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Purpose: Since nanoparticles (NPs) are beginning to be introduced in medicine and

industry, it is mendatory to evaluate their biological side-effects, among other things. The

present study aimed to investigate the pathways by which nickel nanoparticles (NiNPs) enter

nephrons and to evaluate their localization and effects on cellular ultrastructure.

Methods: Rats were injected intraperitoneally with 20 nm NiNPs (20 mg/Kg/b.w./day)

for 28 consecutive days. Transmission electron microscope technique was used to

detect localization of NiNPs and their effects on cellular ultrastructure in rat kidneys.

Additionally, measurements of certain biochemical parameters such as creatinine, urea,

uric acid and phosphorus for investigating renal function following NiNPs treatment

were taken.

Results: The presence of NiNPs in the nephrons in treated rats was confirmed by transmission

electron microscopy. NiNPs entered the renal tubules cells via various pathways. The results

indicated that NiNPs administration induced ultrastructural changes in the proximal cells of

renal tubules and certain glomerular cells (podocytes and mesangial cells). Additionally, NiNPs

were found to be localized in the mitochondria, which led to a significant decrease in their

density and morphology. Furthermore, cell death was induced in the glomerular cells as found

with a Terminal deoxynucleotidyl transferase dUTP Nick End Labeling (TUNEL) assay and

through detection of p35 using immunohistochemical staining.

Conclusion: Herein, NiNPs were found to induce various cellular ultrastructural changes in

the kidneys of rats. NiNPs used diverse pathways to internalize into the cytoplasm of the

proximal convoluted tubules (PT) cells across the basement membrane, and also through the

plasma membrane of two adjacent PT cells. NiNPs internalization, accumulation and their

alterations of the cellular ultrastructure affected rat renal function.

Keywords: Nickel nanoparticles, internalization, ultrastructure, proximal convoluted

tubules, podocytes, mesangial cells

Introduction
Nanoparticles (NPs) are particles that have dimensions equivalent to 100 nm or less.1

The increased use of NPs in the industry and in biomedical applications has led to

increased public concern regarding the biological and medical effects of NPs.2 Over

the past several decades, nickel nanoparticles (NiNPs) have been widely used in

hydrogen storages, as chemical catalysts, in ceramic capacitors, in sensors and

conductive paint, and in nanomedicine.3 Nanoparticles translocate across the plasma

membrane via endocytosis using different direct permeation pathways1 that depend

on their physicochemical properties.4 Translocation of NPs across the cell membrane

is a requirement during drug delivery and nanotoxicological research, however, the
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fate of these particles following their internalization and the

mechanisms of their eventual elimination require further

investigation.5

The main mechanism suggested for NiNPs-induced cell

damage is via induction of increased levels of reactive

oxygen species (ROS), which are markers of oxidative

stress,6–10 this has also been found to be a key mechanism

for the cytotoxicity of other nanomaterials.11–13 NiNPs were

found to induce oxidative DNA damage,14 inflammation,

cell degeneration,9 cell cycle arrest,10 cytogenetic altera-

tions and apoptosis.15

Kidneys are one of the main organs where there is

accumulation of nanoparticles, particularly NiNPs.16 The

kidneys of rats injected with nanoparticles were previously

shown to display various histopathological changes such as

vacuolation and pyknosis in renal tubular epithelial cells

and glomerular damage.17–19 Nickel ions have also found to

induce significant kidney damage, as well as lead to reduced

activities of enzymatic and non-enzymatic antioxidants.20

In the present study, we investigated the internalization

and localization of NiNPs and their effects on the cellular

ultrastructure in rat kidneys. NiNPs induced cellular ultra-

structural alterations in the proximal cells of the renal

tubules and certain glomerular cells. NiNPs led to

a remarkable reduction in the density and morphology of

mitochondria. Interestingly, NiNPs significantly enhanced

apoptosis/cell death in the cells of the rat kidneys.

Material and methods
Material
Powdered 20 nm nickel nanoparticles (NiNPs) were pur-

chased from Sigma-Aldrich Co. (St Louis, MO, USA). All

other chemicals were of laboratory grade and were used as

received.

