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Background: The authors have recently designed a new compound bisperoxovandium

(pyridin-2-squaramide) [bpV(pis)] and verified that bpV(pis) confers neuroprotection

through suppressing PTEN and activating ERK1/2, respectively. Intracerebral hemorrhage

(ICH) is the second most common cause of stroke and has severe clinical outcome. In this

study, we investigate the effect of bpV(pis) in ICH model both in vivo and in vitro.

Materials and methods: The novel drug bpV(pis) was synthesized in the Faculty of

Pharmacy, Wuhan University School of Medicine. An ICH model was generated on both

SD rats and cells. bpV(pis) was injected into intracerebroventricular or culture media.

Western blotting was applied to test the signal pathway. To determine the effect of

bpV(pis) on PTEN inhibition and ERK1/2 activation, we measured the phosphorylation

level of AKT (a direct downstream target of PTEN that negatively regulates AKT) and

ERK1/2. FJC, MTT, and LDH were applied to measure the cell viability. Neurobehavioral

tests were performed to measure the effect of bpV(pis).

Results: The in vivo results showed that intracerebroventricular administration of

bpV(pis) significantly alleviates hematoma, the damage of brain–blood barrier and

brain edema. The in vitro results demonstrated that bpV(pis) treatment reduces ICH-

induced neuronal injury. Western blotting results identified that bpV(pis) exerts

a neuroprotective effect by significantly increasing the phosphorylation level of AKT

and ERK1/2 after experimental ICH. Neurobehavioral tests indicate that bpV(pis) pro-

motes functional recovery in ICH animals.

Conclusion: This study provides first and direct evidence for a potential role of bpV(pis) in

ICH therapy.
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Introduction
Intracerebral hemorrhage (ICH) is mainly caused by a rupture of the basilar artery

in the brain, leading to high rates of disability and death in adults.1 It is critical to

treat the relatively controllable secondary injury in ICH. The main factors respon-

sible for secondary injury include the inflammatory response, the toxicity from

secondary metabolites, the destruction of the blood–brain barrier, and the formation

of secondary edema.2

PTEN (phosphatase and tensin homolog deleted on chromosome 10), a tumor

suppressor, has both lipid and protein phosphatase activity. In our previous study we

have revealed that inhibiting PTEN phosphatase activity confers neuroprotection
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through various signaling pathways.3 PTEN also directly

regulates the activation of AKT. AKT, phosphorylated by

PI3K, promotes cell growth and survival via E2F1, NF-kB,

and mTOR signaling.3 Increasing phosphorylation of AKTat

S473 by suppressing PTEN contributes to survival. Among

various pathways, PI3K/AKT regulated by PTEN lipid phos-

phatase confers neuroprotection in neuronal injury such as

ischemia/reperfusion.4,5

ERK1/2 is the extracellular signal-regulated kinase.

The oncogene Ras activates ERK1/2 cascade and pro-

motes cell cycling and proliferation.6,7 Increasing ERK1/

2 phosphorylation level improves survival rate after ische-

mia stroke.8 ERK has a co-function with AKT, indicating

the internal relationship of both.9,10

Peroxovanadium (pv) compound is an oxygen vanadium

complex with a core of four or five valence vanadium after

excessive oxidation by hydrogen peroxide, which can com-

bine with specific ligands and shape into a coordination com-

pound. bpV makes PTP (protein tyrosine phosphatases)

catalytic activity allosteric and inactive in the domain of

cysteine residues.11 PTEN, one of the subtypes of PTP, has

a more lenient structure, which could be inhibited by bpV in

a low concentration.12,13 Bisperoxovandium (pyridine-2-car-

boxyl)[bpV(pic)], a commercially available PTEN inhibitor,

confers a protective effect in brain injury and cognitive deficits

of isoflurane exposures.14,15 Squaramide is a functional group

existing in many bioactive compounds that have various bio-

logical activities.16–19 Because of its functional activity, stabi-

lity, low cost of starting materials, and straightforward

synthesis, squaramide is an appropriatemolecule for the devel-

opment of affordable agents. We, therefore, designed and

synthesized the compound, the bpV(pis), in the presence of

pyridine-2-squaramide and V2O5.
20

It has been reported that different vanadium com-

pounds inhibit PTEN and also activate AKT and ERK1/

2.21 The neuroprotective effects of bisperoxovandium on

cerebral ischemia through ERK1/2 and AKT activations

were shown by our group, and also others.22,23 To develop

a new compound that may have more effective neuropro-

tection, we have designed and synthesized a new com-

pound, bpV(pis), which inhibits the activity of PTEN and

enhances ERK1/2 activation.20 Importantly, bpV(pis)

