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Purpose: GATA4 and GATA6 are known to have potential roles in vascular regulation by

affecting vascular smooth muscle cell differentiation and atrial natriuretic peptide levels. The

aim of this retrospective study was to investigate the associations between GATA4 and

GATA6 polymorphisms and bleeding complication risk at a therapeutic international normal-

ized ratio (INR) in patients with mechanical heart valves.

Patients and methods: Study patients were included from the Ewha-Severance Treatment

(EAST) Group of Warfarin. It consisted of 229 patients who received warfarin therapy after

undergoingmechanical heart valve replacement andmaintained a stable INR (INR of 2.0–3.0 for

at least three consecutive times). Twenty single-nucleotide polymorphisms including VKORC1,

CYP2C9, GATA4, and GATA6 were analyzed. Multivariate logistic regression analysis was

employed to investigate the independent risk factors for bleeding complications. To evaluate

the potential clinical value of genotyping for preventing bleeding complications in patients with

high-risk genotype, the number needed to genotype (NNG) was also calculated.

Results: One hundred forty-two patients were included in this study, 21 of whom had

bleeding complications. After adjusting covariates, TT genotype carriers of rs13273672 in

GATA4 and CC genotype carriers of rs10454095 in GATA6 showed 5.0- (95% CI, 1.6–15.7)

and 3.1-fold (95% CI, 1.1–8.7) higher bleeding complications than carriers of C allele and

T allele, respectively. NNG for preventing one patient from experiencing bleeding complica-

tions in patients with TT genotype of rs13273672 and CC genotype of rs10454095 was 22.2

and 17.5, respectively. Patients with both TT genotype in rs13273672 and CC genotype in

rs10454095 showed 8.7-fold (95% CI, 1.7–46.1) higher bleeding complications than those

with other genotypes. NNG in patients having both TT genotype in rs13273672 and CC

genotype in rs10454095 was calculated to be 40.0.

Conclusions: This study showed that GATA4 and GATA6 gene polymorphisms could affect

bleeding complications during warfarin treatment in patients with mechanical heart valves.
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Introduction
Warfarin is a widely used oral anticoagulant for atrial fibrillation, ischemic stroke, deep-

vein thrombosis, and pulmonary embolism.1 Despite the introduction of direct oral

anticoagulants, it still remains the first-line anticoagulant therapy for patients with heart

valve prosthesis.2 Because of the narrow therapeutic range and wide inter- and intraindi-

vidual variability of warfarin, careful monitoring of international normalized ratio (INR)

is required while using it for anticoagulation therapy.3
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Bleeding complication is one of the major concerns with

warfarin usage.4 Although an elevated INR level is the most

important factor for increasing warfarin-associated bleeding

risk, it has been reported that some patients also experi-

enced bleeding complications at therapeutic INR. A study

showed that 15.7% of patients suffered from bleeding com-

plications during therapeutic INR control.5 Some studies

showed that in addition to high INR, age, hypertension,

and concomitant aspirin use were patient-related risk factors

for bleeding complications.6 However, the genetic effects

on bleeding complications during anticoagulation therapy

have rarely been investigated.

The GATA family, the zinc finger transcription factor,

consists of 6 subtypes in vertebrates. GATA-1/2/3 subfamily

is expressed in the hematopoietic cell lineage,7 whereas

GATA-4/5/6 subfamily is expressed in various mesoderm-

and endoderm-derived tissues including the heart, blood ves-

sel, lung, and gut.8 Among GATA 4/5/6 subgroups, GATA4

and GATA6 have similar protein structure and expression

pattern. Moreover, both are known to be involved in the

regulation of gene expression in cardiomyocytes and vascular

smooth muscles.9 In a study that employed an animal model,

GATA4/GATA6 double-heterozygous mouse showed impaired

differentiation of vascular smooth muscle cells.10

With respect to the association between polymorph-

isms of GATA4 and GATA6 genes and cell differentiation,

GATA4 mutation p.S335X has been found to pre-terminate

its translation, producing a truncated GATA4 lacking

a conservative region at C-terminus. Truncated GATA4

delayed the cardiomyocyte differentiation in P19cl6

model and prohibited Bcl2 expression, leading to

apoptosis.11 In addition, GATA4 was found to be a key

modifier of sex steroidogenic cell differentiation through

conditional loss-of-function mutations in GATA4 gene.12

The GATA6 mutation p.E386X was identified in

a family with bicuspid aortic valves, being transmitted in

an autosomal dominant fashion. Cardiac valvular morpho-

genesis requires accurate regulation of cell proliferation,

differentiation, migration, adhesion, and apoptosis.