Preparation of NINPs suspension
A stock suspension of 20 nm NiNPs was prepared in normal

saline (10 mg\mL) by sonication for 30 seconds in an ultra-

sonic homogenizer (model 150 VT, manufactured by biolo-

gica, Inc., Manassas, VA, USA); the particle suspensions

were kept on ice for 15 seconds and sonicated again on ice

for a total of 3 minutes at a power of 400 W. The NiNPs

were vibrated for 2 minutes, immediately prior to the even-

tual injection. A concentration of 20 mg/kg body weight was

prepared from this stock suspension. The morphology of the

NiNPs was examined in images taken by FEI Tecnai Spirit

10 Transmission Electron Microscope (TEM).

Animals
Twelve 12-week-old male Wistar rats weighing 200–220

g were obtained from the animal house of Salahaddin

University-Erbil. Animals were maintained in stainless

steel mesh cages with free access to tap water and pellets.

Moreover, they were maintained at a mean temperature of

21±2°C and a mean relative humidity of 35%. The experi-

ment was conducted following the protocols approved by

the Animal Care Ethical Committee of College of Science,

Salahaddin University-Erbil, under the number 4N/115

on April 5, 2017 according to the Institutional Animal

Care and Use Committee (IACUC) guidelines for animal

care21 and UBC Animal Care Guidelines for intraperito-

neal injections.22

Experimental design
The 12 rats were equally and randomly divided into two

groups (kept in two separate cages); each group contained

six animals. In group 1 (control group); the rats received the

vehicle, while in group 2 the rats received 20 nm NiNPs

(20 mg/kg) for 28 consecutive days. A needle gauge that

was 22 g was used for the intraperitoneal injection. The

selected NiNPs dose was based on previous studies.23,24

Then, 24 hours after the last treatment, all rats were sacrificed

and kidney samples were collected for the cellular ultrastruc-

ture analysis.

Electron microscopy
Kidney tissues (≤1 mm3) were fixed in 2.5% glutaralde-

hyde in 0.1 M cacodylate buffer pH 7.2–7.4 for 24 hours,

washed by cacodylate buffer 0.1 M, postfixed in 1%

osmium tetroxide, dehydrated through a graded series of

ethanol (50%, 70%, 95% and 100%), cleaned in propylene

oxide and finally embedded in an Araldite mixture. The

ultrathin sections were stained by uranyl acetate and lead

citrate.25 The NiNPs were photographed by FEI Tecnai

Spirit 10 TEM, while the ultrathin sections of kidney were

photographed by the JEOL JEM 1400 TEM. The number

of mitochondria in the proximal convoluted tubules (PT)

cells per 100 µm2 area of the electron micrographs were

counted according to the method of Adachi 1967.26

Immunohistochemical analysis
For detection of apoptotic cells, TUNEL assay was performed

using the HRP-DAB (ab206386) kit. Immunohistochemical

kits for the detection of p53were used (manufactured by Leica

Biosystems Newcastle Ltd, Newcastle upon Tyne, UK) and
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staining was carried out using an automated immunostainer

(AutostainerLink48 DAKO, Agilent, Santa Clara, CA, USA).

Blood collection and biochemical analysis
Blood samples were collected from all anesthetized rats

through cardiac puncture in which the collected blood sam-

ples were immediately placed into gel tubes for serum

collection, then later centrifuged (Hettich D-78532/

Germany) at 3000 rpm for 15 minutes. The sera were stored

at −80°C (Sanyo – Ultra – Low Temperature, Moriguchi,

Osaka, Japan) for the measurement of creatinine. Serum

creatinine, urea and uric acid were determined spectropho-

tometrically (Cobas c311 Hitachi, Tokyo, Japan) using a kit

from BIOLABO S.A.S. (Maizy, France) at 500 nm.

Phosphorous was also estimated in serum using the

ABNOVA calorimetric kits (Catalaog No. KA0815).

Statistical analysis
Statistical analyses were performed using Students t-test.

Data were reported as mean±standard errors (SEs).

P-values≤0.05 were considered significant.

Results
Throughout the study, the rats displayed no behavioral

changes or unusual responses following treatment with

NiNPs. Moreover, none of the rats died due to the treatment.

The shape and size of the 20 nm NiNPs are shown in

Figure 1. Following the examination of the electron micro-

graphs, the mean size of the NiNPs was found to be 19.84 nm

±3.01 (Figure 1B), which was approximately close to the size

reported by the manufacturer.

The electron microscope images confirmed the inter-

nalization of the NiNPs into the kidney tissues of the

treated rats, and were localized within lysosome-vacuoles

in the epithelial cells lining PT (Figure 2A and B) or in the

interstitial cells adherent to the basement membrane of the

PT (Figure 2C and D). The NiNPs aggregated near the

basement membrane appeared either as individual free

particles or localized within vacuoles. The NiNPs were

also found as individual particles in the cytoplasm of PT

cells passed through the basement membrane (Figure 2D).

