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Abstract: Multipotent mesenchymal stem cells have shown great promise for application in

regenerative medicine owing to their particular therapeutic effects, such as significant self-

renewability, low immunogenicity, and ability to differentiate into a variety of specialized

cells. However, there remain certain complicated and unavoidable problems that limit their

further development and application. One of the challenges is to noninvasively monitor the

delivery and biodistribution of transplanted stem cells during treatment without relying on

behavioral endpoints or tissue histology, and it is important to explore the potential mechan-

isms to clarify how stem cells work in vivo. To solve these problems, various nanoparticles

(NPs) and their corresponding imaging methods have been developed recently and have

made great progress. In this review, we mainly discuss NPs used to label stem cells and their

toxic effects on the latter, the imaging techniques to detect such NPs, and the current existing

challenges in this field.
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Introduction
Mesenchymal stem cells (MSCs), which are multipotent and can be readily

obtained, have shown great promise for treating arthritis, cartilage defects, tissue

wounds, stroke, graft versus host disease, myocardial infarction, traumatic brain

injury, and even cancer1–3 owing to their particular therapeutic effects such as

significant self-renewability; low immunogenicity; and ability to differentiate into

a variety of specialized cells, control inflammation, and modify the proliferation of,

and cytokine production by, immune cells.4 Intravenous injection is a common

method for transplanting MSCs in both animal models and clinical trials.3,5

However, certain barriers significantly limit their long-term efficacy in clinical

trials. One of the challenges is to noninvasively monitor the delivery and biodis-

tribution of administered cells during treatment without relying on behavioral end-

points or tissue histology.3,6,7

To solve the above problem, reliable and non-invasive tracking of stem cells is

urgently needed to understand the long-term fate, migration, and regenerative

capability of stem cells, and to evaluate treatment efficacy.8 To date, there are

three main strategies for cell labeling: direct labeling, indirect labeling, and multi-

modal labeling. The first strategy is to label stem cells with nanoparticles (NPs),

including gold NPs,9 iron oxide NPs,10,11 organic dyes, and quantum dots

(QDs),12,13 followed by various imaging techniques, such as photoacoustic ima-

ging, fluorescence imaging, magnetic resonance imaging (MRI), and optical ima-

ging, which are used to detect these materials. For the indirect-labeling method,
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a reporter gene is introduced into cells and then translated

into enzymes, receptors, fluorescent or bioluminescent

proteins.14–17 Among these, green fluorescent protein or

luciferase is used frequently for cell labeling so as to

provide precise and quantitative information on the fate

and distribution of administered stem cells.18,19

Multimodal imaging, which combines direct and indirect

labeling, can be achieved by using a single label or tracer

that is visible using different imaging modalities, or

a combination of imaging labels. It is particularly effective

in that the strengths of different imaging modalities can be

maximized.

At present, various NPs and their corresponding ima-

ging methods have been developed and have shown

a promising prospect (Figure 1A-F). In the following

review, we will discuss NPs used to label stem cells and

their toxic effects on the latter, the imaging techniques to

detect such NPs, as well as the currently existing chal-

lenges in this field.

NPs and their toxic effects
Currently, the general definition of NPs are materials with

1–100 nm diameter and surface area >60 m2/cm3.20,21

Morphology and size are important in determining the

physicochemical properties of the NPs, as they not only

lead to different rates of cellular uptake, but also interact

with biological tissues which cannot be done with other

bulk materials.22 New synthesis techniques have produced

not only spherical NPs, but also NPs of other shapes, such

as cubes,23,24 prisms,25,26 hexagons,24 octahedrons,27 rods,

and tubes.28

To date, several engineered NPs, such as QDs, silica

NPs, and persistent luminescence NPs, have been devel-

oped and employed in medical fields owing to their unique

magnetic and/or optical properties as well as their capabil-

ity to offer real-time methods of tracking intracellular

processes at a biomolecular level.8,29,30

Besides tracking living transplanted therapeutic stem

cells,31 synthetic NPs have also being exploited for many

other applications, such as manufacturing industrial pro-

ducts, drug and gene delivery,32–34 and nanotheranostics.35

In particular, some NPs are even used for cancer thermal

therapy in clinical trials.36–38

Although NPs have afforded significant progress in

stem cells tracking and allow sensitive detection and

long-term localization under non-invasive conditions

in vitro, their toxic side effects on cells still limit their

clinical applications.39 In general, toxic effects on cells

induced by NPs uptake are mainly due to the following

reasons. First, most types of NPs are endocytosed by

cells and accumulate in cytoplasmic vesicles, particularly

lysosomes or late endosomes.40,41 However, some NPs

may undergo degradation or solubilization due to their

sensitivity to the oxidative environment, and thus result

in the leaching of free ions or increased abundance of

reactive surface groups.39 In this case, large amounts of

reactive oxygen species will also be generated, which

can damage labeled cells when the elevated level of

reactive oxygen species persists over prolonged time.42

Second, the physical characteristics of NPs can disrupt

the cytoskeletal network during NPs internalization into

cells.43 However, it is the cytoskeleton that plays

a major role in the fundamental physiological functions

of cells such as shape, motility, division, adhesion, and

interaction with the surrounding environment.44 When

the cytoskeleton changes, its biological function would

be affected at the same time, thus resulting in biological

toxicity. Third, the internalized NPs can interfere with

intracellular signaling pathways such as direct NPs-

induced DNA damage,45–47 modulation of intracellular

signaling cascades, or membrane damage,45 and interac-

tion of NPs with cellular transcription/translation

machinery.47,48 As shown in Figure 2, the disruption of

these transduction pathways not only affects the basic

physiological functions of cells, but also diminishes their

proliferation and differentiation ability. For different NPs

which are widely used to label stem cells, their toxic

effects are listed in Table 1.

