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Abstract: Monoclonal antibodies (mAbs) have become a cornerstone in the therapeutic

guidelines of a wide range of solid tumors. The targeted nature of these biotherapeutics has

improved treatment outcomes by offering enhanced specificity to reduce severe side effects

experienced with conventional chemotherapy. Notwithstanding, poor tumor tissue penetra-

tion and the heterogeneous distribution achieved therein are prominent drawbacks that

hamper the clinical efficacy of therapeutic antibodies. Failure to deliver efficacious doses

throughout the tumor can lead to treatment failure and the development of acquired resis-

tance mechanisms. Comprehending the morphological and physiological characteristics of

solid tumors and their microenvironment that affect tumor penetration and distribution is

a key requirement to improve clinical outcomes and realize the full potential of monoclonal

antibodies in oncology. This review summarizes the essential architectural characteristics of

solid tumors that obstruct macromolecule penetration into the targeted tissue following

systemic delivery. It further describes mechanisms of resistance elucidated for blockbuster

antibodies for which extensive clinical data exists, as a way to illustrate various modes in

which cancer cells can overcome the anticancer activity of therapeutic antibodies. Thereafter,

it describes novel strategies designed to improve clinical outcomes of mAbs by increasing

potency and/or improving tumor delivery; focusing on the recent clinical success and

growing clinical pipeline of antibody-drug conjugates, immune checkpoint inhibitors and

nanoparticle-based delivery systems.
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Introduction
Therapeutic monoclonal antibodies (mAbs) successfully entered the clinic over 25

years ago and have become one of the central components of the healthcare

system.1,2 Their arrival brought about a therapeutic revolution due to their capacity

to target specific molecular components, with a large number of mAbs already

approved in oncology, autoimmune disorders, chronic diseases and many more

conditions. Currently, over 80 antibody therapeutics have received regulatory

approval in Europe and/or the United States and just in 2017 sales of therapeutic

antibodies exceeded 100$ billion worldwide.3

In oncology, therapeutic antibodies offer the possibility to treat tumors in a targeted

fashion and reduce the severe side effects of conventional chemotherapy. Recent devel-

opments in cancer biology have aided the discovery of molecular biomarkers in a wide
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range of solid malignancies that can be used as targets with

beneficial therapeutic outcomes. At present, over 15 distinct

monoclonal antibodies are indicated for the treatment of solid

tumors.4 Notwithstanding, in spite of their remarkable clinical

success some patients do not benefit from the treatment due to

intrinsic resistance mechanisms or the emergence of acquired

resistance following treatment initialization .5,6

In solid tumors, the development of acquired resistance

mechanisms is thought to emerge primarily from continuous

genetic alterations that modify the cellular phenotype and

undermine the initial therapeutic efficacy. This capacity of

cancer cells to overcome the anticancer effect of the antibody

is facilitated by the exposure to subtherapeutic concentrations

of the drug.7,8 The tumor microenvironment poses physical

barriers, most notably a markedly increased hydrostatic pres-

sure, that hinder penetration of macromolecules into the tumor

following systemic administration.9,10 This reduces the overall

amount of antibody molecules that reach the target tissue and

exposes areas of the tumor that are difficult to penetrate to

marginal doses of the antibody, leading to acquired resistance

and treatment failure.8 In fact, therapeutic mAbs in oncology

are more commonly administered as combination therapy in

conjunction with chemotherapeutics due to relatively limited

efficacy as single agents.11

Identifying and understanding primary and acquired resis-

tance mechanisms and overcoming the barriers that impair

efficient delivery of the drug into the tissue is critical to

enhance therapeutic outcomes. Most of the understanding

regarding primary and acquired resistance comes from the

evaluation of clinical data available for early-approved

blockbuster antibodies, such as trastuzumab and cetuximab.

This review gives an overview of the key factors affecting

tumor distribution upon systemic delivery and describes rele-

vant mechanisms of resistance identified in trastuzumab (anti-

HER2) and cetuximab (anti-EGFR) therapy. Additionally, it

describes recent developments in the implementation of novel

antibody-based therapeutics, such as antibody–drug conju-

gates (ADCs), immune checkpoint inhibitors (ICI), and anti-

body-targeted nanoparticles (NPs) that have the potential to

improve therapeutic outcomes of solid tumors.