Biological assays revealed that E386X-mutant GATA6

proteins had no transcriptional activity compared with its

wild-type counterpart. Furthermore, the E386X mutation

led to disrupted synergistic transcriptional activation

between GATA4 and GATA6.13

Hemostasis is a multiphase process involving blood

vessels, platelets, and coagulation factors; an imbalance

in any of the steps of hemostasis may result in bleeding.14

Impaired vascular smooth muscle cell differentiation is

involved in vascular malformations,15 which are known

to increase bleeding risks in several organs (eg, gastroin-

testinal tract, retina, and endometrium).16–18

In addition, atrial natriuretic peptide (ANP), the expres-

sion of which is regulated by GATA4 and GATA6, plays an

important role in vascular function regulation.19 ANP is also

involved in platelet aggregation and lipid metabolism.20

ANP level is also known to be associated with cardiovascular

diseases (eg, hypertension and hyperlipidemia).21 Although

GATA4 and GATA6 have potential roles in vascular regula-

tion, no study has yet investigated the association between

GATA gene polymorphisms and bleeding complications in

patients receiving warfarin.

Therefore, this study aimed to investigate the associa-

tion between GATA4 and GATA6 polymorphisms and the

risk of bleeding complications at therapeutic INR during

warfarin treatment.

Materials and methods
Study patients and data collection
Study patients were included from the Ewha-Severance

Treatment (EAST) Group of Warfarin. It consisted of 229

patients who received warfarin therapy after undergoing

mechanical heart valve replacement between January 1982

and December 2009 at Severance Cardiovascular Hospital of

Yonsei University College of Medicine. Patients who main-

tained a stable INR (INR of 2.0–3.0 for at least three con-

secutive times) were eligible for the study. Patients who had

experienced bleeding complications at supra- or subthera-

peutic INR were excluded. Patients were also excluded if

their complications were not verified by health professionals.

Patients were followed up continuously at the outpatient

clinic of Severance Cardiovascular Hospital of Yonsei

University Medical Center. Blood samples were collected

during the regularly scheduled clinic visit. Patients’ first

follow-up visits were within 1–2 months after discharge

and patients were followed up in 1- to 3-month intervals in

accordance with their therapeutic INR. In the case of bleed-

ing occurrences, patients visited the hospital and showed

bruises, gum bleeding, and nose bleeding as evidence of

bleeding. During the verification of bleeding events by

a doctor, INR levels were measured. Data collection was

retrospectively done using scanned medical records and

electronic medical records of patients from June 1983 to

August 2010. Data on sex, age, body weight, height, position

of valve prosthesis, valve type, warfarin therapy duration,

INR measurements, concurrent medication, comorbidities,

Yee et al Dovepress

submit your manuscript | www.dovepress.com

DovePress
Drug Design, Development and Therapy 2019:131718

http://www.dovepress.com
http://www.dovepress.com


and history of bleeding complications were collected.

Bleeding complications were classified as major life-

threatening, other major, any major, minor, or minimal

using the scheme detailed in Platelet Inhibition and Patient

Outcomes trial.22

All procedures performed in studies involving human

participants were in accordance with the ethical standards

of the institutional and/or national research committee and

with the 1964 Helsinki declaration and its later amend-

ments or comparable ethical standards. All patients gave

written informed consent for participation. The protocol

and informed consent were reviewed and approved by the

Institutional Review Board of the Yonsei University

Medical Center (approved number: 4-2009-0283).