Several numbers of NiNPs were also seen as individual

particles within the brush border present in the lumen of

the PT (Figure 2E).

As shown in Figure 3, NiNPs also accumulated in the

interstitial region of the cells and close to the basement

membrane of the PT. The administration of NiNPs caused

alterations in structure of the lateral ridges and disturbed the

structure of the basal microvilli in the treated rats compared

to the control group (Figure 4). Subsequently, the damage

that occurred in the kidneys following the exposure of the

rats to NiNPs affected the level of serum creatinine, urea, uric

acid and phosphorus compared to the control group (Table 1).

Within the glomerulus, NiNPs administration caused

degeneration of podocytes and mesangial cells; the podo-

cytes shrank and their nuclei condensed, while the mesan-

gial cells displayed fragmented nuclei (Figure 5).

Furthermore, the foot processes of the podocytes, which

normally form a slit in between, appeared fused in some
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Figure 1 NiNPs shape and size: (A) the shape of NiNPs as revealed by transmission electron micrographs of NiNPs. (B) Size distribution by number using a large number of

TEM photos.

Abbreviations: NiNPs, nickel nanoparticles; SD, standard deviation; TEM, transmission electron microscope.
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sites forming a continuous layer (Figure 6A). The mode of

cell death of mesangial cells appeared to be apoptotic,

which was confirmed by a number of apoptotic bodies

that were engulfed by adjacent neutrophil (Figure 6B).

The mode of cell death in the glomerular cells was con-

firmed using the TUNEL assay and p53 immunohisto-

chemical staining (Figure 7).

As clearly shown in Figure 8, exposure to NiNPs caused

fusion or effacement of secondary foot processes of the

podocytes. Both the proximal and distal renal tubules dis-

played degeneration of epithelial cells following NiNPs

exposure, where some degenerated cells and cellular debris

were shed into the lumen of the tubules (Figure 9).

The most prominent effects of the NiNPs on the appear-

ance of the renal tubules, as ultrastructurally revealed, were the

lower density and the structural damage of the mitochondria

compared to the control (Figure 10). Figure 10B shows NiNPs

uptake by mitochondria and their transmembrane transport

between the two adjacent PT cells through endocytosis.

A significant decrease (P≤0.05) occurred in the mitochondrial

number in the PT cells of the NiNPs-treated rats compared to

control (Figure 11). In comparison to the normal ultrastructural

architecture of rough endoplasmic reticulum (RER)-

mitochondria close location system, a number of electron-

dense particles of variable size, probably NiNPs, were also

found to be adherent to the region of the RER that attached to

the mitochondria (Figure 12). NiNP-like particles were

detected in the cells of the distal tubule, some were close to

the plasma membrane, others were found as individual parti-

cles in the cytoplasm, and the rest of the particles were

engulfed in vacuoles. Interestingly, a mitochondrion was

found engulfing a particle-containing vacuole (see black box

in Figure 13).

Discussion
Manufactured NPs and their applications are expanding in

the industry, commodities, biology and medicine. This

has led to an increased number of studies to improve our

understanding regarding the entry of these NPs into dif-

ferent cell types in vivo in order to examine their effects

on cellular responses.27–29

In this study, the cellular ultrastructural localization of

NiNPs was found to be within vacuoles or were found as

free individual particles or aggregated/accumulated particles

Figure 2 Internalization of NiNPs in rat kidney. (A) PT cell with different NiNPs

localizations, within lysosome-like vacuoles (rectangle) and adhered to the base-

ment membrane (circle and round curved rectangle) as shown in (B–D) respec-

tively. Arrow indicates the lateral ridge of the basement membrane. (B) Lysosome-

like vacuoles containing dense particles. (C) NiNPs (arrows) adhered to the base-

ment membrane (BM). (D) NiNPs (arrows) either as individual particles inside the

PT cell or adhered to the basement membrane of both adjacent PT cells. (E) Apical
cytoplasmic region of PT cells showing discharged NiNPs (arrows) through the

brush border into the lumen.

Abbreviations: PT, proximal convoluted tubule; NiNPs, nickel nanoparticles; BM,

basement membrane; L, lysosome-like vacuoles; In, interstitial region; Ac, apical

cytoplasmic region; BB, brush border; M, mitochondria; N, nucleus.
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Figure 3 Internalization of NiNPs into the interstitial region of kidney cortex: (A)

control group showing interstitial region between two proximal convoluted tubules. (B
andC) the NiNP-treated group showing (B) deposition of NiNPs close to membranes

(arrows), and (C) number of electron dense particles within vacuole close to the PT

basement membrane (arrow).