plays a neuroprotective role in cerebral ischemia/reperfu-

sion injury.20 As ICH-induced brain injury results in

severe clinical outcome, we tested whether bpV(pis) is

neuroprotective in ICH. Our study provides the first evi-

dence that bpV(pis) protects against ICH-induced brain

injury via PTEN inhibition and ERK1/2 activation.

Materials and methods
Animals and ICH model
Adult male SD rats (n=186, weighing 280–300 g) were

housed in a light and temperature controlled (23–25°C)

environment with unlimited access to food and water.

Sixteen adult pregnant female rats were used for cortical

neuronal cultures. All animal experiments were carried out

in compliance with the National Institutes of Health guide-

lines and the Animal Care and Ethics Committee of

Wuhan University School of Medicine. Randomization

was used to assign samples to the experimental groups,

and to collect and process data.

Hemorrhagic stroke in rats was induced as previously

reported.4 Briefly, rats were anesthetized with 4% isoflur-

ane in 70% N2O and 30% O2 using a mask. A craniotomy

was performed and a 23-gauge needle was inserted into

the caudate nucleus (stereotactic coordinates from bregma:

0.2 mm anterior, 3.5 mm lateral, and 5.5 mm in depth).

The autologous whole blood (80 μL) was injected at a rate

of 10 μL/min. The needle was left in place for an addi-

tional 10 minutes after the completed infusion. Finally, the

burr hole was sealed with bone wax after withdrawing the

needle. Sham animals received the same surgical proce-

dures, except for the blood injection.

Intracerebroventricular administration
As was previously reported,24 the rat was anesthetized in

a sealed box, with a mixture of 4% isoflurane in 70% N2

O and 30% O2. When the rat was deeply anesthetized, the

head was secured in position in a stereotaxic frame using

ear bars and the upper incisor bar, then the rat was

anesthetized continuously with 4% isoflurane. A small

mid-sagittal incision was made and the bregma was

located as the anatomical reference point. Drug infusion

to the cerebral ventricle (from the bregma: posterior,

0.8 mm; lateral, 1.5 mm; depth, 3.5 mm) was performed

using a 23-gauge needle attached via polyethylene tubing

to a Hamilton microsyringe at a rate of 1.0 μL/min. When

the administration was finished, the needle was left in

place for an additional 5 minutes, then removed slowly.

Western blotting analysis
Total protein was extracted and processed as previously

described. Equal amounts of protein were separated by

10–12% SDS polyacrylamide gel electrophoresis (SDS-

PAGE). The proteins were electronically transferred to poly-

vinylidene difluoride membrane (Millipore, USA) and
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incubated with a blocking buffer (5% non-fat milk) for 1

hour at room temperature. The polyvinylidene difluoride

membrane was incubated with primary antibody against

ERK 1/2 (Rabbit, Cell Signaling Technology, Beverly, MA,

USA, cat. no. 9102, 1:1,000), phospho-ERK1/2 (Thr202/

Tyr204) (Rabbit, Cell Signaling Technology, cat. no. 9101,

1:1,000), AKT (Mouse, Cell Signaling Technology, cat. no.

2920, 1:1,000), and phospho-AKT (Rabbit, Cell Signaling

Technology, cat. no. 4060, 1:1,000). Primary antibodies were

labeled with horseradish peroxidase-conjugated secondary

antibody, and protein bands were imaged using SuperSignal

West Femto Maximum Sensitivity Substrate (Pierce,

Rockford, IL, USA). The EC3 Imaging System (UVP,

LLC, Upland, CA, USA) was used to obtain blot images

directly from the PVDF membrane. The quantification of

Western blot data was performed using Image J software

(Image J, USA).

