at 1,634.98 cm−1 was due to the presence of

carbonyl groups (C=O) of the polyphenolic compounds such

as epicatechin gallate, epigallocatechin gallate, catechin gal-

late, epi-gallocatechin, gallocatechin gallate, theaflavin pre-

sent in the seed extract.32–34 The presence of a large amount

of polyphenolic compounds in the seed extract of S. cumini

might be responsible for the reduction of Ag+ to Ag0 and

stabilization of AgNPs.33,34 The SEM micrograph revealed

that the particles were hexagonal (Figure 3A). EDX analysis
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Figure 2 FTIR Spectrum of AgNPs synthesized by aqueous seed extract of Sygyzium cumini.
Abbreviations: AgNPs, silver nanoparticles; FTIR, Fourier-transform infrared spectroscopy.
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Figure 3 SEM (A) EDX (B); and TEM (C) analysis of AgNPs synthesized by aqueous seed extract of Sygyzium cumini.
Abbreviations: AgNPs, silver nanoparticles; EDX, energy-dispersive X-ray; SEM, scanning electron microscopy; TEM, transmission electron microscopy.
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of the synthesized ScAgNPs showed a typical optical absorp-

tion peak at 3 keV that confirmed the presence of elemental

silver in the form of AgNPs33 (Figure 3B). The TEM analy-

sis confirms that the shape of ScAgNPs was primarily hex-

agonal and was in the range of 10–100 nm (Figure 3C).

Antimicrobial activity of ScAgNPs
The antimicrobial activity of ScAgNPs was assessed by

measuring the clear zone of inhibition around the wells

supplemented with 0.031–0.5 mg/mL concentration of

ScAgNPs. A significant reduction in the growth of

Candida and bacterial species was observed at 0.5 mg/mL

of ScAgNPs (Figure 4). The highest zone of inhibition

(22 mm) was recorded for C. albicans, followed by C.

neoformans (21 mm), S. aureus (20 mm), C. parapsilosis

(19 mm), E. coli (18 mm), and C. tropicalis (17 mm). The

zone of inhibition values obtained here is similar to those

reported by Yasir et al.10 The MICs values of ScAgNPs

against all tested Candida and bacteria species ranged from

0.125–0.250 mg/mL, whereas the MBCs and MFCs were

0.250 and 0.500 mg/mL, respectively. In a recent study,17

AgNPs synthesized by Caesalpinia ferrea seed extract

showed MIC values in the range of 156.25–1,250 µg/mL,

and MFC values in the range of 312.5–5,000 µg/mL against

C. albicans, C. glabrata, C. kruzei, and C. guilliermondii.17

The MIC and MFC results of the present study demonstrate

that the ScAgNPs exhibited high anticandidal activity.

Further, the effects of a different concentration of

ScAgNPs (ie, 62.5–1000 µg/mL) on the growth of C.

albicans, C. tropicalis, and C. parapsilosis examined by

time-dependent growth inhibition assay shows that

ScAgNPs inhibit the growth of tested candida species at

all doses (Figure 5). The growth of Candida species reached

exponential phase rapidly in the absence of ScAgNPs.

However, it was found that the growth of the Candida

cells were significantly reduced when exposed at a higher

concentration of ScAgNPs (500 and 1000 µg/mL). Figure 5

clearly shows that, as the concentration of ScAgNPs
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Figure 4 Antimicrobial activity of AgNPs synthesized by aqueous seed extract of Sygyzium cumini against (A) C. albicans; (B) C. tropicalis; (C); C. parapsilosis, (D) C.
neoformans; (E) S. aureus, and (F) E. coli. Panel (G) shows zone of inhibition in millimetres.

Abbreviation: AgNPs, silver nanoparticles.
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increases, the growth inhibition of Candida cells was also

increased. Dose-dependent anticandidal activity of AgNPs

has been previously reported.26,35

Effects of ScAgNPs on extracellular

hydrolytic enzymes of Candida spp
The virulence in Candida species is attributed by a number of

extracellular enzymes such as proteinase, phospholipase,

lipase, hemolysin, chondroitinase, and hyaluronidase, which

plays an important role in its pathogenicity.4,36 Thus, interfer-

ence in these virulence factors has emerged as a novel target for

developing new anti-infective agents. However, a huge num-

ber of studies on anticandidal activity ofAgNPs synthesized by

different approaches were reported in the literature.10,15,37–39

The effects and mechanism of AgNPs on the production of

extracellular enzymes by Candida spp are still not reported.