Genotyping methods
To select single-nucleotide polymorphisms (SNPs) of GATA4

and GATA6 that might be associated with warfarin-related

bleeding, genetic information concerning GATA4 and GATA6

was obtained from the PharmGKB database, Haploreg 4.1,

and Database of SNP (dbSNP) from NCBI and previous

studies.23–26 Sixteen SNPs of GATA4 (rs13273672,

rs2645400, rs4841588, rs867858, rs10090884, rs2898292,

rs10086064, rs3735814, rs2740434, rs2001470, rs3729849,

rs809205, rs2173117, rs62489352, rs2409805, and

rs2898293) and 2 SNPs of GATA6 (rs16964670 and

rs10454095) were selected. In addition to the selected SNPs,

VKORC1 rs9934438 and CYP2C9 rs1057910, which were

found to have significant effects on stable doses of warfarin,

were also included in the study. Therefore, a total of 20 SNPs

were investigated.

Genomic DNA from the patients was isolated from

EDTA blood samples using the QIAamp DNA Blood

Mini Kit (QIAGEN GmbH, Hilden, Germany) according

to the manufacturer’s protocol. Genotyping was performed

using a single-base primer extension assay by employing

SNaPShot multiplex kits (ABI, Foster City, CA, USA) or

TaqMan genotyping assay by employing real-time PCR

system (ABI 7300, ABI), according to the manufacturer’s

recommendation.

Statistical analysis
Continuous variables in patients with bleeding complica-

tions and in those without complications were compared

using Student’s t-test. Chi-square test or Fisher’s exact test

was used to compare categorical variables between the two

groups. Multivariate logistic regression analysis was used

to examine independent risk factors for bleeding

complications. Factors having a p-value <0.05 in univari-

ate analysis along with clinically relevant confounders

were included in multivariate analysis. Odds ratio and

adjusted odds ratio were calculated through univariate

and multivariate analyses, respectively. The time in ther-

apeutic range (TTR) of INR 2.0–3.0 was measured using

Rosendaal method. Attributable risk (%) was calculated by

(1–1/adjusted odds ratio) ⨰ 100. To test the model’s good-

ness of fit, we performed a Hosmer–Lemeshow test.

Discrimination of the model was further assessed using

an analysis of the area under the receiver operating curve

(AUROC), which assesses the ability of the risk factor to

predict bleeding. We calculated the number needed to

genotype (NNG) for preventing one patient from experi-

encing a significantly higher incidence of bleeding com-

plications by 1/absolute risk reduction. Absolute risk

reduction was achieved by multiplying the relative risk

reduction by genotyping and risk of higher incidence of

bleeding complications without genotyping. A p-value of

<0.05 was considered statistically significant. All statisti-

cal analyses were conducted using IBM SPSS statistics,

version 20 software (International Business Machines

Corp., Armonk, NY, USA).

Results
Of the 229 patients from the EAST Group of Warfarin, 87

patients were excluded due to the following reasons: 28

patients did not reach a stable INR, 4 patients had bleeding

complications at supratherapeutic INR, and 55 patients

reported minimal bleeding complications which were not

verified by health professionals. Accordingly, data from

142 patients who underwent heart valve replacement were

used for the analysis.

The median age of the included patients was 60 years

(range, 34–81 years), and there were 52 (36.6%) males. The

follow-up periods ranged from 1.0 to 29.7 years (mean 14.3

years). During the follow-up period, one thromboembolic

event was observed, and there were no deaths. The mean

INR monitoring interval was 2.9 months, and the average

number of INR measurements per patient was 23. The TTR

of INR 2.0–3.0 was 55.2±12.7%. As shown in Table 1, 21

patients (14.8%) experienced bleeding complications at ther-

apeutic INR. Among them, 11 and 10 patients experienced

minor and minimal bleeding complications, respectively.

One patient experienced bleeding four times, seven patients

twice, and 13 patients once. There was no significant differ-

ence between the two groups except for atrial fibrillation.