Limitations that impact clinical
efficacy
Poor penetration and heterogeneous

distribution in solid tumors
Therapeutic IgG antibodies must overcome pronounced phy-

sical and physiological obstacles in order to penetrate and

distribute uniformly throughout the tumor. In solid malig-

nancies, impaired lymphatic drainage due to the sparse pre-

sence of lymphatic vessels leads to the accumulation of

macromolecules in the interstitial tissue and a consequent

increase in hydrostatic pressure.9,12–14 Hence, the altered

pressure differential from vascular vessels to the interstitial

compartment limits convection and extravasation of macro-

molecules from the vascular lumen into the tumor (Figure

1).15 Moreover, antibody distribution following extravasa-

tion is further impeded by cellular internalization and sub-

sequent endocytic clearance at the tumor edge (an effect

coined the “binding-site barrier”), leading to poor penetration

and regions of marginal antibody concentrations.10,16,17 The

binding-site barrier suggests that higher affinity and higher

antigen expression, especially at the tumor edge, can retard

mAb tumor percolation and impair homogeneous distribu-

tion; although this barrier can be overcome by increasing the

administered dose.

A vast body of research studying some of the blockbus-

ter therapeutic mAbs has highlighted the significance of

increasing tissue penetration to improve the outcome of

antibody therapy.15,18 A study on cetuximab and trastuzu-

mab in mouse xenografts confirmed that tumor distribution

can be improved with an increase in dose; however,

hypoxic areas remained difficult to reach even at higher

doses. Moreover, xenografts expressing intermediate

levels of ErbB1 (cognate antigen for cetuximab) displayed

more homogeneous distribution of cetuximab compared to

xenografts with higher ErbB1 expression.19

An alternative approach consists in improving diffusion by

employing smaller antibody fragments, such as Fab fragments

(~50 kDa), single-chain variable fragments (scFv ~30 kDa)

and single-domain antibodies (sdAb 12–15 kDa). Yet, while

these formats indeed possess higher diffusion rates, the tumor

distribution achieved in physiological settings is poor because

the clearance rates for smaller fragments is markedly higher

relative to full-size antibody molecules.15,20 IgG immunoglo-

bulins undergo salvage recycling through interaction of the Fc

region with the neonatal Fc receptor (FcRn), leading to pro-

longed half-lives of >20 days for most therapeutic mAbs.21

Conversely, antibody fragments lacking an Fc region display

half-lives of hours, or even minutes for formats below the

glomerular filtration cutoff (30–50 kDa). The high elimination

rates upon systemic delivery prevent most antibody fragments

from saturating the tumor and achieving uniform

distributions.22,23 Increasing tumor tissue penetration thus

poses significant challenges given the intricate pharmacoki-

netic properties of IgGs.
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Figure 1 Structural features of the tumor microenvironment that increase interstitial pressure and hinder mAb extravasation and distribution. (A) Blood vessels that

irrigate healthy normal tissue possess a continuous inner lining of endothelial cells, enveloped by perivascular cells called pericytes that grant integrity to the vascular tube.

The extracellular matrix (ECM) contains a lax network of collagen and proteoglycan fibers, and the presence of macrophages and fibroblasts is scarce. Lymph vessels

efficiently remove and prevent the accumulation of macromolecules and interstitial fluid. (B) Increased demand of oxygen and nutrients in tumor tissues causes blood vessels

to form defectively and irregularly shaped. The lack of pericytes makes the vascular tube unstable and leaky. The abundant presence of fibroblasts and infiltrating

macrophages promote the formation of a dense ECM, with a condensed network of collagen and proteoglycan fibers. The paucity of lymph vessels leads to the accumulation

of macromolecules and an increase in interstitial fluid pressure (IFP). The fibrotic nature of the ECM and the altered pressure differential between the vascular lumen and the

tumor hinder antibody convection into the targeted tissue.
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Resistance to monoclonal antibody