Quantum dots
QDs are semiconductor nanocrystals with a diameter of

approximately 2–10 nm,49 possessing excellent optical

properties such as narrow, symmetric, and size-tunable

emission spectra due to the quantum-confinement

effect,50 and their adjustable spacing by controlling

crystal size. In addition, compared with fluorescent pro-

teins or organic fluorophores, QDs exhibit 10–100 times

brighter fluorescence, and 100–1,000 times higher fluor-

escence stability against photobleaching, which not only

enables multicolor fluorescent applications, but also

facilitates long-term monitoring of intermolecular and

intramolecular interactions in living cells and tissues.

Based on these special properties, QDs have been used

for bioimaging applications since 1998,51,52 particularly

for labeling different cell lines in in vitro and in vivo

studies.53,54
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Hsieh et al
CdSe/ZnS QDs impaired
the chondrogenesis of 
MSCs.

Rosen et al
HMSCs labeled with 
QDs were tracked in vivo 
for at least 8 weeks. 

Shah et al 
RGD-QDs acted as an effective 
probe for long-term labeling of
SCs.

Lei et al
Tat peptide-QDs were used to 
label MSCs in mouse body.

Higuchi et al
PAMAM dendrimer 
increased uptake efficiency and 
cytosolic distribution of QDS to 
label MSCs.

Liu et al 
CdSe/ZnS QDs-Labeled MSCs could target 
pancreas tissues and reduce the blood glucose 
levels in diabetic rats.

Qiu et al
Graphene QDs promoted the 
adipogenic and osteogenic 
differentiation of MSCs.

Yan et al 
Relatively weak positive surface charges enabled 
carbon QDs to possess good biocompatibility and 
labeling efficiency in hUCMSCs.

Kundrotas et al
Cell growing density influenced
the uptake and distribution of 
carboxylated QDs in hMSCs.

Chung et al
Positive surface charge regulated
uptaken of mesoporous silica 
NPs by hMSCs

Han et al
Canine MSCs labeled with silica NPs were 
detected in highly autofluorescent renal 
tissues after 2 or 3 weeks.

Kim et al 
Aminated mesoporous silica NPs were 
used to deliver genes within rat MSCs. 

Clara et al
Dye-loaded amorphous silica NPs 
affected the long-term biosafety, 
stemness preservation and traceability of 
hMSCs.

Yang et al
Core-shell fluorescent silica NPs 
stimulated osteogenic differentiation 
of hMSCs. 

Popara et al
MSCs labeled with silica NPs could 
improve acute functional cardiac 
integration.

Hu et al
SPIONs signals in hMSCs 
could be detected after 2 weeks.

Matta et al
Chitosan-coated SPIONs signals were 
tracked in MSCs without cellular 
alteration.

Wang et a l 
The efficacy and durability were different 
in labeled MSCs using ultrasmall SPIONs 
with Organosilica, Dextran, and PEG 
coatings.

Chang et al
Amine-surface-modified SPIONs 
accelerated cell proliferation but impaired
osteogenic and chondrogenic differentiation 
potentials of hMSCs.

Long et al
Ultra-small SPIONs were used to label 
MSCs in a rat model of temporal lobe 
epilepsy. 

Them et al
The sensitivity for SCs monitoring in 
system-function could be increased based 
magnetic particle imaging.

Naseroleslami et al
SPION-labeled MSCs in magnetic field 
could improve heart function and 
myocardial hypertrophy and reduce 
fibrosis.

Jin et al 
Conjugated polymer NPs acted as 
ultrastable long-term trackers to 
understand MSCs therapy in skin 
regeneration.

Deveza et al
Polymer-DNA NPs-induced 
CXCR4 overexpression could 
improve SCs engraftment and 
tissue regeneration

Chen et al
Near-infrared fluorescent semiconductor 
polymer NPs were applied for bright 
labeling and tracking of hMSCs.

Qin et al
Ultrasensitive semiconducting polymer 
NPswere used to track hESC-CMs in 
living mouse hearts.

Moghaddam et al
Gadonanotube-polymer NPs 
were used for SCs labeling and 
tracking.

Wang et al 
Cr3+/Eu3+ Co-doped Zinc 
Gallogermanate PLNPs were 
used to cell imaging.

Wu et al 
LPLNP-TAT could successfully 
label ASCs without impairing their 
proliferation and differentiation
abilities.

Nagesha et al
Uultiphoton luminescence of gold 
NPs were used to label embryonic 
SCs

Yi et al
Gold NPs promoted osteogenic 
differentiation of MSCs.

Jokerst et al
Silica-coated gold NPs 
were used to label MSCs 
in living mice.

Chung et al
Gold NPs were used to track ADSCs in a 
PEGylated fibrin gel for dermal tissue 
engineering applications.

Muroski et al
Gold NPs were used to induce
therapeutic gene expression in 
MSCs. 

Kong et al
RGD peptide-modified dendrimer-
entrapped gold NPs enabled highly 
efficient and specific gene delivery 
to SCs.

Joydeep et al 
Polyethylenimine-coated gold NPs 
were used to delivery C/EBP beta 
gene into hMSCs and founded 
enhanced adipogenic differentiation.

Shammas et al 
Plasmonic gold NPs were 
applied for cellular 
tracking and photothermal 
cancer cell ablation. 

Kim et al
Gold-Poly-L-Lysine 
NPs were used to
label hMSCs.

Long et al
Ultra-small SPIONs were used to label
MSCs in a rat model of temporal lobe
epilepsy.

Li et al
Gold NPs with tunable RGD 
density introduced
chondrogenic differentiation 
of hMSCs.
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Figure 1 The timeline of the development of different nanoparticles and the related imaging methods (representative articles). Timeline of (A) QDs, (B) silica NPs, (C)
SPIONs, (D) PLNPs, (E) polymer NPs, (F) gold NPs.