Fluoro-Jade C staining
Experimental procedures for preparing frozen sections

were the same as for immunofluorescence staining. FJC

staining was performed using a standard protocol. Briefly,

brain tissue sections were immersed in 1% sodium hydro-

xide in 80% ethanol for 5 minutes, then rinsed for 2

minutes in 70% ethanol, for 2 minutes in distilled water,

followed by incubating in 0.06% potassium permanganate

solution for 10 minutes. After a 1–2 minute water rinse,

the slides were transferred to a 0.0001% solution of

Fluoro-Jade C (Sigma Aldrich, USA) dissolved in 0.1%

acetic acid vehicle for 10 minutes. The slides were then

rinsed through three changes of distilled water for 1 min-

ute per change, then air dried on a slide warmer at 50°C

for at least 5 minutes. Last, sections were immersed in

xylene for 1 minute and mounted with DPX.

Brain water content and evans blue (EB)

extravasation
Brain tissues were isolated at 24 hours after surgery and

weighed as wet weight. Then they were dried at 100°C for

24 hours and weighed as dry weight. The percentage of

water content was calculated as (wet weight–dry weight)/

wet weight×100%.

Evans blue (EB) extravasationwas carried out as reported

at 24 hours after the operation.25 The Evans blue dye (2%,

5 mL/kg; Aladdin, Shanghai, China) was injected and admi-

nistered >2 minutes into the femoral vein. One hour later, the

tissue of brain was collected, homogenized in saline, and

centrifuged at 15,000 g for 30 minutes. Next, an equal

volume of trichloroacetic acid was added to the resultant

supernatant. The samples were incubated at 4°C overnight

and centrifuged at 15,000 g for 30 minutes. The resultant

supernatant was then spectrophotometrically quantified for

the extravasated Evans blue dye at 620 nm.

Hematoma volume analysis
Rats were sacrificed, infused with 0.9% saline. Tissues of

hematoma were cut into contiguous coronal slices. The

hematoma volume was measured on images and calculated

by using Image J software package (Image J).

Cells culture and treatment
The cortical neuronal cultures were prepared from

Sprague–Dawley rats at gestation day 17, as described in

our previous report.25 The pregnant rats were anesthetized

with 4% isoflurane in 70% N2O and 30% O2 and sacrificed

by cervical dislocation. The brain of the embryo was

quickly removed and the cortices were placed in ice-cold

plating medium (Neurobasal medium, 2% B-27 supple-

ment, 0.5% FBS, 0.5 mM L-glutamax, and 25 mM glutamic

acid). The cortical neurons were suspended in plating med-

ium and plated on Petri dishes coated with poly-D-lysine.

Half of the plating medium was removed and replaced with

maintenance medium (Neurobasal medium, 2% B-27 sup-

plement, and 0.5 mM L-glutamine) the next day. The main-

tenance medium was refreshed every 3 days. After 12 days,

the cultured neurons were used. On the treatment day, cells

were treated with 100 μM of hemin (Sigma Aldrich) or

vehicle (0.1% dimethyl sulfoxide) for 24 hours. On the

following day, the cells were exposed to bpV(pis) for 1

hour and then harvested for the next experiments.

Cell viability and LDH release assays
The viability of the cells was assessed by their ability to

uptake thiazolyl blue tetrazolium bromide (MTT). Cells

were incubated with MTT then the lysates were read on

a plate reader (PowerWave X, Bio-Tek) at the absorbance

wavelength of 540 nm. The LDH release was measured

using a CytoTox 96 Cytotoxicity kit based on the manu-

facturer’s instructions (Promega, Madison, WI, USA).

Neurobehavioral tests
Neurological severity scores

The rats were subjected to a modified neurological severity

score (mNSS) test, as reported previously.26 These tests

are a battery of motor, sensory, reflex, and balance tests,
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which are similar to the contralateral neglect tests in

humans. Neurological function was graded on a scale of

0–18 (normal score, 0; maximal deficit score, 18).

Beam walk test

The beam walk test measures the animals’ neuromotor

function.27 The animal was timed as it walked a (100x2 cm)

beam. A box for the animal to feel safe was placed at one

end of the beam. A loud noise was created to stimulate the

animal to walk toward and into the box. Scoring was based

upon the time it took the rat to go into the box. The higher

the score, the more severe was the neurological deficit.