Abbreviations: PT, proximal convoluted tubule; NiNPs, nickel nanoparticles; BM,

basement membrane; In, interstitial region; M, mitochondria.
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in renal tubule epithelial cells, and in the interstitium close to

the basement membrane of the cells lining the renal tubules.

The accumulation of NiNPs at the PT membrane may be due

to many factors; firstly, difficulty in their indirect penetration

rate leading to accumulation, secondly: due to their high

extracellular concentration,30,31 the repetitive daily injections,

thirdly: due to their large size. Moreover, physicochemical

properties of the NPs could be another possible factor behind

their aggregation, accumulation, and adhesion.31–33

Previously, nickel was found to accumulate in the lysosomes

of proximal tubule cells and thiswas attributed to their strongly

acidic, lipid-like properties that allow them to bind cationic

and lipophilic substances.34 Herein, NiNPs penetrated the

basement membrane of the PT cells after their adhesion to

the plasma membrane, but the penetration rate was slow

although there was a high density of accumulated particles.

Although lysosome-like vacuoles contained electron-dense

particles, endocytosis of NiNPs close to the basement mem-

brane couldn’t be observed in this study. Endocytosis, on the

other hand, was detected at the plasma membrane of adjacent

PT cells. Nanoparticles such as titanium dioxide (TiO2NPs),

gold (AuNPs), silicon dioxide (SiO2NPs), iron oxide (Fe3O4

NPs) and silver (AgNPs) have been found to penetrate directly

into the plasma membrane.1 Modes of direct penetration

include diffusion, permeation, pore formation35 and wrapping

by membrane.5 Although free individual NiNPs are detected

close to the basement membrane, the mode of direct penetra-

tion couldn’t be confirmed, but the most probable pathway

may be through translocation.36 The size of the NiNPs

A B
M

M
M

M

M

0.5μm0.5μm

Figure 4 Basal region in proximal convoluted tubule cells of NiNP-treated rats. (A) Basal villi of control group (white arrow), lateral ridges (black arrows) extending from

PT basement membrane (star). (B) Thickened basement membrane (star), disturbed basal villi (white arrows) and affected lateral ridges (black arrows).

Abbreviations: NiNPs, nickel nanoparticles; M, mitochondria; PT, proximal convoluted tubule.

Table 1 Biochemical analysis in the serum of NiNP-treated rats

Parameters Control NiNPs

Creatinine (mg/dL) 0.46±0.03 0.71±0.07*

Urea (mg/dL) 20.33±3.12 31.22±4.56*

Uric acid (mg/dL) 17.33±2.12 26.21±3.11*

Phosphorus (mg/dL) 1.18±0.42 1.73±0.51

Note: *Significant difference compared to control at P≤0.05. Data shown as mean ± SE.

Abbreviation: NiNPs, nickel nanoparticles.
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Figure 5 Ultrastructure of glomerulus after NiNPs administration: (A) control group showing well developed podocytes with their foot processes (arrow), endothelial and

mesangial cells. Red blood cells in the blood capillaries are seen; (B) the NiNP-treated group showing degenerated podocytes and mesangial cells. The nuclei of mesangial

cells (1) are seen fragmented.

Abbreviations: P, podocytes; EN, endothelial cells; RBC, red blood cells; BC, blood capillary; Mc, mesangial cells; NiNPs, nickel nanoparticles.
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facilitated their entrance into the target cells.1 NP size, shape