Patients with atrial fibrillation had more bleeding
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Table 1 Characteristics of study patients

Characteristics Bleeding complication, patient number (%) p

Presence (n=21) Absence (n=121)

Sex 0.705

Male 8 (38.1) 44 (36.4)

Female 13 (61.9) 77 (63.6)

Age (years) 0.106

<65 11 (52.4) 85 (70.2)

� 65 10 (47.6) 36 (29.8)

Mean±SD 62.0±11.2 58.7±10.0 0.168

Body weight (kg) 0.989

Mean±SD 58.6±10.7 58.7±10.4

Body mass index (kg/m2) 0.756

Mean±SD 22.3±2.3 22.5±2.8

Comorbidity

Hypertension 6 (28.6) 33 (27.3) 0.902

Diabetes mellitus 3 (14.3) 10 (8.3) 0.377

Chronic heart failure 7 (33.3) 25 (20.7) 0.199

Atrial fibrillation 17 (81) 70 (57.9) 0.045

Myocardial infarction 2 (9.5) 2 (1.7) 0.104

Co-medication

Angiotensin-converting-enzyme inhibitor 2 (10.5) 19 (18.8) 0.383

Angiotensin II receptor blocker 4 (21.1) 19 (18.8) 0.820

Antiplatelet drugs 0 (0) 4 (3.8) 0.398

Calcium channel blocker 4 (21.1) 19 (18.8) 0.820

Diuretics 9 (47.4) 35 (34.7) 0.291

Statins 0 (0) 4 (4.0) 0.378

Valve position 0.740

Aortic 6 (28.6) 28 (23.1)

Mitral 9 (42.9) 66 (54.5)

Doublea 5 (23.8) 20 (16.5)

Tricuspidb 1 (4.8) 7 (5.8)

Valve type 0.418

St. Jude Medical 7 (38.9) 39 (34.2)

CarboMedics 6 (33.3) 32 (28.1)

ATS 2 (11.1) 15 (13.2)

MIRA 1 (5.6) 9 (7.9)

Duromedics 2 (11.1) 6 (5.3)

OnX 0 (0) 4 (3.5)

Othersc 0 (0) 9 (7.9)

INR 0.143

Mean±SD 2.41±0.07 2.45±0.10

Follow-up time (years) 0.886

Median (range) 14.3 (1.4−29.7) 14.7 (1.0−27.7)

Time in therapeutic range (%) 0.066

Mean ± SD 50.5±13.9 56.0±12.3

Notes: aAortic plus mitral valve, btricuspid valve with or without other valves, cincluding Sorin, Bjork Shiley, D-ring, and prostheses using two or more different valve types.
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complications in therapeutic INR than those without atrial

fibrillation (p=0.045).

As shown in Table 2, statistically significant associa-

tions between genotypes and bleeding complications were

found for rs13273672, rs4841588, and rs2173117 of

GATA4. For GATA6, rs10454095 showed a significant

association with bleeding complications. For rs13273672,

8 of 26 patients (30.8%) with TT genotype had bleeding

complications, whereas 13 of 116 patients (11.2%) with

C allele had bleeding complications (p=0.027). For

rs4841588, patients with wild-type homozygote showed

a higher bleeding risk than those with variant-allele

Table 2 Factors associated with bleeding complications at therapeutic INR

Gene poly-
morphism

Allele
change

Minor allele
frequency

Grouped
genotypes

Bleeding complica-
tion, number (%)

OR 95% CI for OR P

Presence
(n=21)

Absence
(n=121)

Lower Upper

VKORC1 C>T 0.113 CC, CT 3 (14.3) 27 (22.3) 1 0.405

rs9934438 TT 18 (85.7) 94 (77.7) 1.723 0.472 6.292

CYP2C9 A>C 0.043 AA 18 (85.7) 111 (92.5) 1 0.304

rs1057910 AC 3 (14.3) 9 (7.5) 2.056 0.508 8.322

GATA4 T>C 0.433 TT 8 (38.1) 18 (14.9) 1 0.027

rs13273672 CT, CC 13 (61.9) 103 (85.1) 0.284 0.103 0.782

GATA4

rs2645400

T>G 0.373 TT, TG

GG

15 (71.4)