Very little is known about the inhibition of production of

virulence factors by nanoparticles.22–24 In the present study,

for the first time, the inhibitory effects of green synthesized

ScAgNPs on the production of phospholipases, SAPs, lipases,

and hemolysin by five Candida spp, ie, C. albicans, C. tropi-

calis, C. dubliniensis, C. parapsilosis, and C. krusei were

investigated. Phospholipases are associated to adherence,

induction of germ tubes, transition from yeast to hyphal

forms, penetration, and tissue injury.4 In the present study, it

was found that ScAgNPs at 500 µg/mL significantly inhibits

production of phospholipases activity by 82.2, 75.7, 78.7, 62.5,

and 65.8% in C. albicans, C. tropicalis, C. dubliniensis, C.

parapsilosis, and C. krusei, respectively, in a dose-dependent

manner (Figure 6). Similar results were previously reported by

Jalal et al,24 who found that ZnO NPs synthesized by leaf

extract of Crinum Latifolium inhibit the secretion of phospho-

lipases in albicans and non-albicans isolates ofCandida. It was

observed that the suppression of phospholipases activity in

albicans is more pronounced than that of non-albicans isolates

(Figure 6).

The production of SAPs by Candida spp has been identi-

fied as one of most important virulence factors as it has the

ability to degrade a number of human proteins on the lesion

site, hemoglobin, albumin, secretory immunoglobulin A, and

skin proteins. The proteolytic action of this enzyme also

attributed the tissue invasion and penetration.40 In the present

study, it was found that ScAgNPs at 500 µg/mLinhibits

production of SAPs by 82.0, 72.0, 77.5, 67.0, and 83.7% in

C. albicans, C. tropicalis, C. dubliniensis, C. parapsilosis,

and C. krusei, respectively (Figure 7). Similar results were

previously reported by Hamid et al,23 who found that AgNPs

synthesized by fungi Aspergillus spp inhibit the secretion of

A B
1.5

1.3

1.1

0.9

0.7

0.5

0.3

1.7

0.1

0µg/ml
62µg/ml
125µg/ml
250µg/ml
500µg/ml
1000µg/ml

0µg/ml
62µg/ml
125µg/ml
250µg/ml
500µg/ml
1000µg/ml

1.6

1.4

1.2

1

0.8

0.6

0.4

1.8

0.2
0 4 8 12

O
pt

ic
al

 d
en

si
ty

 (n
m

)

O
pt

ic
al

 d
en

si
ty

 (n
m

)

16 20 24

C
0µg/ml
62µg/ml
125µg/ml
250µg/ml
500µg/ml
1000µg/ml

0.9

0.8

0.7

0.6

0.5

0.4

0.3

1

0.2

Time (hours)

O
pt

ic
al

 d
en

si
ty

 (n
m

)

0 4 8 12
Time (hours)

16 20 24

0 4 8 12
Time (hours)

16 20 24

Figure 5 Growth curves of C. albicans (A); C. tropicalis (B); and C. parapsilosis (C) treated with different concentration of ScAgNPs.
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SAPs in albicans and non-albicans isolates of Candida. In

another study, Hajjar et al22 reported the inhibition of C.

albicans secreted aspartyl proteinase by exploring triangular

gold nanoparticles.

Stehr et al41 reported that the secretion of extracellular

lipases increases the pathogenicity of Candida by degrading

lipids, and may also support the microorganism to stick to

host tissue and/or neighboring cells.41 In the present study,

it was found that ScAgNPs at 500 µg/mLsuppress the

production of lipases by 69.4, 58.8, 60.0, 42.9, and 65.0%

in C. albicans, C. tropicalis, C. dubliniensis, C. parapsilosis

and C. krusei, respectively (Figure 8). Another putative

virulence factors responsible for Candida pathogenesis in

humans is secretion of hemolysins by Candida spp. Yeast

cells destroy erythrocytes to acquire iron from the host by

secreting hemolysins42 and the secretion of hemolysins

followed by iron obtained facilitates invasion of hyphae

and the development of disseminated candidiasis.43 In the

present study, we found that ScAgNPs at 500 µg/mL

suppress the production of hemolysins by 62.8, 69.7, 67.2,

73.1, and 70.2% in C. albicans, C. tropicalis, C. dublinien-

sis, C. parapsilosis, and C. krusei, respectively (Figure 9).