and core composition are strong determinants of cellular

uptake and accumulation.36,37 Although it is still unclear

whether translocation, distribution, and elimination are

affected by NP size,38 the size of NPs remains a critical factor

in their internalization and accumulation. The size of NiNPs

used in this study was 20 nm in diameter; this could facilitate

NiNPs entrance into cells.1 Nevertheless, NPs with a size

ranged of 20–50 nm are considered appropriate application

involving drug delivery.39 NPs with a size less than 20 nm (eg

10 nm) have been shown to accumulate in the liver and spleen

of rats,40 while NPs of larger size (20–100 nm) have been

found to accumulate in the kidney.41 On the other hand, NPs

with a size less than 20 nm could be rapidly cleared by the

kidneys,42,43 while larger NiNPsmay be difficult to be uptaken

by cells.44 The rapid clearance of NPs limits their use because

they will take longer to reach target tissues.45 Currently, no

agreement has been reached on the effect of size on the cellular

uptake and accumulation of NPs. For example, Cho et al46

observed maximum cellular uptake for AuNPs with a size less

than 30 nm,46 while Chithrani and Chan47 found maximum

uptake for AuNPs with a size between 50 and70 nm.47 These

discrepancies may be due to the varied physicochemical prop-

erties of NPs.37 The size and surface charge are found to

interact in an interrelated fashion to modulate nanoparticle

uptake into cells. For anionic AuNPs, cellular uptake is

decreasedwith increasing size, whereaswith cationic particles,

cell uptake is increased with increasing particle size.48 In

addition to cellular uptake, particle size can also affect the

A
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BC ap
1μm 0.5μm
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Figure 6 Ultrastructure changes in podocytes and mesangial cells in NiNP-treated rat kidney. (A) Degeneration of podocytes showing the fusion of foot processes

(effacement) (arrows). Mesangial cells appeared degenerated having fragmented nucleus (black arrows). Neutrophil in the blood capillary showing phagocytosis of the

degenerating mesangial cells. (B) Enlargement of (A) showing the phagocytosis process and engulfing of apoptotic bodies of mesangial cells and fusion of foot processes of

podocytes.

Note: P1, primary podocyte foot processes; P2, secondary podocyte foot processes.

Abbreviations: NiNPs, nickel nanoparticles; P, podocytes; RBC, red blood cells; BC, blood capillary; MC, mesangial cells; Npl, neutrophil; ap, apoptotic bodies.
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Figure 7 Immunohistochemical images of apoptotic cells in the glomerulus of

NiNP-treated rat kidney. (A) Control group showing negative Tunel reaction. (B)
NiNPs group showing positive Tunel reaction (arrows). (C) Control group showing

no positive p53 reaction. (D) NiNPs group showing positive p53 reaction (arrows).

Abbreviations: NiNPs:, nickel nanoparticles; g, glomerulus.
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Figure 8 Ultrastructure changes in the podocytes foot processes. (A) Control

group showing regular slit distances due to normal secondary foot processes

structure (arrows; P2). (B) Fusion (effacement) of some of the secondary foot

processes (P2). Arrow indicates a slit.

Note: P1, primary podocyte foot processes; P2, secondary podocyte foot processes.

Abbreviations: En, endothelial cells; RBC, red blood cells; BC, blood capillary; NiNPs,

nickel nanoparticles; GBM, glomerular basement membrane.
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mode of endocytosis.49 With respect to size-dependent toxi-

city, small-sized NPs have larger surface area and particle

concentrations than NPs of larger size which may increase

the chance of interaction with surrounding macromolecules

such as DNA and proteins, and as a consequence, trigger

adverse responses.50 Smaller-sized NPs have been shown to

induce much higher production of ROS and interleukin-8 than

NPs of larger size.51,52

On the other hand, the route of administration may play

a significant role in NPs accumulation in different organs

causing different levels of toxicity. In the present investiga-

tion, the intraperitoneal route of administration was selected

since it is widely used in NPs research, particularly in

nanomedicine.53 It is well known that drug absorption via

the intraperitoneal route is good and rapid due to the high

intensity of blood vessels and lymph in the murine

peritoneum.54 Intraperitoneal injection has been demon-

strated to improve the uptake of NP-labeled macromolecules

compared with the intravenous route.55 Intraperitoneal injec-

tion may cause a higher accumulation of AuNPs in kidneys

compared with micromolecules.56

A

N

N

N
N
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L

L
L

2μm In4μm
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Figure 9 Ultrastructure of renal tubules of kidney of rats treated with NiNPs. (A) Proximal convoluted tubules of the NiNP-treated group showing variable sized lysosome-like

vacuoles. Cellular debris is seen in the lumen of the duct shed from the renal tubules (stars). (B) Distal tubule ofNiNP-treated rat showing pyknotic nuclei (arrows) against normal nuclei.

Abbreviations: NiNPs, nickel nanoparticles; L, lysosome-like vacuoles; N, nucleus; In, interstitial region.
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Figure 10 Electronmicroscope images of proximal convoluted tubule showing the status of mitochondria. (A) In the control group showing the normal density and ultrastructure. (B)
In NiNP-treated rats showing the low density normal and damaged mitochondria. NiNPs are seen in different locations, free in the cytoplasm (black arrow), endocytosed by plasma

membrane (white arrow), within lysosome-like vacuoles and uptaken by mitochondria (curved arrow connector).

Note: M2, damaged mitochondria.