6 (28.6)

106 (87.6)

15 (12.4)

1 0.054

2.825 0.951 8.403

GATA4 G>T 0.384 GG 7 (33.3) 15 (12.4) 1 0.023

rs4841588 GT, TT 14 (66.7) 106 (87.6) 0.283 0.098 0.814

GATA4 A>C 0.486 AA 8 (38.1) 25 (20.7) 1 0.081

rs867858 AC, CC 13 (61.9) 96 (79.3) 0.423 0.158 1.133

GATA4 A>C 0.349 AA, AC 14 (66.7) 67 (55.4) 1 0.334

rs10090884 CC 7 (33.3) 54 (44.6) 0.620 0.234 1.646

GATA4 T>C 0.159 TT, TC 7 (33.3) 33 (28.9) 1 0.390

rs2898292 CC 14 (66.7) 81 (71.1) 0.815 0.302 2.203

GATA4 C>T 0.134 CC, CT 5 (23.8) 31 (25.6) 1 0.860

rs10086064 TT 16 (76.2) 90 (74.4) 1.102 0.373 3.259

GATA4 G>A 0.099 GA 4 (19.0) 24 (19.8) 1 0.933

rs3735814 AA 17 (81.0) 97 (80.2) 1.052 0.324 3.413

GATA4 A>G 0.088 AG 4 (19.0) 21 (17.4) 1 0.851

rs2740434 GG 17 (81.0) 100 (82.6) 0.893 0.272 2.923

GATA4

rs2001470

C>T 0.310 CC

CT, TT

4 (19.0)

17 (81.0)

9 (7.4)

112 (92.6)

1 0.089

0.342 0.095 1.233

GATA4

rs3729849

A>G 0.433 AA

AG, GG

7 (33.3)

14 (66.7)

18 (14.9)

103 (85.1)

1 0.059

0.350 0.124 0.985

GATA4

rs809205

T>C 0.257 TT

TC, CC

4 (19.0)

17 (81.0)

7 (5.8)

114 (94.2)

1 0.059

0.261 0.069 0.987

GATA4

rs2173117

C>A 0.358 CC

CA, AA

6 (30.0)

14 (70.0)

14 (11.6)

107 (88.4)

1 0.040

0.305 0.101 0.923

GATA4

rs62489352

C>T 0.257 CC

CT, TT

8 (38.1)

13 (61.9)

70 (57.9)

51 (42.1)

1 0.093

2.230 0.861 5.777

GATA4

rs2409805

T>C 0.163 TT, TC

CC

20 (95.2)

1 (4.8)

116 (96.7)

4 (3.3)

1 0.744

1.450 0.154 13.649

GATA4

rs2898293

A>G 0.211 AA, AG

GG

11 (52.4)

10 (47.6)

43 (35.5)

78 (64.5)

1 0.142

0.501 0.197 1.275

GATA6

rs16964670

G>A 0.135 GG

GA, AA

18 (85.7)

3 (14.3)

86 (71.7)

34 (28.3)

1 0.177

0.422 0.117 1.524

GATA6

rs10454095

T>C 0.398 TT, TC

CC

9 (42.9)

12 (57.1)

82 (67.8)

39 (32.2)

1 0.028

2.803 1.090 7.210
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carriers (31.8% vs 11.7%, p=0.023). A allele carriers of

rs2173117 showed approximately 70% lower bleeding

complications than CC genotype carriers (p=0.040). For

rs10454095 of GATA6, CC genotype carriers experienced

more bleeding complications than T allele carriers (23.5%

vs 9.9%, p=0.028). The allele frequencies of SNPs used in

this study for Koreans and other populations are described

in Tables 2 and S1, respectively.

Two models were constructed for conducting multivari-

ate analysis (Table 3). Model I included sex, age, and factors

having a p-value <0.05 in the univariate analysis, including

atrial fibrillation, rs13273672, rs4841588, and rs2173117 of

GATA4, as well as rs10454095 of GATA6. Model II included

sex, age, atrial fibrillation, rs4841588, rs2173117, and

a combination of rs13273672 and rs10454095.