Abbreviations: QDs, quantum dots; PAMAM, polyamidoamine; NPs, nanoparticles; SPIONs, superparamagnetic iron oxide nanoparticles; RGD, arginine-glycine-aspartic;

LPLNP-TAT, TAT penetrating peptide-bioconjugated long-persistent luminescence nanoparticles; FI, fluorescent imaging; MRI, magnetic resonance imaging; MPI, magnetic

particle imaging PI, photoacoustic imaging; TEM, transmission electron microscope; CT, computed tomography.
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Two methods are generally considered for labeling

stem cells with QDs: the combination of QDs with stem

cells surface55 and the transduction of QDs into stem

cells.56,57 However, the former would lead to a decrease

in the accumulation rate of stem cells in tissues/organs,

and separation of QDs from the stem cells surface during

in vivo circulation, while the latter results in high cyto-

toxicity and low transduction efficiency when using phy-

sical stimulus methods, such as ultrasonic transduction58

and electroporation.59,60

In contrast, chemical modification methods, such as

cationic liposomes, cell penetrating peptides, and high

molecular weight nano-carriers (polymer micelles) were

reported as feasible in the labeling of stem cells with

QDs.61–63 In this regard, Shah and Mao provided

a detailed protocol for the labeling of selected integrins on

human mesenchymal stem cells (hMSCs) membranes with

bioconjugated QDs by optimizing precise concentrations

and incubation times.64 In addition, stem cells labeled

with bioconjugated QDs, whether differentiated or not,

could be readily imaged by fluorescence microscopy.

At present, some studies have shown adverse effects

while others have shown opposite results. In 2007,

Chakraborty et al found no adverse effects on stem cells

morphology, viability, proliferation, or differentiation over

the duration of their experiments at an optimized labeling

efficiency.65 In another study, no adverse effects were

detected as hMSCs differentiated into osteogenic, chon-

drogenic, and adipogenic cell lineages, even though

hMSCs had been labeled with a concentration of 20–50

nM QDs for at least 22 days, while retaining QDs in their

cytoplasm.66 In addition, Wang et al labeled MSCs derived

from the human amniotic membrane with different doses

of QDs and studied their effects over 1–4 days. Their

results showed that cells still maintained viability >80%.67

However, others have noticed alterations to stem cells68,69

and abnormalities during embryo development when labeled

with QDs.70 Researchers used QDs to label hMSCs and

reported that, even though cellular proliferation and cell-

cycle distribution were not affected, the chondrogenic and

osteogenic differentiation potential of cells was disrupted.68,69

Therefore, QDs are not completely toxic, but there is likely

to be a confined protocol within which they can be applied

without major interference in the processes under study.70

Silica NPs
Silica NPs are nano-scale sized, possessing good stability,

biocompatibility and morphological tunability, and have

been widely applied in chemical, agricultural, and cos-

metic fields. In addition, they are being continuously

developed for medical purposes, such as diagnosis,

treatment,71–73 controlled-release drug delivery, and gene

transfection.74,75 Silica NPs have been approved as reli-

able ultrasound contrast agents.76 When used as a tracking

method, silica NPs are generally labeled with

fluorescein.77,78 The advantage of this combination is

that silicon dioxide not only acts as a matrix to chemically

and physically confine the fluorescent dyes, but also pro-

tects the dye molecules from external quenchers, thereby

increasing their light stability. Furthermore, this combina-

tion can also provide a biocompatible and easily functio-

nalized surface.79

Among them, exosome-like silica (ELS), which has

a unique curvature and cup shape, is more advantageous.

This shape provides a double scattering/reflection interface

to increase the echo so that it allows lower NPs doses to

NPs

metabolism

proliferation

apoptosis

differentiation

morphology

migration

immuno-
phenotype

stem cells

cell toxicity

viability

Figure 2 The toxic effects of NPs on cell viability, morphology, immunophenotype, metabolism, migration, proliferation, differentiation, and apoptosis of stem cells.

Abbreviation: NPs, nanoparticles.
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Table 1 Toxic effects of different nanoparticles used to label stem cells