Adhesive-removal test

Amodified sticky-tape (MST) test was performed to evaluate

forelimb function.28 A sleeve was created using a 3.0×1.0 cm

piece of yellow paper tape, and was subsequently wrapped

around the forepaw so that the tape attached to itself and

allowed the digits to protrude slightly from the sleeve. The

typical response is for the rat to vigorously attempt to remove

the sleeve by either pulling at the tape with its mouth or

brushing the tape with its contralateral paw. The rat was

placed in its cage and observed for 30 seconds. Two timers

were started: the first ran without interruption and the second

was turned on only while the animal attempted to remove the

tape sleeve. The ratio of the right/left forelimb performance

was recorded. The contralateral and ipsilateral limbs were

tested separately. The test was repeated three times per

test day, and the best two scores of the day were averaged.

The lower the ratio, the more severe is the neurological

deficit.

Materials
bpV(pis) was synthesized in the Faculty of Pharmacy,

Wuhan University School of Medicine.

Statistics
All results are presented as mean±SE. ANOVA test was

used to examine the statistical significance of the differ-

ences between groups of data. Bonferroni tests were used

for post-hoc comparisons when appropriate. P<0.05 was

considered statistically significant.

Results
bpV(pis) reduces brain damage in ICH

rats
The experiment protocol for this study is shown in Figure 1.

As is reported in our previous study, we designed and

synthetized bpV(pis) to be neuroprotective in cerebral ische-

mia injury.20 In this study, we tested whether bpV(pis) is

neuroprotective in the ICH model.20 bpV(pis) was admini-

strated to the contralateral cerebral ventricle 1 hour after

ICH. We showed that bpV(pis) decreased hematoma volume

at 72 hours after ICH (Figure 2A). bpV(pis) treatment also

reduced the extravasation of Evans blue in the injured cortex

at 72 hours after ICH (Figure 2B). In addition, we found that

ICH-induced brain edema was relieved by bpV(pis) treat-

ment at 72 hours after ICH (Figure 2C). Furthermore, Fluor

Jade C (FJC) assay labeling degenerating neurons showed

that the number of FJC positive neurons was reduced by

bpV(pis) treatment at 24 hours after ICH (Figure 2D). To

verify the neuroprotective effect of bpV(pis) in vitro, we

established the hemin injury model in the cortical neuronal

cultures.29 LDH release assay and MTT assay showed that

bpV(pis) decreases hemin-induced cortical neuronal death at

24 hours after insult (Figures 3A and B). Together, these

results indicate that bpV(pis) is neuroprotective in ICH rats.

bpV(pis) prevents the decrease of AKT

phosphorylation in ICH
Our study has verified that bpV(pis) inhibits PTEN but

enhances Erk1/2 activation independent of PTEN inhibi-

tion in cerebral ischemia injury.20 It has been well

established that AKT activation is negatively regulated

by PTEN. To test whether bpV(pis) inhibits PTEN in

our experimental conditions, we set up to use altered

AKT activation to index the change of PTEN in ICH by

measuring p-AKT (the phosphorylation level of AKT).30

To determine the activation of AKT, the phosphorylation

of AKT at S473 was measured.30 In the in vivo ICH

models, we found that p-AKT level was decreased after

ICH (Figure 4A). To test whether bpV(pis) rescues the

decreased AKT activation, bpV(pis) was administrated

to lateral ventricle after ICH injury. We showed that

p-AKT in the ICH + bpV(pis) group was increased

compared to the ICH+DMSO group (Figure 4A).

Decreased p-AKT was alleviated by bpV(pis) in a dose-

dependent manner (Figure 4A). In the in vitro experi-

ments, similar results showed that suppressed p-AKT in

cortical neurons infracted by hemin was upregulated by

bpV(pis) (Figure 4B). To support this finding, we show

that bpV(pis) prevents ICH-induced reduction of p-AKT

(Figure 4C). These results suggest that PTEN suppres-

sion by bpV(pis) leads to the enhancement of AKT

activation in ICH.
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-1 d

Behavioral
tests Behavioral testsICH

Cell viability assay
LDH release assay
ICH
WB
FJC staining

Evans blue test
Hematoma volume test
Brain water content

BpV(pis) injection

Pre-injection of AKT
and ERK1/2 inhibitor

0 d 0.5 h 1 h 1 d 3 d 7 d 14 d

Figure 1 The experiment protocol. At 24 hours before ICH, behavioral tests were carried out. At 0.5 hour after ICH, AKT, or ERK1/2 inhibitors were applied, 30 minutes

before bpV(pis) treatment. On day 1, cell viability assay, LDH release assay, and other experiments were performed. On day 3, brain edema, hematoma volume, and blood–

brain-barrier were examined. The behavioral tests were taken at 1 day before and days 1, 3, 7, and 14 after ICH.