As shown in Model I of Table 3, rs13273672 of GATA4

and rs10454095 of GATA6 were significantly associated

with bleeding complications (p=0.006 and p=0.031,

respectively). After adjusting for related covariates, TT

genotype carriers in rs13273672 showed approximately

5.0-fold higher bleeding complications than C allele car-

riers. For rs10454095 of GATA6, CC genotype carriers

showed approximately 3.1-fold higher bleeding complica-

tions than T allele carriers after adjusting for covariates.

NNG for preventing one patient with TT genotype in

rs13273672 from suffering a higher incidence of bleeding

complications was calculated to be 22.2. NNG of

rs10454095 in GATA6 was 17.5. In Model II, patients

with both TT genotype in rs13273672 and CC genotype

in rs10454095 showed 8.7-fold higher bleeding complica-

tions than those with the other genotypes. NNG in patients

having both TT genotype in rs13273672 and CC genotype

in rs10454095 was calculated to be 40.0.

The AUROC values of Model I and Model II were 0.770

and 0.724, respectively (Figure 1). The Hosmer–Lemeshow

test showed that the fitness of the Model I was satisfactory

(χ2=2.396, 7 degrees of freedom, p=0.935) as well as for

Model II (χ2=0.618, 3 degrees of freedom, p=0.892).

Discussion
The main finding of this study is that rs13273672 of GATA4

and rs10454095 of GATA6 were associated with bleeding

complications at a therapeutic INR during warfarin treatment

in mechanical heart valve patients. TT genotype carriers of

rs13273672 in GATA4 and CC genotype carriers of

rs10454095 in GATA6 had 5.0- and 3.1-fold increased risk

of bleeding complications compared with the carriers of

C allele and T allele, respectively. Patients having

a combination of TT and CC genotypes of rs13273672 and

rs10454095 experienced 8.7 times higher bleeding complica-

tions than those having the other genotypes. The AUROC

value of the models constructed for predicting bleeding com-

plications was approximately 0.75.

Stable INR was defined as the INR of 2.0–3.0 for three

or more consecutive visits. Although American College of

Chest Physicians guidelines 2012 suggest INR of 2.5–3.5 in

Table 3 Multivariate analysis to identify predictors of bleeding complications at therapeutic INR

Variables Model I Model II

Adjusted
OR
(95% CI)

Attributable risk
(%)

Adjusted OR (95%
CI)

Attributable risk
(%)

Age � 65 years 2.43 (0.87−6.84) 2.41 (0.88−6.55)

Atrial fibrillation 3.00 (0.91−9.86) 2.76 (0.85−8.98)

GATA4

rs13273672,

TT

5.01

(1.60−15.72)**

84.3

GATA6

rs10454095,

CC

3.10

(1.11−8.71)*

67.7

GATA4/GATA6 rs13273672/

rs10454095

TT/CC

8.73

(1.66−46.06)*

88.6

Notes: Logistic regression analyses were carried out with variables such as sex, age, atrial fibrillation, rs13273672, rs4841588, rs2173117, and rs10454095 for Model I, and

sex, age, atrial fibrillation, rs4841588, rs2173117, and rs13273672/rs10454095 combination for Model II.

*p<0.05, **p<0.01.
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patients with mitral valve replacements,27 many studies of

Asian populations suggested considerably lower intensities

of warfarin therapy after mechanical valve prostheses

including mitral valves.28–30

GATA4, a gene located on chromosome 8, is expressed

in cardiomyocytes, smooth muscles, and endothelial cells

in the heart and blood vessels.8 It regulates the expression

of cardiovascular-related genes, which encode α- and β-
myosin heavy chain, cardiac troponin-C, ANP, and brain

natriuretic peptide.8,9

Among proteins which are regulated by GATA4, the

roles of ANP in vasculature is well-established. It exerts

vasodilatory effects through the ANP receptor, which is

guanylyl cyclase-A.19 Additionally, it modulates vascu-

lar smooth muscle cell proliferation31 as well as

endothelial cell growth and permeability.32 It is also

known that it is reportedly involved in platelet aggrega-

tion and energy metabolism processes such as

lipolysis.33,34 It was shown that the ANP gene (NPPA)

mutation increased platelet aggregation in vitro as well

as in clinical settings.35 In another study, NPPA muta-

tion increased residual platelet reactivity in patients with

diabetes mellitus who underwent elective percutaneous

coronary intervention.