Stem
cells

Species Nanoparticles Analysis Concentration Main results Refer-
ences

MSC Human Cholera toxin

subunit B QDs

Cell viability, morphology,

proliferation and differentia-

tion capacity

250 pm–16 nM No adverse effects 65

MSC Human RGD-conjugated

QDs

Proliferation and differentia-

tion capacity

20–50 nM No adverse effects 66

MSC Human CdSe/ZnS QDs Cell viability, immunopheno-

typic profiles

0.75–3 μg/mL No adverse effects 67

MSC Human CdSe/ZnS QDs Cell viability, proliferation and

differentiation capacity

1.625 μg Chondrogenic differentiation

impairment

68

MSC Human CdSe/ZnS QDs Cell viability, proliferation and

differentiation capacity

1.625 μg osteogenic differentiation

impairment

69

MSC Rat CdSe/ZnS QDs Cell viability, differentiation

capacity

16 μg/mL No adverse effects 185

MSC Human Carbon QDs Cell viability, differentiation

capacity Single cell sphere

formation capacity

50 μg/mL No adverse effects 186

ADSC Human Graphene QDs Cell viability, metabolic

activity

0.5, 1.0, and

2.0 mg/mL

No adverse effects 187

MSC Rat Graphene QDs Cell viability, proliferation and

differentiation capacity

50 μg/mL Enhanced osteogenic, adipogenic

differentiation

188

MSC Human Mesoporous silica

NPs

Cell adhesion capacity, immu-

nophenotypic profiles

50 μg/mL Enhanced adhesion capacity and

Connexin-43 expression

73

MSC Human Spherical core-

shell fluorescent

silica NPs

Cell viability, adipogenic dif-

ferentiation capacity

100 μg/mL Adipogenic differentiation

impairment

189

MSC Human Core-shell fluor-

escent silica NPs

Cell viability, osteogenic dif-

ferentiation capacity

10 μg/mL Osteogenic differentiation

enhancement

190

MSC Human Mesoporous silica

NPs

Cell viability, migration

capacity

100 and 200 μg/

mL

No adverse effects 191

MSC Human Dye-loaded amor-

phous silica NPs

Cell viability, proliferation and

differentiation capacity

50 μg/mL No adverse effects 192

MSC Human Mesoporous silica

NPs

Cell viability, proliferation and

differentiation capacity

20 μg/mL No adverse effects 86

MSC Human Mesoporous silica

NPs

Cell viability, differentiation

capacity

3–10 μg/mL No adverse effects 87

MSC Human Mesoporous silica

NPs

Cell viability, morphology,

immunophenotypic profiles,

proliferation and differentia-

tion capacity

20 μg/mL No adverse effects 88

MSC Human Mesoporous silica

NPs

Cell viability, immunophenoty-

pic profiles, proliferation and

differentiation capacity

20 μg/mL No adverse effects 89

MSC Rat SPIONs Cell viability, differentiation

capacity

1, 5 μg/mL Chondrogenic differentiation

enhancement

193

MSC Rat ASP-SPIONs Cell viability, apoptosis rate,

intracellular ROS level, mito-

chondrial transmembrane

potential, and differentiation

capacity

30 μg/mL No adverse effects 194

(Continued)
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produce the same ultrasound contrast, thereby increasing

biocompatibility. Meanwhile, compared with most other

negatively charged silica NPs due to the presence of

hydroxyl groups, ELS NPs are positively charged with

amine groups, which greatly increases their affinity for

stem cells, thus improving not only the cellular uptake

rate but also the ultrasound contrast.

ELS also increases the echogenicity and ultrasound

sensitivity of hMSCs. For example, Fang et al injected

ELS-labeled hMSCs and Matrigel vectors subcutaneously

into nude mouse, PBS and unlabeled cells were also

injected as controls, the in vivo ultrasound image results

showed a significant increase in echogenicity of trans-

planted ELS-labeled stem cells compared to controls.80

Table 1 (Continued).

Stem
cells

Species Nanoparticles Analysis Concentration Main results Refer-
ences

ADSC Rat PEG/PVP-SPIONs

and PEG/PEI-

SPIONs

Cell viability, morphology, 12, 25, and 50

μg/mL

No adverse effects 195

ADSC Rat SPIONs Cell viability, morphology,

proliferation capacity

50 μg/mL No adverse effects 196

MSC Human SPIONs Cell viability, differentiation

capacity

25 μg/mL No adverse effects 99

MSC Rat HEDP coated

SPIONs

Cell viability, morphology, dif-

ferentiation capacity

25 μg/mL No adverse effects 100

MSC Human SPIONs Cell viability, morphology, dif-

ferentiation capacity

1, 10, and 100 μg

Fe/ml

No adverse effects 101

MSC Human SPIONs Cell viability, proliferation and

differentiation capacity

13–16 pg Fe/cell chondrogenic differentiation

impairment

102

ADSC Mouse Penetrating pep-

tide-bioconjugate-

PLNPs

Cell viability, differentiation

capacity

50 μg/ml No adverse effects 109

MSC Human Purified polymer

NPs

Cell viability, proliferation

capacity

0, 5, 10, 20, 40

μg/mL

No adverse effects 119

MSC Human R8-Polymer NPs Cell viability, proliferation and

differentiation capacity,

tumorigenicity, immunophe-

notypic profiles

10 μg/mL No adverse effects 120

MSC Porcine GNT-Polymer

NPs

Cell viability 1014 Gd3+ ions/

cell

No adverse effects 197

hESC-

CM

Human Polymer NPs Cell viability, and immuno-

phenotypic profiles

0, 2, 4, 8×10-9M No adverse effects 198

MSC Human Gold NPs Cell viability, proliferation and

differentiation capacity

1012 NPs/mL No adverse effects 135

MSC Human Silica-coated gold

NPs

Cell viability, proliferation and

differentiation capacity

0.0–0.14nM No adverse effects 139

MSC Rat Silica-coated gold

NPs

Cell viability, proliferation

capacity

1012 NPs/mL No adverse effects 140

MSC Mouse PEGylated gold

NPs

Cell viability, migration, pro-

liferation, differentiation and

capacity to colonize scaffolds

100μg/mL migration capacity enhancement,

osteoblasts differentiation

enhancement, capacity to colonize

scaffolds enhancement

142

MSC Human TEMPO-

Conjugated gold

NPs

Cell viability, proliferation and

differentiation capacity

0.05–1.00mM Chondrogenic differentiation

enhancement, adipogenic differen-

tiation impairment

145

ADSC Human NAC modified

gold NPs

Cell viability, ALP activity 20 µM cell viability enhancement 199
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It is worth noting that for medical therapy, injected stem

cells tend to die because of the harsh environment.81,82 To

overcome this challenge, growth-promoting survivors could

be conjugated with ELS NPs83–85 so that the cell viability

could be increased. Besides, ELS NPs can be easily chemi-

cally modified. In addition to labeling with fluorescein, as

described by Fang et al, they can also be coated with helium

ions or radionuclides for multimodal imaging.80

There are few reports regarding toxic effects on stem

cells when labeled with silica NPs, which is of great

promise in applications involving regenerative medicine.