Abbreviations: ICH, intracerebral hemorrhage; bpV(pis), bisperoxovandium (pyridin-2-squaramide); AKT, protein kinase B; ERK1/2, Extracellular signal-regulated kinase 1/2; FJC,

Fluor Jade C ; WB, Western blot.
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Figure 2 bpV(pis) alleviates rat ICH injury in vivo. (A) Coronal sections of brain show that the ICH hematoma volume is reduced by bpV(pis) (200 μM, 5 μL). (B) Evans blue dye
penetrates into brain tissues from vessels, which indicates that the blood–brain barrier is destructed after ICH. bpV(pis) (200 μM, 5 μL) treatment reduces the Evans blue

extravasation compared to the ICH+DMSO group. Arrows show the site of blood injection. (C) bpV(pis) (200 μM, 5 μL) significantly reduces brain edema at 3 days after ICH. (D)

FJC staining markers neurons that are undergoing the death process. Quantitative analysis shows that the numbers of FJC-positive neurons is increased at 24 hours after ICH,

bpV(pis) (200 μM, 5 μL) treatment decreases the numbers of injury neurons (n=6 in each group. *P<0.05 vs ICH+DMSO group, *P<0.05 vs Sham group, ANOVA test).

Note: (1)(2)(3) in the summarized data panel is corresponding to that in the image panel.

Abbreviations: ICH, intracerebral hemorrhage; bpV(pis), bisperoxovandium (pyridin-2-squaramide); FJC, Fluor Jade C.
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Figure 4 bpV(pis) enhances the activation of AKT. (A) Western blots assay shows that p-AKTare down-regulated after ICH and that bpV(pis) treatment at different concentrations

(20, 50, 100, 200 μM) increases p-AKT (n=6 in each group. #P<0.05 vs Sham group, *P<0.05 vs ICH+DMSO group, ANOVA test). (B) Phosphorylation of AKT is increased after
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Phosphorylation of AKT is increased after bpV(pis) (200 μM) treatment in ICH rats (n=6 in each group. #P<0.05 vs Sham group, *P<0.05 vs ICH+Vehicle group, ANOVA test).

Note: (1)-(4) in the summarized data panel is corresponding to that in the image panel.

Abbreviations: ICH, intracerebral hemorrhage; bpV(pis), bisperoxovandium (pyridin-2-squaramide); AKT, protein kinase B.
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Inhibiting AKT reduces the

neuroprotective effect of bpV(pis) in

hemin-induced neuronal injury
To determine whether bpV(pis) reduces neuronal death

through PTEN/AKT signaling pathway after ICH, we

used AKT inhibitor IV to suppress AKT. We carried out

LDH and cell viability assay to test death or viability in

cultured cortical neurons. We demonstrated that pre-

treatment of AKT inhibitor IV blocked bpV(pis)-induced

neuronal survival after the hemin insult (Figure 5). These

results imply that bpV(pis) protects against hemin insult-

induced neuronal injury via PTEN inhibition.

bpV(pis) prevents the reduction of ERK1/

2 phosphorylation after ICH
ERK1/2 is activated when it is phosphorylated on Thr202/

Tyr204.31 Our previous experiments have revealed that

enhancing ERK1/2 activation is neuroprotective in ische-

mia stroke.20 To explore whether ERK1/2 activation is

mediated by bpV(pis) in ICH, we tested the phosphoryla-

tion of ERK1/2 (p-ERK1/2) on Thr202/Tyr204 by Western

blotting. In the in vivo ICH model, we found that p-ERK1/

2 was decreased significantly, but increased in bpV(pis)

treatment group after ICH insult (Figure 6A). bpV(pis)

rescued ICH-induced decrease of p-ERK1/2 in a dose-

dependent manner (Figure 6A). In the in vitro

experiments, cultured cortical neurons were insulted by

hemin. The bpV(pis) treatment group showed a higher

level of p-ERK1/2 than hemin and Hemin+DMSO group

(Figure 6B). Consistent with those in vivo data, bpV(pis)

alleviated the reduction of p-ERK1/2 caused by hemin.