Accordingly, GATA4 is considered to modulate vessel

function and platelet aggregation via ANP regulation. In

addition to ANP, vascular endothelial growth factor (VEGF)

is also known to be regulated by GATA4. VEGF, an angio-

genic cytokine, is related to vessel formation and vascular

density.36 Therefore, the effect of GATA4 polymorphisms on

bleeding complications was considered to be partially attri-

butable to an altered vessel formation and function.

Rs13273672 is an introgenic SNP of GATA4. In several

studies, this SNPwas associated with alcohol dependence,37,38

relapse to alcohol drinking, and treatment response to

acamprosate.39 In Kiefer et al study, patients with G allele of

rs13273672 showed low ANP expression; therefore, the

underlying mechanism of the rs13273672 effect on alcohol

dependence and treatment was explained by the altered ANP

expression. We found that rs13273672 of GATA4 had

a significant association with bleeding complications at

a therapeutic INR, with homozygous wild-type carriers having

increased bleeding risk in both univariate and multivariate

analyses. This was also thought to be caused by the alteration

in ANP level.

GATA6, which is highly expressed in vascular

smooth muscle cells, is known to regulate vascular

smooth muscle cell proliferation and its reversible dif-

ferentiation in vascular injury.40,41 Similar to GATA4,

GATA6 is also an upstream regulator of multiple genes

expressed during embryogenesis and cardiac morpho-

genesis, including the gene that encodes the ANP.42
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Figure 1 Area under the receiver-operating characteristic (ROC) curve for bleeding complications at a therapeutic INR. (A) Area under the curve (AUC) for Model I. AUC

is 0.770 (95% CI, 0.672–0.868; p<0.001). (B) AUC for Model II. AUC is 0.724 (95% CI, 0.602–0.847; p=0.001).
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Various studies showed that the GATA6 mutant demon-

strated a significantly decreased transcriptional activity

on the ANP promoter.43–45 Several studies have shown

that GATA4 and GATA6 act cooperatively and synergis-

tically to regulate smooth muscle cells, with similar

structure and expression patterns.10,46

In our study, one SNP of GATA6 (rs10454095) exhib-

ited a significant association with bleeding complication.

Although rs10454095 is rarely studied, polymorphisms of

GATA6 might cause an alteration in transcriptional activity

and blood vessel regulation, thereby increasing bleeding

risk. When rs10454095 in the GATA6 gene was combined

with rs13273672 in the GATA4 gene, it showed an additive

effect of each SNP on bleeding complications.

A recent study investigating the association between

GATA6 polymorphisms and congenital malformations like

bicuspid aortic valve included rs10454095. Although

rs10454095 was not associated with bicuspid aortic valve

in this study, the authors revealed that three GATA6 gene

variants were associated with bicuspid aortic valve. Since

the effects of gene polymorphisms may vary according to

target organs or diseases, different SNPs could be found to

be associated with different outcomes. Meanwhile, the

results indicated the role of GATA6 polymorphisms on

organ formation.47

GATA4 showed to play an important role on the reg-

ulation of CYP2C9 gene expression.48 However, patients

with polymorphisms of VKORC1 or CYP2C9 received

dose adjustment according to INR measurement, and

increased risk of bleeding complication was not found in

our study.

To evaluate the potential clinical value of SNP geno-

typing, which was found to be significant in this study, we

calculated NNG for preventing bleeding complications in

patients with high-risk genotypes. Using the equations,

22.2, 17.5, and 40.0 were determined to be NNG values

in patients with high-risk genotypes of rs13273672,

rs10454095, and both SNPs, respectively, indicating that

prospective SNP genotyping could be cost-effective in

clinical practice.