In 2008, Huang et al reported that the uptake of meso-

porous silica NPs into hMSCs failed to influence their

osteogenic differentiation and that silica NPs actin poly-

merization in MSCs could be enhanced.86 Liu et al demon-

strated that silica-coated core-shell superparamagnetic iron

oxide NPs co-condensed with fluorescein isothiocyanate-

incorporated mesoporous silica were able to facilitate

uptake by hMSCs without affecting their viability and

differentiation potential at the same time.87 More mean-

ingfully, cyanine dye-doped silica NPs were reported to

label hMSCs without affecting viability, proliferation,

stemness surface marker expression, and the ability to

differentiate into osteocytes.88 Also, after the internaliza-

tion of mesoporous silica NPs conjugated with fluorescein

isothiocyanate by hMSCs, Huang et al observed that there

were no obvious differences in cell viability, proliferation,

and surface markers, compared to unlabeled cells.89 In

addition, their capability to differentiate into adipocytes,

chondrocytes, and osteocytes was also not disrupted.

Superparamagnetic iron oxide

nanoparticles (SPIONs)
SPIONs, a kind of tiny variant of iron fluorophore parti-

cles, have been widely used as contrast agents for stem

cells tracking markers owing to their biocompatibility,

superparamagnetism, nanoscale control, and tailor-made

surface coatings.90–93 Furthermore, when tracking stem

cells, SPIONs can enhance the contrast between different

tissues by inducing darker areas (negative contrast).77,94,95

However, it should be mentioned that there is still no

clear optimal parameter to guide the use of SPIONs in

stem cells tracing. One reason is that different doses of

SPIONs have been used to label different cell types by

containing different types of iron oxide cores and different

coatings. Another issue is that they would lose the magne-

tization vector caused by the applied magnetic field and

become highly dispersed when the magnetic field is

switched.96 Despite this, some researchers have still

applied it to stem cells tracking and have obtained satis-

factory results, for example, Hua et al used SPIONs to

label bone marrow MSCs and successfully tracked the

transplanted cells with MRI over different time

courses.97 Long et al successfully tracked MSCs labeled

with ultra-small SPIONs in a rat body.98 Naseroleslami

et al found SPIONs-labeled MSCs in the presence of

magnetic field could markedly improve heart function

and myocardial hypertrophy and reduce fibrosis.95

There is still controversy concerning the toxicity of

SPIONs to labeled cells; some researchers believe that they

are toxic, while others believe the opposite. In 2007, Song

et al confirmed that internalization of SPIONs (ferumoxides)

by hMSCs using lipofectin transfection agents did not affect

their cartilage formation, adipogenesis, or osteogenic

differentiation.99 In 2009, Delcroix et al used SPIONs coated

with 1-hydroxyethyl-l, l-bisphosphonic acid to label rat

MSCs. The cells were incubated with NPs for 48 hrs, and

the authors confirmed that more than 90% of the cells con-

tained enough iron to allow their detection with no significant

alteration to cell viability. In addition, cellular ultrastructure

was conserved, and compared to unlabeled rat MSCs, the

differential potential for osteogenic and neuronal lineages of

rat MSCs did not show significant differences.100 In another

study, hMSCs were incubated with ferucarbotran for 24 hrs

and then labeled with SPIONs. Researchers found that there

were no microscopic morphological changes observed up to

12 days after SPION labeling.101 However, other researchers

holding the opposite view also have their own reasons. Bulte

et al reported in 2004 that uptake of SPIONs (ferumoxides)

by hMSCs with incubation of the transfection agent poly-

L-lysine (intracellular iron incorporation of 13–16 pg Fe/cell)

would impair their chondrogenic differentiation, and they

confirmed that their inhibitory effect is mediated by Fe itself

rather than the transfection agents.102 Chang et al found that

amine-surface-modified SPIONs could accelerate cell prolif-

eration but impair osteogenic and chondrogenic differentia-

tion potentials of hMSCs.103

Perhaps, more comprehensive and detailed research is

still needed to confirm whether SPIONs have toxic effects

on cells and thus arrive at credible results.

Persistent luminescent nanoparticles
PLNPs are a group of emerging luminescent materials that

have been developed and used in biomedical fields over

the past decade. PLNPs exhibit unprecedented advantages
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in stem cells tracking due to the following unique

features.104 The most important is that PLNPs can remain

glowing for hours or even days after excitation is

stopped,105–107 which makes long-term imaging possible

without in situ excitation. The other is that PLNPs have

excellent signal-to-noise ratios, and can be distinguished

from normal tissue autofluorescence. As a consequence,

their detectable sensitivity can be greatly improved. For

example, Chermont et al pre-charged Ca0.2Zn0.9Mg0.9Si2
O6:Eu

2+Dy3+Mn2+ PLNPs with UV light, and then

injected them into the mouse. They found that as low as

20 ng PLNPs could generate detectable signals without

in situ excitation, and could eliminate autofluorescence

from in situ excitation.108

To evaluate PLNPs in vivo toxicity, Wu et al employed

penetrating peptide-bioconjugated long persistent nano-

phosphors to track adipose-derived stem cells during

wound healing and they confirmed that the labeled adi-

pose-derived stem cells could effectively promote wound

healing without the proliferation and differentiation ability

impaired.109

However, considering the available data, it is not easy

to judge the toxic effects of PLNPs on stem cells. Before

being applied on a large scale, more stem cells experi-

ments should be conducted to establish more comprehen-

sive and credible conclusions.

Polymer NPs
Polymer NPs are generally prepared through either disper-

sion of preformed polymers or polymerization of

monomers,110 and have been applied for medical purposes

widely.

New polymer NPs, such as microgels, dendrimers, and

modified polysaccharide NPs, are mostly being used as

anticancer drugs, drug and gene delivery carriers, and

MRI contrast agents.111–115 For stem cells tracking, fluor-

escent organic dyes are commonly used, not only because

they can be physically entrapped in the polymer interior

during the preparation of NPs, but also covalently bound

to the polymer chain before the preparation of NPs. At

present, the most common fluorescent polymer NPs are

polystyrene NPs prepared mainly through the emulsion

polymerization method.