therapy
Understanding the resistance mechanisms that affect

monoclonal antibody therapy in cancer has proven to

be a strenuous task, insofar as the antitumor activity of

mAbs stems from a multiplicity of molecular mechan-

isms – eg, signaling pathway disruption, antibody-

dependent cellular cytotoxicity (ADCC), antibody

dependent cellular phagocytosis (ADCP) and comple-

ment dependent cytotoxicity (CDC). To this day, the

clinical contribution of the various modes of action

involved in the anticancer activity of most mAbs

remains controversial.24–26 On that account, intrinsic

phenotypic variations in tumor cells or tumor-related

cells affecting any of the involved modes of action can

compromise treatment efficacy. Moreover, adaptive phe-

notypic modifications can arise following repeated expo-

sure to sub-optimal doses of the biotherapeutic resulting

in acquired resistance.27,28

Most of the current understanding of the contributing

factors in the development of intrinsic or acquired resis-

tance and their clinical significance comes from preclinical

and clinical trials of benchmark therapeutic antibodies.

Notwithstanding that the modes of action of different

mAbs are not identical, the vast clinical data available

for these benchmark antibodies are pivotal to comprehend

host response and optimize monoclonal antibody therapy.

The next sections briefly discuss resistance mechanisms

identified in clinical settings for trastuzumab in HER2

positive breast cancer, and for cetuximab in colorectal

cancer as archetypes of solid tumor treatment.

Resistance to trastuzumab (anti-HER2 therapy)

Trastuzumab was the first therapeutic monoclonal anti-

body to be approved for a solid carcinoma (FDA approval

in the year 1998).29 Trastuzumab targets the extracellular

domain (ECD) of the human epidermal growth factor

receptor 2 (HER2/Neu or ErbB2) that is overexpressed in

a broad range of malignancies. HER2 overexpression is

detected in 15–20% of breast cancers, and this subset is

associated with poor prognosis and higher rates of

recurrence.30,31

HER2 exists primarily as a monomeric receptor that can

form heterodimers with other members of the ErbB family of

receptors (HER1, HER3 and HER4) upon ligand-mediated

activation of the latter. Heterodimerization activates the

MAPK and PI3K/AKT/mTor intracellular pathways, inducing

cell proliferation and inhibition of apoptosis, respectively.32,33

Direct binding of trastuzumab with HER2 can hinder hetero-

dimerization and promote proteolysis of the receptor through

receptor-mediated endocytosis. This interaction inhibits down-

stream signaling and causes cell cycle arrest by accumulation

of the cyclin-dependent kinase inhibitor p27.34 Additionally,

trastuzumab can mediate ADCC35,36 and ADCP.26,36,37

Induction of CDC has also been documented in in vitro experi-

ments, but it is thought to contribute only minimally to the

anticancer effect in patients.36,38

Intrinsic alterations of the HER2 receptor involving

regions associated with the binding epitope of trastuzumab

have been linked to intrinsic (or primary) resistance

mechanisms. For instance, alternate transcription initiation

sites can result in the expression of a truncated variant of

the receptor (p95-HER2) that lacks the cognate epitope for

trastuzumab.39 Insertions and point mutations in the tyro-

sine kinase domain of HER2 have been identified in var-

ious cancers, some of them associated with resistance to

trastuzumab and lapatinib, however evidence of such

mutations in HER2 overexpressing breast cancers has not

been reported to date.40,41 A further alteration resulting in

impaired target binding comes from the overexpression of

mucin-4, which has been shown to induce association with

HER2 causing steric hindrance to abrogate trastuzumab

binding to HER2.42

Additional intrinsic and acquired resistance mechan-

isms predominantly involve alterations in the P13K/Akt/

mTOR axis, activation of other ErbB receptors (especially

EGFR and HER3) by increased ligand production, and

circumvention of HER2 binding by activation of the

PI3K cascade through alternative pathways. Mutations in

PIK3CA and function impairment of PTEN (both down-

stream of HER2 signaling) have been implicated in

bypassing HER2 blockade.43,44 Overexpression of the

insulin-like growth factor (IGF-IR) has been documented

as an adaptive response to trastuzumab by some tumors,

resulting in resistance to the antibody. IGF-1R can form

heterodimers and heterotrimers with HER2 and HER3 in

breast cancer cells resistant to trastuzumab.45,46 Similarly,

increased levels of EpoR, EpHA2 and RTK MET can

activate P13K/Akt/mTOR by interacting with other mem-

bers of the ErbB family or through activation of intracel-

lular kinases.46–48

Resistance to cetuximab (anti-EGFR therapy)

The epidermal growth factor receptor (EGFR; HER1;

ErbB1) forms part of the ErbB family of receptors.