Effect of ScAgNPs on germ tube

formation
The morphological transitions between yeast and filamen-

tous forms are probably to be one of the most important

virulent factors in C. albicans.44 The developments of

hyphae or germ tube is an intriguing characteristic of C.

albicans that plays a crucial role in adherence and biofilm

formation, which indeed is essential for colonization and

initiation for pathogenesis.45,46 Impeding or blocking of

transformation from yeast to hyphal form would mean

stopping the infection. In this study, it was found that

ScAgNPs almost completely impede the germ tube forma-

tion in a dose-dependent manner (Figure 10). ScAgNPs

inhibits germ tube formation by 97.1, 94.3, 57.1, and
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22.9% at concentrations of 0.25, 0.125, 0.062, and 0.031

mg/mL, respectively (Figure 10F). Similar results were

previously reported by Jalal et al,24 who reported that

ZnO NPs synthesized by leaf extract of Crinum Latifolium

inhibit germ tube induction by 86.4% but at a high concen-

tration, ie, 1.0 mg/mL24. However, in the present study

ScAgNPs inhibit germ tube formation by 97.1% at 0.25

mg/mL, which is 4-times lesser than that of ZnO NPs.

Recently,47 it was reported that CuO NPs at 300 mg/L

completely inhibit the germ tube formation in Candida

spp. However, the exact mechanism of germ tube inhibition

by nanoparticles is not clear. Halbandge et al48 reported that

biosynthesized AgNPs affect Ras-mediated signal transduc-

tion pathways in C. albicans by downregulating the expres-

sion of cell elongation gene (ECE1), hyphal inducer gene

(TEC), and yeast to hyphal transition genes (TUP1 and

RFG1) which are important for yeast to hyphal (Y-H)

form transition.48

Visualization of C. albicans biofilm by

congo red agar and CLSM
Another most important virulence factor that plays a major

role in pathogenesis in host is biofilm formation by C. albi-

cans. C. albicans has the ability to build biofilms more or less

on all kinds of medical device, eg, cardiac valves, indwelling

prosthetic devices and catheters, joint prostheses, vascular and

urinary catheters, ventricular assist devices, artificial vascular

bypass devices, and pacemakers.49 The extracellular poly-

meric substances act as a barrier to prevent the diffusion of

drugs.50 Further, it has been reported that sessile cells within

biofilms are more difficult to eradicate, and they have the

A B

DC

E F

Figure 10 Effects of different concentration of ScAgNPs on germ tube formation of C. albicans. (A) control; (B) 0.031; (C) 0.062; (D) 0.125; and (E) 0.250 mg/mL of

ScAgNPs. (F) Depicts the percentage inhibition of germ tube formation at various concentrations of ScAgNPs.

Abbreviation: ScAgNPs, Syzygium cumini silver nanoparticles.
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ability to resist drug concentrations even 1,000-fold higher

than the IC50 reported for the planktonic yeasts.51 Therefore,

there is an urgent need to design and develop novel antic-

andidal and antibiofilm agents against these unmanageable

infections. In the present study, qualitative inhibition of bio-

film formation inC. albicans by ScAgNPs examined on BHIA

supplemented with Congo red shows that the colonies of

untreated C. albicans were black, which indicates the produc-

tion of exopolysaccharide (EPS). However, cells treated with

ScAgNPs not only inhibit the production of exopolysacchar-

ides, but also inhibit the growth of cells (Figure S1). Muthamil

et al52 reported that AgNPs strongly inhibit the EPS produc-

tion in C. albicans, C. glabrata,and C. tropicalis. The visua-

lization and quantification of biofilm and distribution of live

and dead cells after treatment of ScAgNPs were evaluated by

CLSM using LIVE/DEAD biofilm viability florescent stains,

ie, ConA-FITC and PI. ConA (carbohydrate-binding lectin

protein) conjugated with FITC is a green fluorescent stain

which was used to study their binding to biofilms exopolysac-

charide and live cells within the matrix. In contrast, PI is a red-

fluorescent nucleic acid stain which can penetrate the cells

with damaged membranes. Thus, Candida cells with intact

cell membranes (ie, live) are fluorescent green, whereas cells

with damaged membranes (ie, dead) are fluorescent red. In the

present study, CLSM analysis showed that ScAgNPs not only

act on the biofilm cells, but also penetrate and damage the

exopolysaccharides matrix. It was observed that ScAgNPs at a

concentration of 50 µg/mL resulted in almost complete inhibi-

tion of biofilm formation in C. albicans (Figure 11). Recently,

AgNPs synthesized by Dodonaea viscosa and Hyptis suoveo-

lens leaf extract have inhibited biofilm formation of Candida

spp. from 79 to 88% at 10 µg/mL.52 Monteiro et al53 reported

that colloidal suspensions of AgNPs at 54 μg/mL inhibit the

biofilm formation approximately 54 and 90% in C. albicans

and C. glabrata, respectively. The exact mechanism of inhibi-

tion of biofilm formation by AgNPs is not known. Różalska et
al54 suggested that antibiofilm activity was due to the extre-