For example, Jiang et al investigated the uptake of

polystyrene NPs by MSCs using confocal fluorescence

microscopy and flow cytometry.116 In addition to PS, fluor-

escent polymer NPs can also be prepared with conjugated

fluorescent polymers such as poly(arylenediethynlenes),117

poly(3,4-ethylenedioxythiophene), poly(thiophene-3-yl-

acetic acid) and polyacetylene. Polymer NPs prepared by

this method can exhibit an amplified fluorescence effect.

Recently, a general strategy has been developed to

enhance the photostability of organic fluorophores in bio-

medical imaging. Using this method, bright and robust

fluorescence could be easily observed.118

However, despite their wide application, disadvantages

such as low incorporation, and inadequate protection of

dye molecules leading to consequent leaching, quenching,

and photobleaching of the fluorophores, have presented

difficult challenges in long-term stem cells tracking.

As for their toxic effects on stem cells, Chen et al

found no significant differences between polymer dot-

labeled MSCs and unlabeled MSCs in their respective

abilities of cell proliferation, differentiation, and phenoty-

pic expression.119 Also, the polymer dot-labeled MSCs

retained robust self-renewal capacity and multi-lineage

differentiation potential. In another study, researchers

found that, compared to unlabeled MSCs, cell viability,

proliferation and differentiation capacity, tumorigenicity,

and immunophenotypic profiles of polymer dot-labeled

MSCs also showed no differences.120

Furthermore, the existing data still do not fully demon-

strate that polymer NPs are safe or have no toxic effects on

stem cells. Thus, studies on their toxicity still need to be

continued to achieve a more comprehensive understanding.

Gold NPs
Gold NPs can be designed into different structures and

shapes depending on the intended application.121,122 These

include gold nanospheres, gold nanoshells, and gold nanor-

ods. Moreover, due to the continuous development of gold

NPs and the continuous optimization of their properties,

more and more gold NPs have been used in the biomedical

field, such as gene transfection,123–125 drug delivery,126,127

antisense gene control,128,129 intracellular detection and

imaging,130–132 and stem cells labeling.133–138

Since gold NPs have promising applications in bio-

medicine, more attention has been paid to the assessment

of their risk potential, so as to prolong the life cycle and

minimize toxicity in vitro and in vivo. To study the

capacity of Silica-Coated Gold Nanorod-labeled murine

MSCs, authors conducted MTT cell toxicity assays and

the results indicated that Silica-Coated Gold Nanorods

with 3 hrs of incubation time lead to no statistically

significant change in MSCs metabolic activity compared

to unlabeled MSCs. Also, there were no significant
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differences in terms of normal proliferation of the two

cell populations. Furthermore, Silica-Coated Gold

Nanorod-loaded cells were still easily transformed into

osteogenic and adipogenic cell lines, and fivefold greater

osteogenic signals could be detected than in control

groups, while the adipogenic signal showed nearly the

same characteristics.139 In another study, it was demon-

strated that loading MSCs with gold nanotracers did not

alter cell function, and the ability of MSCs to differenti-

ate into adipocytes and osteocytes was maintained.135

Later, Ricles et al labeled rat MSCs with Silica-Coated

Gold Nanorods and found that compared to control

MSCs, the labeled cells were viable for up to 5 days

and continued to proliferate, with no significant reduc-

tion in cell proliferation.140 Li et al found gold NPs with

tunable RGD density could introduce chondrogenic dif-

ferentiation of hMSCs.141 In addition, a study revealed

that using pegylated hollow gold NPs to label MSCs

caused a clear increase in the cellular migration rate

compared to untreated cells. Furthermore, no significant

differences were found for the cell-cycle phase percen-

tages for MSCs when treated with pegylated hollow gold

NPs compared to control cells.142

However, reports on the influence of gold NPs on the

differentiation process are scarce, and their mechanism of

action is still under debate. Some studies have elucidated

that gold NPs could enhance osteogenic differentiation

while inhibiting adipogenic differentiation at the same

time.143,144 For example, in contrast to the suppressive

effect of free 2,2,6,6-tetramethylpiperidine-N-oxyl on

stem cells differentiation, Li et al confirmed that TEMPO-

conjugated gold NPs showed a promoting influence on

osteogenic differentiation, with a suppressive influence

on adipogenic differentiation of hMSCs.145

Based on this, we still cannot conclude whether gold

NPs are toxic to stem cells; thus, more studies should be

designed and conducted to elucidate their toxic effects on

stem cells.

Imaging modalities
Although stem cells therapy has been applied in many

fields, and has achieved some certain efficacy, comprehen-

sive understanding of in vivo behaviors of stem cells is

still lacking, which leads to our confusion regarding the

contradictory results from current clinical trials.21,23,24

Hence, it is of great significance to evaluate the migration,

differentiation, and survival of transplanted stem cells, and

identify the mechanisms behind these behaviors.

Traditional methods to track the fate of implanted stem

cells mainly involve sacrifice of animals or tissue biopsies.

However, an invasive and harmful technique is not accep-

table for long term and continuous analyses.146,147

Recent developments in stem cells therapy require

more accurate and noninvasive methods for qualitatively

and quantitatively monitoring transplanted cells inside the

host, so as to improve the understanding of treatment out-

comes and the fate of the stem cells.148 To overcome these

problems, several tracking modalities, such as fluores-

cence, magnetic resonance, and photoacoustic imaging

combined with engineered NPs possessing unique mag-

netic and/or optical properties, have been developed and

employed in biomedicine to offer real-time imaging of

transplanted cells. Although each imaging modality has

its own unique advantages, along with intrinsic limitations

(as shown in Table 2) which need to be further improved

and perfected, their role in the field of regenerative med-

icine is important and irreplaceable.149

Magnetic resonance imaging
MRI is a basic noninvasive method for human in vivo

imaging that uses a powerful magnetic field to detect the

nuclear magnetization of hydrogen atoms inside the

body,150,151 hence, the signal intensity and distribution

are closely correlated with water content and the anatomy

of the body.152 In clinical medicine, MRI is often used to

diagnose different diseases and identify cancer metastasis

and inflammation sites.153

For stem cells tracking, commonly used MRI contrast

agents include two major categories based on gadolinium

and manganese NPs, such as gadolinium chelating

agents154 and manganese chloride155 and based on iron

oxide NPs, such as paramagnetic/superparamagnetic con-

trast agents.156,157 Actually, these agents are ideal in com-

bination with MRI for stem cells tracking because they are

able to maintain a strong signal, offer direct and clear cell

labeling, and allow non-invasive in vivo scanning.