EGFR is pivotal in modulating proliferative mechanisms
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and has been implicated in a broad range of cancers.49–51

Cetuximab (chimeric IgG1) was the first anti-EGFR mAb

to receive regulatory approval in 2004.52 Since then, two

more anti-EGFR mAbs (panitumumab and necitumumab)

and six anti-EGFR small molecule inhibitors (gefitinib,

erlotinib, lapatinib, neratinib, vandetanib and osimertinib)

have obtained regulatory approval for various cancers.4

The anticancer activity of cetuximab partially resem-

bles that of trastuzumab in that it targets another member

of the ErbB family of receptors with intrinsic protein

tyrosine kinase activity. Accordingly, dimerization of

EGFR can activate the PI3K/AKT/mTOR, RAS/RAF/

MAPK and JAK/STAT signaling pathways to promote

cell growth and proliferation.53,54 In contrast to HER2,

EGFR can undergo a conformational transition triggered

by binding of specific ligands, predominantly EGF and

TGFα, that promotes the formation of homodimers and

heterodimers with other members of the HER family.55

Cetuximab can block ligand activation of EGFR by bind-

ing directly to the ECD III of the receptor and inducing

receptor internalization and proteolysis.56 A further con-

tributing mechanism of action involves suppression of

VEGF (a pro-angiogenic factor) production resulting in

impaired angiogenesis.57 Moreover, ADCC and CDC are

also believed to contribute to cetuximab efficacy in EGFR

over-expressing cancers.58,59

There is vast documentation of primary and acquired

resistance to anti-EGFR therapy in patients with colorectal

and head and neck cancer. Indeed, roughly 80% of meta-

static colorectal cancer patients do not display susceptibil-

ity to EGFR blockade.60 This low response rate has been

linked to a broad spectrum of alterations in several of the

components of the downstream signaling pathways.

Specifically, mutations in the PIK3CA,61 NRAS, BRAF

and KRAS62 genes that confer constitutive activation of

the EGFR are among the best studied contributing factors

in intrinsic and acquired resistance. Further alterations

such as low EGFR copy numbers or low expression of

specific EGFR-ligands (eg, EREG and AREG) have been

implicated in resistance to EGFR therapy.63,64

EGFR downregulation and structural modifications in the

binding region can also compromise treatment efficacy.65

The role of mutations in the ECD of EGFR in cetuximab

resistance remains unclear. Recent publications have identi-

fied several point mutations that abrogate cetuximab binding

to the receptor.66 Still, RAS mutations are found more fre-

quently in refractory patients than ECD mutations and have

been associated with worst clinical outcomes.67

Novel approaches to enhance
efficacy
Increasing the therapeutic index with

antibody-drug conjugates

ADCs were conceived as an approach to enhance the

therapeutic window of its primary components, namely

the targeted antibody and a cytotoxin or an immunotoxin

covalently attached to the antibody. Endowing the drug

with specificity toward a molecular target – by virtue of

the attachment of an antibody – allows for the utilization

of highly potent cytotoxic compounds, that otherwise dis-

play intolerable systemic toxicity.

ADCs increase the intrinsic potency of the targeted

treatment – relative to the antibody agent, therefore

lower doses are required to reach the tumor to effectively

destroy the targeted cells. Moreover, depending on the

chemical nature of the drug and its release in the tumor

(either intracellular or extracellular), some payloads can

subsequently diffuse and kill surrounding cells (“bystander

killing”).68,69 Consequently, these features could amelio-

rate the drawbacks of the heterogeneous tumor distribu-

tions of therapeutic antibodies and decrease the risk of

developing resistance.