Abbreviations: NiNPs, nickel nanoparticles; PT, proximal convoluted tubule; L, lysosome-like vacuoles; N, nucleus; M, mitochondria; bb, brush border.
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Figure 11 Mitochondria number counted by TEM photomicrographs per 100 µm2 area

in PT cells of NiNPs treated rats which showed a significant decrease compared to

control.

Note: *Significant decrease at P≤0.05.
Abbreviation:NiNPs: nickel nanoparticles; TEM, transmission electronmicroscope; PT,

proximal convoluted tubule.
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As revealed by the TEM images, the NiNPs used here

were spherical. Previously, when a comparison between

cubic, spherical and rod-like gold nanoparticles was made,

spherical particles showed the highest cellular uptake.57

During renal excretion, the spherical NPs are cleared faster

than rod NPs.58 Differential toxicity due to the varying

shapes of NPs has been reported. For example, the den-

dritic structure of NiNPs is found to result in higher

toxicity in comparison to a spherical structure.59 In

a toxicity study using AgNPs with epithelial cells, wire-

shaped silver was found to be more toxic than sphere-

shaped silver.60 Localization of clusters of NiNPs inside

vacuoles in our images may be due to their agglomeration

through curvature- mediated attraction.61

Biochemically, sub-acute administration of NiNPs

caused a significant increase of serum creatinine, urea

and uric acid and a non significant increase of phosphor-

ous level compared to the control. Recently, acute admin-

istration of nickel oxide nanoparticles (NiONPs) was

found to induce an elevation of creatinine level.62 The

high levels of creatinine may reflect an abnormal glomer-

ular filtration rate due to metals accumulation in kidneys.63

Degeneration of renal tubular cells and mitochondrial

damage due to NiNPs localization and accumulation, as

revealed by this present work, may be related to these

biochemical changes.64

In this study, NiNPs caused damage to the mitochondria

which also displayed a lower density. Several studies suggested

the targeting ofmitochondria byNPs due to their ability to bind

with mitochondrial complex II of the electron transport chain

to induce apoptosis.33,65 Mitochondria-targeting NPs have

become a potential novel strategy in drug delivery for cancer

therapy.65,66 The NiNPs-induced damage of the mitochondrial

inner membrane, as revealed by the current investigation and

consistently observed in previous work, may result in cyto-

chrome c release leading to apoptosis.66,67 NiNPs uptake by

mitochondria may be behind elevated oxidative stress, since

mitochondria play a crucial role in cellular oxidative stress.68,69

Recently, other NPs such as silica NPs, were found to induce

oxidative stress causing impaired mitochondrial function lead-

ing to apoptosis.67 NiNPs-induced oxidative stress has been

suggested to cause nanotoxicity, particularly induction

of apoptosis.7 The observation of NiNPs in the apical villi of

PT cells in the present study indicates that excretion of NiNPs

may occur via the urinary route, but further confirmation is

required through further NP elimination studies.70

Conclusion
NiNPs were found to induce various cellular ultrastructure

changes in the kidneys of rats. The cellular ultrastructure

alterations, which subsequently affected renal function

may be due to the direct contact of NiNPs with the renal

cells or due to the oxidative stress induced by NiNPs. The

NiNPs used different ways to translocate into the cyto-

plasm of the PT cells across the basement membrane and

A

M M
N M

M

M
GN

0.25μm 0.25μm

B

Figure 12 NiNPs intracellular localization in PT cells: (A) control group with normal ultrastructure of mitochondria, RER (arrow) and Golgi apparatus. (B) The NiNP-

treated group showing electron dense particles, probably NiNPs, adhered to the RER which surround the mitochondria (arrows) and some are still free (arrow head).

Abbreviations: NiNPs, nickel nanoparticles; N, nucleus; RER, rough endoplasmic reticulum; M, mitochondria; PT, proximal convoluted tubule; G, Golgi apparatus.

N

M
M

M

M

M

M

BM 0.5μm

Figure 13 A distal tubule lining epithelial cell in the NiNP-treated group. Few

numbers of mitochondria are seen. The box shows a vacuole containing an electron

dense particle and whole vacuole is seen surrounded by an adjacent mitochondrion.

Number of electron dense particles, probably NiNPs, near the basement membrane

are seen (arrows).

Abbreviations: NiNPs, nickel nanoparticles; M, mitochondria; N, nucleus; BM,

basement membrane.
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through the plasma membrane of the two adjacent PT

cells. Such pathways of internalization may be affected

by the characteristic physicochemical properties of

the NPs.
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