For example, Blocki et al successfully used MRI to

track SPIONs-labeled MSCs, which were encapsulated in

collagen-based microcapsules, and then injected intramyo-

cardially. They found that MSCs were progressively

released from the microcapsules, and that the signals of

labeled MSCs could be monitored for several weeks.158

Yao et al also used MRI to monitor SPIONs-labeled

endothelial progenitor cells injected into rat myocardium,

and detected the signal from iron-positive cells at the

injection site 10 days later.159

Dovepress Liu et al

International Journal of Nanomedicine 2019:14 submit your manuscript | www.dovepress.com

DovePress
3883

Powered by TCPDF (www.tcpdf.org)

http://www.dovepress.com
http://www.dovepress.com


Fluorescence imaging
Fluorescent imaging, a tracking method with properties

such as low cost, high spatial and temporal sensitivity,

and absence of radiation, has been widely used in biome-

dical applications.

Recently, near-infrared fluorescence (NIRF) molecular

imaging, as one kind of fluorescent imaging, has shown

great potential.160 NIRF is based on a fluorescence optical

imaging method that uses excitation light from the near-

infrared spectrum (700–900 nm) to stimulate fluorescent

molecules (fluorophores, contrast agents for NIRF) from the

ground state (S0) to an excited (S1, S2) state, and when this

molecule moves from the excited state to the ground state, it

emits detectable fluorescence at longer wavelengths of light.

After reaching the ground state, the fluorescent mole-

cular is available again for new excitation. The advanced

properties of near-infrared light, such as low absorption

and high scattering characteristics, make deep tissue pene-

tration (to several centimeters) and diffuse expansion pos-

sible. In addition, excitation with near-infrared light in the

region of >750 nm can largely reduce tissue

autofluorescence161 and thus improve sensitivity. For

example, Huang et al injected infrared fluorescent protein-

labeled MSCs into mouse and successfully detected the

signal by using NIRF imaging.162 In another fluorescent

imaging method, Rosen et al demonstrated that single

QDs-labeled hMSCs could be easily identified with fluor-

escent imaging in histologic sections, and were able to

signal their location for at least 8 weeks.163 Another

study investigated the dynamic cell behavior of green

fluorescent protein-transduced myoblasts in tibialis ante-

rior muscles of immunocompetent mdx mouse and

immuno-compromised nude mouse over a period of three

months using a fluorescent imaging system.164

Photoacoustic imaging
Photoacoustic imaging is currently one of the fastest

developing non-invasive hybrid imaging methods.165,166

It combines the high temporal and spatial resolution of

ultrasound with the excellent contrast and multiplexing

capabilities of optical imaging,166 so photoacoustic ima-

ging is capable of high spatial resolution mapping in deep

tissues (≈6 cm) while maintaining high contrast optical

imaging.167,168

Contrast agents used in photoacoustic imaging mainly

include endogenous agents, small molecule dyes, and

NPs.169 Among them, gold NPs are used widely and

have shown great potential.170,171 For example, Jokerst

et al used a photoacoustic imaging system to follow

MSCs labeled with silica-coated gold nanorods, and suc-

cessfully obtained a cell detection limit in vivo of 100,000

cells, which was well below the clinically relevant

numbers.139 Nam et al prepared a PEGylated fibrin gel

containing gold NPs-labeled MSCs which were injected

into the lateral gastrocnemius of anesthetized Lewis rats,

and signals from the labeled MSCs were detected using

photoacoustic imaging.172 Furthermore, they also per-

formed longitudinal in vivo monitoring of the spatial dis-

tribution of labeled MSCs at days 3, 7, and 10 after

injection, and successfully obtained signals.

Table 2 Evaluation of different imaging modalities

Imaging modality Advantages Disadvantages

High spatial resolution31,200 Relatively low sensitivity31,200

Magnetic resonance imaging No tissue penetration limit200 Long imaging time201

Allowing quantitative measurements High cost

High spatial resolution202,203

High sensitivity200
Poor tissue penetration204

Fluorescence imaging Interfered by autofluorescence204

Low spatial resolution205

Easy expression of functional fluorescent proteins206,207 Photobleaching, blinking and cross-linking208,209

Photoacoustic imaging Multicolor imaging Poor tissue penetration

Activatable High scattering

Magnetic particle imaging Allowing quantitative and vertical detection210 Low spatial resolution211,212

High sensitivity210 Time consuming213,214

Multimodality imaging Obtain more information176 Time consuming176

Strengths of different imaging modalities can be maximized176 Require precise and thorough planning176
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Magnetic particle imaging (MPI)
MPI, an imaging modality distinct from MRI, takes advan-

tage of nonlinear SPIONs magnetization behavior, and

allows for direct imaging of SPION distribution with posi-

tive contrast, as well as high temporal and spatial

resolution,173 and can longitudinally monitor and quantify

MSCs administration in vivo. Compared to existing stem

cells tracking techniques, MPI offers near-ideal image

contrast, depth penetration, and robustness, these proper-

ties make MPI both ultra-sensitive and linearly

quantitative.

Importantly, since no biological tissue generates simi-

lar superparamagnetic signals that would otherwise inter-

fere, MPI is highly sensitive, with low background

noise.173 Theoretical prediction by Knopp and Buzug indi-

cates that MPI may be sufficiently sensitive for 1 pg Fe

imaging, which implies a sensitivity able to detect single

stem cells.