Despite the potential of the concept, the clinical imple-

mentation of ADCs has met with significant challenges,

mostly regarding off-target toxicity. To date, only four

ADCs (Mylotarg, Adcetris, Kadcyla and Besponsa) have

received regulatory approval. Gemtuzumab ozogamicin

(Mylotarg) (anti-CD33) was the first to enter the market

in 2000 under an accelerated approval process.70 It was

originally approved as stand-alone treatment for refractory

CD33-positive acute myeloid leukemia, but it was volun-

tarily withdrawn in 2010 after failure to display benefits

relative to standard therapies in a phase III comparative

controlled clinical trial (NCT00085709 or SWOG-0106).71

Moreover, Mylotarg caused a significantly higher rate of

fatal induction toxicity in this confirmatory trial.

Gentuzumab ozogamicin had previously raised hepatotoxi-

city concerns due to high incidence (~20%) of Grade 3 or

4 liver transaminitis and hyperbilirubinemia, and reports of

hepatic veno-occlusive disease.72 Mylotarg received FDA

approval once again in 2017 following a careful review of

the dosing regimen, whereby fractionated lower-dose regi-

mens demonstrated a decrease in early mortality without

compromise in complete remission rate.73,74 Brentuximab

vedotin (Adcetris) (anti-CD30 for Hodgkin lymphoma and

anaplastic large cell lymphoma) and ado-trastuzumab
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emtansine (Kadcyla) (anti-HER2 for HER2-positive meta-

static breast cancer) gained approvals in 201175 and

2013,76 respectively. More recently, the FDA granted

approval to inotuzumab ozogamicin (Besponsa) (anti-CD

22) for treatment of relapsed or refractory B-cell precursor

acute lymphoblastic leukemia (ALL) in 2017.77

The clinical development of ADCs has been hampered

predominantly by systemic toxicity due to off-target

release of the payload. Most adverse effects reported in

clinical reports are ascribed to the potent cytotoxicity of

the payload, underlining the importance of improving

ADC design to enhance therapeutic index.78,79 On that

account, the linker chemistry plays a crucial role in deter-

mining plasma stability to prevent premature release.

Linker chemistry

Earlier ADC formats carried mostly chemically labile lin-

kers, such as pH-labile moieties intended to be released

within the cell. These linkers should be stable at the

neutral pH of the blood (pH 7.3–7.5) and undergo hydro-

lysis once they are internalized within the cell by receptor-

mediated endocytosis, where the more acidic environment

of the endosome (pH 5.0–6.5) or the lysosome (pH

4.5–5.0) trigger the release of the payload.80–82 Both

Mylotarg and Besponsa employ a pH-labile hydrazone

linker. Other early constructs bore reducible disulfide lin-

kers that enable payload delivery in the intracellular redu-

cing environment. The higher concentrations of

glutathione in the intracellular compartment induce disul-

fide bond reduction and cytotoxin release.83

Since then, plasma stability has been improved by

the implementation of alternative release strategies.

Most commonly, the linker is designed to possess

a dipeptide sequence that is recognized and cleaved by

lysosomal proteases following receptor-mediated endo-

cytosis. Most ADCs currently in development employ

this approach.82,84 Specifically, the dipeptide valine-

citrulline group – recognized and cleaved by cathepsin

B (lysosomal protease) – is the most widely implemen-

ted technology in the current clinical pipeline.84

A further approach consists in utilizing non-cleavable

linkers, whereby release of the drug requires cellular

uptake and proteolysis (Figure 2).

Conjugation methods

Most of the ADC formats that have entered clinical trials

employ stochastic conjugation methods to lysine residues

in the antibody, or to free SH groups in cysteines obtained

by partial reduction of the interchain disulfide bonds.

These techniques, although widely used, suffer from sev-

eral disadvantages. In IgG molecules, lysine side chains

are abundant and lysine conjugation yields consequently

highly heterogeneous drug attachments, some of them

occurring on residues where attachment can be detrimental

to the physicochemical stability of the antibody.85

Additionally, highly heterogeneous drug-to-antibody-

ratios (DAR) are obtained, where the ADCs with high

DARs (>8) show more narrow therapeutic indices.86

Conjugation to free SH groups offers greater homogeneity

as the maximum amount of available SH groups after

partial reduction of the interchain disulfide bonds is lim-

ited to 8. Nonetheless, the disruption of these bonds can

result in alterations in the quaternary structure of the IgG

molecule.87 The impact of these conjugation techniques on

the physicochemical stability of ADCs is thoroughly

described in Ref. 88.