mely easy binding and enhanced penetration of the AgNPs

into the biofilm structure which disturb the lipidome of cell

membranes.54 Another possible mechanism of antibiofilm

activity of AgNPs could be due to inhibition of yeast morpho-

genesis. Inhibition of blastospores and hyphae forms by

AgNPs also lead to the suppression of biofilm formation in

Candida.54 Lara et al55reported that the antibiofilm effect of

AgNPs was mainly due to the disruption of the cell wall and

survival of both the yeast and the filamentous forms of the

Candida spp.

Morphological and ultrastructural

alteration caused by ScAgNPs
Finally, the morphological and ultrastructural alteration

caused by ScAgNPs on C. albicans was analyzed by

TEM. It was observed that C. albicans cells treated with

50 and 100 µg/mL of ScAgNPs exhibited significant

alterations in the cell wall and membrane (Figure 12).

TEM analysis clearly shows that AgNPs not only

attached and accumulate to the cell wall and membranes

but also penetrates inside the cells and accumulated in

the cytoplasm (Figure 12, red arrows) that may lead to

the rupturing of the cell wall and disintegration of the

cytoplasmic membrane (Figure 12, black arrows). The
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Figure 11 CSLM image of C. albicans biofilm. (A) Control. (B) C. albicans biofilm treated with 50 µg/mLof ScAgNPs. Biofilms were stained with ConA-FITC and PI. ConA-

FITC stained C. albicans cells as well as exopolysaccharide matrix green. PI stained nucleic acid and fluorescent red.

Abbreviation: ScAgNPs, Syzygium cumini silver nanoparticles.
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present TEM result is in good agreement with the pre-

vious reports on ultrastructural analysis of the effects of

AgNPs on C. albicans.38 Anticandidal mechanisms of

nanomaterials are not fully understood. Kim et al56

reported that AgNPs damage the cell wall and mem-

brane of C. albicans due to the formation of “pits and

holes” on the cells surface that inhibits the budding

process and finally leads to cell death. Gutierrez et

al.35 reported that the fungistatic effect of AgNPs was

due to the inhibition of β-glucan synthase, and the

fungicidal effect was due to changes in the cell wall

integrity, and loss of its mechanic resistance that leads

to the cell destruction by osmotic pressure variations.

However, in another study, it has been reported that

AgNPs promote mitochondrial dysfunctional apoptosis,

phosphatidylserine externalization, DNA, and nuclear

fragmentation, and the activation of metacaspases in C.

albicans due to programmed cell death through genera-

tion and accumulation of intercellular ROS.57 Further,

Radhakrishnan et al.58 reported that generation of intra-

cellular ROS is not the only major cause of C. albicans

toxicity, and they found that AgNPs altered surface

morphology, membrane fluidity, cellular microenviron-

ment and ultrastructure, cellular ergosterol content, and

fatty acid composition, especially oleic acid, which is

vital for hyphal morphogenesis.58

Conclusion
In the present study, the biosynthesized ScAgNPs strongly

suppressed the multiplication, germ tube and biofilm forma-

tion, and most importantly secretion of hydrolytic enzymes

(viz. phospholipases, proteinases, lipases, and hemolysin) by

Candia spp. The finding of the present study suggested that

ScAgNPs could be employed as promising antifungal drugs

to prevent the progress of pathogenesis in Candida spp by

inhibiting the key virulence factors and development of

biofilms on medical devices by applying ScAgNPs coating

on medical devices and catheters. The present research work

opens several avenues of further study, such as to explore the

molecular mechanism of inhibition of germ tubes and biofilm

formation and suppression of production of various hydro-

lytic enzymes byCandida spp. In vivo studies however, need

to also be carried out to determine the biocompatibility,

cytotoxicity, safety, and mode of action of AgNPs before

being used for biomedical applications.
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Figure S1 Ability of biofilm formation of C. albicans on BHI agar supplemented with Congo red and ScAgNPs. (A) Control (without ScAgNPs) showing black crystalline

colonies indicate the exopolysaccharides production. Plates (B) and (C) treated with 0.025 and 0.05 mg/mL of ScAgNPs showing inhibition of exopolysaccharide synthesis.

Abbreviation: ScAgNPs, Syzygium cumini silver nanoparticles.
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