These results indicate bpV(pis) preserves ERK1/2 activa-

tion after ICH.

ERK1/2 inhibitor reduces the

neuroprotective effect of bpV(pis) in ICH
In order to testify whether preserved ERK1/2 activation by

bpV(pis) has a neuroprotective effect, we treated the cul-

tured cortical neurons with ERK1/2 inhibitor (U0126) at

30 minutes before bpV(pis) treatment. In LDH and MTT

assays, the Hemin+bpV(pis) group showed a higher neu-

ronal survival rate and lower neuronal death rate compared

to the hemin treatment group (Figure 7). These data sug-

gest a neuroprotective role of bpV(pis) in hemin-induced

injury. Compared to Hemin+bpV(pis) group, Hemin

+U0126+bpV(pis) or Hemin+U0126+AKT inhibitor

+bpV(pis) groups show increased LDH release and

reduced cell viability (Figure 7), indicating that inactivat-

ing ERK1/2 and AKT blocks bpV(pis)-induced neuropro-

tection. Thus, bpV(pis) protects against hemin-induced

neuronal injury through ERK1/2 activation and PTEN

inhibition.
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Figure 5 AKTactivation mediates bpV(pis)-induced neuroprotective effect. Cortical cultures are treated with AKT inhibitor IV at 30 minutes before bpV(pis) (200nM). LDH

release and cell viability tests show that AKT inhibitor IV attenuates a bpV(pis)-induced protective effect (n=4 independent cultures. #P<0.05 vs Hemin group, *P<0.05 vs

Hemin+bpV(pis) or Hemin+DMSO group, ANOVA test).

Abbreviations: bpV(pis), bisperoxovandium (pyridin-2-squaramide); AKT, protein kinase B.
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bpV(pis) treatment improves functional

recovery of ICH animals
To further verify the functional outcome of bpV(pis)-

induced neuroprotection, we conducted a series of beha-

vioral tests on rats 1 day before ICH, and 1, 3, 7, and 14

days after ICH. mNSS scores of the rats treated with

bpV(pis) were reduced on the 7th and 14th day, and beam-

walking test scores of rats treated with bpV(pis) were

reduced on the 3rd, 7th, and 14th day (Figures 8A and

B). However, the MST ratio was improved on the 7th and

14th day after bpV(pis) treatment compared with the ICH

+DMSO group (Figure 8C). Taken together, these results

provided behavioral evidence for the neuroprotective role

of bpV(pis) in ICH injury.
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Figure 6 bpV(pis) blocks the reduction of ERK1/2 phosphorylation after ICH. (A)Western blots assay shows that p-ERK1/2 is down-regulated after ICH and bpV(pis) treatment at

different concentrations (20, 50, 100, 200 μM) elevates the p-ERK1/2 (n=6 in each group. #P<0.05 vs Sham group, *P<0.05 vs ICH+DMSO group, ANOVA test). (B) p-ERK1/2 is

increased after bpV(pis) (200 nM) treatment in hemin-insulted cortical cultures (n=4 independent cultures. #P<0.05 vs Control group, *P<0.05 vs Hemin+DMSO, ANOVA test).

Note: (1)-(6) and (1-(4) in the summarized data panels are corresponding to that in the image panel.

Abbreviations: ICH, intracerebral hemorrhage; bpV(pis), bisperoxovandium (pyridin-2-squaramide); ERK1/2, Extracellular signal-regulated kinase 1/2.
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Figure 7 bpV(pis)-induced ERK1/2 activation protects cultured cortical neurons from death. bpV(pis) (200 nM) prevents a hemin-induced increase of LDH release and

decrease of cell viability, and inhibiting ERK1/2 by U0126 attenuates the neuroprotective effect of bpV(pis) (n=6 independent cultures. #P<0.05 vs Hemin group, *P<0.05 vs

Hemin+bpV(pis) or Hemin+DMSO group, **P<0.05 vs Hemin+U0126+bpV(pis). ANOVA test).