Lysine attachment

MCC linker
(non-cleavable linker)

VH
VL

CH1

CH2

CH3

CL

H
N

N

O

O

S

O

O

O

O

O

O

O

N

N

CI

H OH

NH

O

O

Fab
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Figure 2 Structural components of an antibody–drug conjugate. Trastuzumab emtansine is a commercially approved anti-Her2 antibody with a potent maytansinoid payload

attached to lysines in the mAb polypeptide chain through a non-cleavable linker.
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Novel developments in linker technologies intend to

enhance the homogeneity of ADCs by providing site-

specific attachment of the drug-linker to the antibody, thereby

controlling the number of drugs affixed as well as preventing

attachment to regions in the antibody that may impair bind-

ing to the cognate epitope or to Fc receptors on immune

effector cells. The THIOMAB platform, developed by

Genentech, was the first site-specific technique to be imple-

mented, and it consists of the insertion of engineered

unpaired cysteines on protein surface.89 Site-specific meth-

ods also include recombinant techniques to introduce unna-

tural amino acids – eg, p-acetylphelylalanine, N6-

((2-azidoethoxy)carbonyl)-L-lysine, selenocysteine – in the

primary sequence of the antibody that can be readily

modified.89–91 Furthermore, other formats have employed

short peptide tags or specific attachment to the glycan moiety

in the CH2 domain.92,93 Several preclinical studies have

reported superiority in efficacy and safety of site-specific

homogeneous ADCs compared to conventional lysine or

cysteine-conjugation chemistry.94,95 Site-specific conjugates

currently account for approximately 15% of ADC formats in

development.96

Cytotoxic payloads

A further increasing trend in ADC optimization focuses on

the development and employment of more potent payloads.

In particular, DNA alkylators – predominantly calicheamy-

cins, pyrrolobenzodiazepines and duocarmycins – have seen

a significant increase in popularity in the development of

novel ADC platforms.97 This strategy gained relevance

after several ADCs failed to demonstrate adequate efficacy

in clinical trials early in the decade. In 2013, 80% of the

clinical pipeline was made up of conjugates bearing antimi-

totic agents, namely auristatins or maytansinoids (mostly

DM1, DM4, MMAE and MMAF). Since then, this fraction

has dropped by >15% owing to the introduction of novel

formats carrying DNA alkylating agents and other novel

cytotoxic compounds, eg trastuzumab deruxtecan,98 trastu-

zumab duocarmazine,99 vadastuximab talirine.100,101

Further optimization of ADC design is sure to bring

about major improvements to the field of antibody thera-

peutics and precision medicine. The field has grown dra-

matically in recent years and will likely continue to

experience major developments in the near future as

novel technologies and strategies are implemented in pre-

clinical and clinical development. The ADC field will also

benefit from advancements in the identification of novel

target antigens.

Engaging the immune system
Immune checkpoint blockade

One of the most important recent developments in antibody

therapy in oncology has been the introduction of ICI in the

clinic. ICI therapy consists in the utilization of monoclonal

antibodies to disrupt key signaling pathways involved in the

suppression of immune effector cells.102 Releasing the

brakes of the immune system in this way can trigger potent

and durable antitumor responses. One of the most advanta-

geous features of ICI therapy is the capability of eliciting

antitumor responses in a wide range of malignancies, since

the treatment engages the immune machinery as opposed to

traditional targeted therapy that is specific to antigens

expressed in cancer cells. A further key feature of immune

checkpoint blockade is the observed long-term durability of

the anticancer response.103

Two crucial inhibitory pathways have been exploited in

the development of these therapeutics, namely the cytotoxic

T-lymphocyte associated protein 4 (CTLA-4) and the pro-

grammed cell death (PD-1) receptor or its ligand PD-L1. The

first FDA approval was granted in 2011 to ipilimumab (anti-

CTLA-4) for late-stage melanoma, following the review of

a phase III randomized, controlled trial that included 676

melanoma patients (stage III or IV) and demonstrated an

increase in overall survival rate. This was the first drug to

achieve a significant improvement in overall survival in

advanced melanoma, and it marked a key development in

the field of cancer immunotherapy.104 Following the first

approval of ipilimumab the field has experienced

a remarkable expansion. Anti-PD-1 antibodies pembrolizu-

mab and nivolumab received regulatory approval in 2014.