In 2013, Saritas et al first detected images of labeled

stem cells using the MPI system, with a detection limit of

approximately 104 cells.174 Another study performed by

Zheng et al in 2015 showed that signals from SPION-

labeled stem cells in rat can also be detected with the

MPI system, where a detection limit of approximately

200 cells with 27.0 3±0.3 pg (Fe)/cell was reported.175

More importantly, Kolja Them et al used a matching cali-

bration method to detect SPIONs-labeled stem cells, and

their results showed that this method can not only reduce

artifacts, leading to increased sensitivity, but also can

locate and identify a smaller number of labeled stem

cells.173

Multimodality imaging
The ideal cell labeling agent in vivo should provide accu-

rate information regarding cell behavior, with high sensi-

tivity and resolution, so that it can be better used in

biomedical fields. However, since each method of labeling

cells or the method used to detect signals has its own

defects, it will still be a challenge to use any single

modality to meet the above requirements.

Fortunately, multimodal imaging, which is particularly

powerful in comprehensive monitoring of labeled cells,

may solve these problems, for it can be performed using

a single label or tracer that is visible using different ima-

ging modalities, or a combination of imaging modalities.

Thus, the strengths of the different imaging modalities can

be maximized.176 For example, Rieffel et al have con-

firmed that the combination of photoacoustic imaging

with other modalities can utilize the advantages of both

methods in image acquisition and reconstruction.177 In

addition, Guenoun et al transfected MSCs with

a luciferase vector and superparamagnetic iron oxide

(SPIO) and found that SPIO signals persisted even after

complete loss of fluorescence signals.178 In clinical appli-

cations, multimodal imaging has been reported to success-

fully track dendritic cells in melanoma patients by

detecting cells labeled with both SPIO and radioactive

indium isotopes.179

Challenges
In the field of combining NPs and stem cells applied to

regenerative medicine, efficient cell labeling is of great

significance for successful imaging. In order to obtain the

maximum contrast, it is essential to load a maximal

amount of NPs into each cell, because signal intensity is

usually proportional to the concentration of the contrast

agent.180 However, the content of intracellular NPs is also

directly proportional to its toxicity.

Although many studies have confirmed that the toxi-

city of NPs to stem cells is negligible, we still know

very little about how abiotic factors might change the

time-dependent alteration of NPs properties, and how

they would influence its toxicity.181 Besides, to assess

the potential toxicity of NPs, a better understanding of

the relationship between biokinetic parameters and NP

properties, such as size, size distribution, charge, shape,

agglomeration, and surface characteristics is clearly

required.182 Further, the influence of biopersistence on

the toxicity of NPs and what criteria should be used to

assess biopersistence, together with detecting and under-

standing their kinetics and transformation so as to assess

their potential hazards and risks for humans and the

environment should also be taken into account.183 The

next challenge is to perform longitudinal (days or weeks

later) cell tracking studies since it was confirmed that the

toxicity of NPs is closely related to the extent and

mechanism of their uptake, localization and distribution

in cells and organs.184 We cannot confirm whether NPs

being tracked remain inside cells over time, if they have

already been secreted from the cells, or taken up by

macrophages or other endogenous cells, because pre-

vious studies have shown that signal intensity would be

decreased with the division and differentiation of stem

cells,180 also, researchers have detected signals from NPs

in macrophages. Besides, challenges also exist in how to

select appropriate NPs and the best matched imaging
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modality to generate accurate location information invol-

ving the labeled stem cells, so that the obtained images

can be accurately analyzed and differentiated from the

surrounding tissues.

Conclusions
Combining NPs with stem cells and applying them to

regenerative medicine are major directions for future

development. As revealed by extensive research, this

application has promising prospects. However, due to

the cytotoxic effects of various NPs, systematic and

comprehensive in vitro and in vivo studies are urgently

needed to assess the toxicological profiles of the chosen

NPs and to evaluate their potential influence on self-

renewal and differentiation properties of stem cells

before their wider application as contrast agents for

stem cells tracking. Specifically, we need to consider

the design strategies of NPs, such as size, shape, coat-

ing, incubation time and concentration, synthesis

method, and the way NPs enter cells, and clarify

which kinds of particle properties may cause influences

on labeled cells, and by which mechanisms. In addition,

while developing new technologies, we should also

contemplate whether existing toxicology testing and

risk assessment strategies are reliably applicable and

sufficiently suited for the variety and complexity

of NPs.

With the development of biomedicine, the criteria of

low toxicity of NPs and the high accuracy and clarity of

imaging modalities to non-invasively detect labeled cells

in vitro will be increased as well. Although the combina-

tion of hybrid NPs and multimodal imaging has presented

some advantages and promising results, developing better

biocompatibility and higher-recognition rate NPs com-

bined with high-resolution imaging modalities to track

stem cells in vitro will still be extremely important.
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Abbreviation list
MSCs, mesenchymal stem cells; NPs, nanoparticles;

QDs, quantum dots; hMSCs, human mesenchymal

stem cells; ELS, exosome-like silica; SPIONs, super-

paramagnetic iron oxide nanoparticles; PLNPs, persis-

tent luminescent nanoparticles; ASP-SPIONs, SPIONs-

complexed amylose nanoparticles cationized with

spermine; PEI, poly ethylene imine; PEG, poly ethy-

lene glycol; PVP, poly vinyl pyrrolidone; HEDP,

1-hydroxyethylidene-1.1-bisphosphonic acid; R8, octa-

arginine; GNT, gadonanotubes; TEMPO, 2,2,6,6-tetra-

methylpiperidine-N-oxyl; NAC, N-acetyl cysteine;

MRI, magnetic resonance imaging; NIRF, near-

infrared fluorescence; MPI, magnetic particle imaging.
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