Abbreviations: bpV(pis), bisperoxovandium (pyridin-2-squaramide); ERK1/2, Extracellular signal-regulated kinase 1/2.
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Discussion
We have previously reported for the first time that

suppressing PTEN confers neuroprotection in ischemic

neuronal injury.3,30 We further investigated the under-

lying mechanisms mediating the neuroprotective effect

of PTEN downregulation in ischemic neuronal

injury.3,30,32,33 However, the role of PTEN downregula-

tion in ICH-induced neuronal injury remains unclear.

Here we provide evidence that suppressing PTEN pro-

tects against ICH-induced neuronal injury, suggesting

a general neuroprotective role of PTEN downregulation

in neuronal injury.

It has been established that the bisperoxovandium com-

pound at nanomole concentration reduces the lipid phos-

phatase activity of PTEN.13 However, the specific effect of

this compound remains unclear. We recently designed and

synthesized the new compound bpV(pis) by pyridine-

2-squaramide and V2O5. Interestingly, we discovered that

bpV(pis) not only suppresses PTEN activity, but also

enhances ERK1/2 activation, and the ERK1/2 activation

does not require PTEN inhibition by bpV(pis).20

Furthermore, we demonstrate that bpV(pis) protects

against cerebral ischemia injury through PTEN inhibition

and ERK1/2 activation. We also show that the commer-

cially available PTEN inhibitor bpV(pic) protects against

ischemic neuronal injury through ERK1/2 activation.23

These data suggest that the bisperoxovandium compound

is also an ERK1/2 activator and is neuroprotective in

cerebral ischemia injury. In this study, we show that

bpV(pis) also reduces ICH-induced neuronal injury.

Therefore, the neuroprotective effect of bpV(pis) in ICH

is mediated by PTEN inhibition and ERK1/2 activation.

The dual neuroprotective effect of bpV(pis) or bpV(pic)

through two different signal targets, PTEN and ERK1/2,

leads us to conclude that bpV(pis) is a potential drug

candidate for stroke therapy. Based on the function of
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Abbreviations: ICH, intracerebral hemorrhage; bpV(pis), bisperoxovandium (pyridin-2-squaramide); MST, modified sticky-tape.
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bpV(pis), it is predicable that bpV(pis) may act as an

adjuvant compound in cell therapy in diseases like dia-

betes or aging. Further investigation is warranted.

We show that bpV(pis) alleviates the hematoma and

brain edema, and preserves the integrity of the brain–

blood barrier after ICH. The underlying mechanisms are

not yet clear. It is likely that multiple cellular and

molecular mechanisms are involved. A simple hypoth-

esis is that bpV(pis) may act through both PTEN and

ERK1/2 to alleviate the hematoma and brain edema, and

preserves the integrity of the brain–blood barrier. We

will aim to explore other possible mechanisms in our

future studies.

AKT is known to be negatively regulated by PTEN.3 In

the present study we used AKT activation as an index of

PTEN suppression because our early study has carefully

characterized the inhibition of PTEN by bpV(pis) and the

subsequent AKT activation. ERK1/2 belongs to the MAPK

family that can be activated by the upstream signal

MAPKKs(MEK1/MEK2). When activated, ERK1/2 regu-

lates the phosphorylation of transcription factors that are

closely related to cell differentiation, proliferation and

apoptosis.34 Previous studies have shown that ERK1/2 med-

iates axonal regeneration and promotes the survival of

cortical neurons in cerebral hemorrhage injury.35,36

Enhancing ERK1/2 phosphorylation also confers neuropro-

tection after cerebral ischemia injury.8 The observed effect

of bisperoxovandium compound as an ERK1/2 activator in

both cerebral ischemia and ICH further support the neuro-

protective role of ERK1/2 in CNS injury. It is possible that

the neuroprotective effect of bpV(pis) may be mediated

through other cellular and molecular mechanisms. For

example, according to the functional roles of bone morpho-

genetic protein (BMP), sonic hedgehog signaling, and

Notch signaling in the CNS.37–39 This signaling may be

regulated by bpV(pis). Further study will be performed to

test these possibilities. Synaptic dysfunction is the earliest

sign of neurodegeneration. As a neuroprotective compound,

bpV(pis) may act on a single synaptic site to exert its

therapeutic effect. Future investigations can be done by

performing a Mass Synaptometry assay.40

Compliance with ethical standards
All animal use and experimental protocols were approved

and carried out in compliance with the IACUC guidelines

and the Animal Care and Ethics Committee of Wuhan

University School of Medicine.
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