More recently, the anti-PD-L1 atezolizumab entered the

clinic in 2016 and anti-PD-L1 mAbs avelumab and durvalu-

mab in 2017 (Table 1).

CTLA-4 therapy. The CTLA-4 and PD-1 immunosup-
pressive checkpoints are key regulatory mechanisms in
immune response modulation and self-tolerance. In can-
cer, the presentation of neoantigens by antigen present-
ing cells (mainly dendritic cells) in the lymph nodes
induces an initial activation of naïve T cells that leads
to expansion and proliferation of cytotoxic and helper
T cells specific to tumor antigens. These activated
T cells can subsequently infiltrate the tumor and mount
a local immune response against cancer cells. The initial
activation that takes place in the lymph nodes requires
two co-stimulatory events: (1) T cell receptor (TCR)
activation through interaction with an major histocom-
patibility complex (MHC)-peptide complex on the APC
and (2) co-stimulation through T cell CD28 and APC
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B7 ligand (CD80 or CD86) interaction.105 Upon T cell
activation, CTLA-4 (CD152), which is localized in
intracellular vesicles in naïve T cells, is upregulated
and translocates to the cellular membrane.106–108

CTLA-4 is a homolog of CD28 with higher affinity
towards CD80 (or B7-1) and CD86 (B7-2), therefore
its exposure on the cell surface can lead to disruption of
CD28-CD80 stimulation and T cell suppression through
CD80-CTLA-4 signaling (Figure 3).102,109 CTLA-4
works as a signal damper of T cell activation and
compromises the potency of the immune antitumor
response. Recent data indicate that the therapeutic effi-
cacy of anti-CTLA-4 antibodies in oncology could also
stem from a selective depletion of intratumoral

regulatory T cells (Treg) through ADCC or ADCP,
mediated by antibody binding to overexpressed CTLA-
4 in these Tregs.110–112 Comprehensive reviews of the
mechanism of action of anti-CTLA-4 therapy can be
found in.113,114

PD-1/PD-L1 therapy. The PD-1/PD-L1 pathway plays
a crucial role in adaptive immune responses. PD-1 is
expressed by activated T cells, B cells, macrophages,
natural killer (NK) cells and several APCs.115 PD-1
expression on naïve T cells is induced upon TCR stimula-
tion or TGF-β and cytokine (eg, IL-2, IL-7, IL-15, IL-21)
autocrine/paracrine signaling. When activated tumor-
specific T cells infiltrate the tumor, TCRs are triggered

Table 1 Approved immune checkpoint inhibitors and FDA indications

Antibody Target FDA indications FDA approval
date

Ipilimumab

(Yervoy)

CTLA-4 Unresectable or metastatic melanoma 2011

Adjuvant treatment in cutaneous melanoma following surgery 2015

Unresectable or metastatic melanoma in paediatric patients 12 years of age or older 2017

Nivolumab

(Opdivo)

PD-1 Unresectable or metastatic melanoma 2014

Advanced (metastatic) squamous non-small cell lung cancer (NSCLC) 2015

Advanced (metastatic) renal cell carcinoma 2015

Classical Hodgkin lymphoma 2016

Metastatic squamous cell carcinoma of the head and neck (HNSCC) 2016

Metastatic urothelial carcinoma 2017

Microsatellite instability-high (MSI-H) or mismatch repair deficient (dMMR) metastatic

colorectal cancer (mCRC)

2017

Hepatocellular carcinoma (HCC) 2017

Pembrolizumab

(Keytruda)

PD-1 Advanced or unresectable melanoma 2014

Advanced (metastatic) NSCLC 2015

Metastatic HNSCC 2016

Refractory classic Hodgkin Lymphoma 2017

Metastatic urothelial carcinoma 2017

Metastatic solid tumors with microsatellite instability-high or mismatch repair deficienta 2017