The limitations of our study are its small sample size

and retrospective design. Another shortcoming is a lack

of detailed mechanisms. Nevertheless, to our knowledge,

this is the first study to investigate the effects of genetic

variations in GATA4 and GATA6 genes on warfarin-

associated bleeding complications at a therapeutic INR.

In addition, this study provides the prediction models for

bleeding risk using various statistical tools (eg,

attributable risk, AUROC, and NNG), which can be

applied for developing individualized drug therapy with

warfarin.

Since this study dealt with patients with INR 2–3, only

minimal or minor bleeding events were observed. While there

is no doubt that fatal and major hemorrhages are of essential

importance, minor bleedings are also important, because they

serve as an alert for subsequent major bleedings and may

increase the number of visits to clinics and sometimes the

emergency room, which results in additional expenditures.

They also can result in permanent withdrawal of warfarin

therapy, thus depriving patients of the effective therapy

available.

In this study, to avoid the possible loss of the true

positives, multiple test correction was not performed. It

is based on a rigorous follow-up of a cohort of patients

with cardiac valve replacements to detect bleeding com-

plications based on objective measurements, followed by

a systematic and thorough exploration of polymorphisms

in four genes of potential interest to the etiology of bleed-

ings. Bonferroni correction was not applied, as this is

considered overly conservative for a hypothesis-

generating study. We found possible associations between

GATA genes and bleeding risks; however, it should be

implemented with a caution with the risk of false-

positive results and it is needed to be verified by further

replication studies.

Conclusion
This study showed that rs13273672 of GATA4 and

rs10454095 of GATA6 were associated with bleeding

complications at a therapeutic INR during warfarin

treatment for mechanical heart valve patients. Given

the retrospective study design and the relatively small

sample size, our hypothesis requires further independent

validation using a prospective study design with a large

sample size.
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Table S1 Allele frequencies of 20 single-nucleotide polymorphisms (SNPs) analyzed in the study

Gene SNP Allele change Variant allele frequencies in indicated populations

Study patients
(Korean)

Africansa Americansa Asiansa Europeansa

VKORC1 rs9934438 C>T 0.89 0.07 0.44 0.92 0.40

CYP2C9 rs1057910 A>C 0.96 0.01 0.06 0.04 0.06

GATA4 rs13273672 T>C 0.57 0.36 0.32 0.59 0.30

GATA4 rs2645400 T>G 0.63 0.08 0.32 0.31 0.33

GATA4 rs4841588 G>T 0.62 0.22 0.19 0.67 0.14

GATA4 rs867858 A>C 0.51 0.25 0.30 0.55 0.31

GATA4 rs10090884 A>C 0.65 0.30 0.17 0.65 0.09

GATA4 rs2898292 T>C 0.84 0.36 0.18 0.80 0.10

GATA4 rs10086064 C>T 0.87 0.51 0.66 0.80 0.66

GATA4 rs3735814 G>A 0.90 0.53 0.59 0.88 0.47

GATA4 rs2740434 A>G 0.91 0.73 0.71 0.90 0.65

GATA4 rs2001470 C>T 0.69 0.11 0.16 0.67 0.09

GATA4 rs3729849 A>G 0.57 0.17 0.45 0.59 0.47

GATA4 rs809205 T>C 0.74 0.85 0.59 0.75 0.69

GATA4 rs2173117 C>A 0.64 0.26 0.37 0.67 0.31

GATA4 rs62489352 C>T 0.26 0.10 0.32 0.30 0.35

GATA4 rs2409805 T>C 0.16 0.15 0.62 0.21 0.66

GATA4 rs2898293 A>G 0.79 0.13 0.62 0.75 0.65

GATA6 rs16964670 G>A 0.14 0.02 0.20 0.18 0.13

GATA6 rs10454095 T>C 0.60 0.44 0.60 0.61 0.68

Note: aHaploreg v4.1.
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