Metastatic gastric or gastroesophageal junction adenocarcinoma with PD-L1 expression 2017

Metastatic cervical cancer with PD-L1 expression 2018

Refractory primary mediastinal large B-cell lymphoma 2018

Hepatocellular carcinoma 2018

Metastatic Merkel cell carcinoma 2018

Atezolizumab

(Tecentriq)

PD-L1 Urothelial carcinoma 2016

Metastatic NSCLC 2016

Avelumab

(Bavencio)

PD-L1 Metastatic Merkel cell carcinoma 2017

Urothelial carcinoma 2017

Durvalumab

(Imfinzi)

PD-L1 Metastatic urothelial carcinoma 2017

Advanced NSCLC 2018

Ipilimumab +

Nivolumab

CTLA-4+

PD-1

BRAF V600 wild-type unresectable or metastatic melanoma 2015

BRAF V600 wild-type and BRAF V600 mutation-positive metastatic melanoma 2016

Intermediate- and poor-risk advanced renal cell carcinoma 2018

Microsatellite instability-high or mismatch repair deficient metastatic colorectal cancer 2018

Notes: aFirst approval based on the presence of a biomarker instead of the tissue affected.

Abbreviations: CTLA-4, cytotoxic T-lymphocyte-associated antigen; PD-1, programmed cell death 1; PD-L1, programmed cell death ligand 1; NSCLC, squamous non-small

cell lung cancer; HNSCC, squamous cell carcinoma of the head and neck.
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by recognition of the MHC-cognate antigen complex,
resulting in the release of interferon-γ (IFN-γ) and other
inflammatory cytokines. Secretion of IFN-γ can induce the
expression of PD-L1, and PD-L2 to a lesser extent (PD-1
ligands), on the cell surface of tumor cells and tumor
macrophages.116 PD-1 binding to PD-L1 suppresses the
T cell response of previously activated T cells at the
tumor-invasive margin, leading to adaptive immune resis-
tance (Figure 3).117,118 The proposed mechanism of action
of PD-1/PD-L1 inhibitors thus consists of suppression of
the PD-1 regulatory signal exerted on activated tumor-
infiltrating T cells.119 Nonetheless, further mechanisms of
action have been suggested and are reviewed
elsewhere.119–121

Targeting PD-1 or PD-L1 has been presumed to be

a more tumor-specific approach than CTLA-4 blockade,

given the involvement of the former in restoring T cell

function at the effector stage which requires previous

tumor-specific T-cell activation. This is supported by clin-

ical data showing improved outcomes and a lower rate of

grade 3–4 adverse events with anti-PD-1 therapy com-

pared to ipilimumab (anti-CTLA-4).122 The open-label,

randomized, phase III clinical trial KEYNOTE-006 pro-

vided a head-to-head comparison of advanced melanoma

treatment with ipilimumab or two different dose regimens

of pembrolizumab (anti-PD-1). Pembrolizumab treatment

achieved a more than twofold increase in 24-month pro-

gression-free survival rates compared to ipilimumab while

the 24-month overall survival rate was 55% (pembrolizu-

mab) to 43% (ipilimumab).122,123 Moreover, pembrolizu-

mab has shown clinical efficacy in advanced melanomas

refractory to ipilimumab by increasing progression-free

survival.124 A clinical trial comparing nivolumab (anti-

PD-1) to ipilimumab in advanced melanoma also reported

substantial improvements in overall survival and progres-

sion-free survival rates with PD-1 therapy.125

Moving forward with ICI

Despite the remarkable clinical outcomes of ICI therapy,

immune checkpoint blockade is still a relatively new con-

cept and is undergoing extensive efforts for optimization.

Key limitations being addressed include low objective

response rates and primary and acquired resistance to

treatment. Low objective response rates are presumably

associated with primary resistance mechanisms. Achieving

higher response rates will likely come from a better under-

standing of tumor biology and the elucidation of biomar-

kers that can identify patients that are more likely to

respond to specific immunotherapeutics.

Moreover, since CTLA-4 and PD-1 are non-redundant

inhibitory mechanisms, combination therapy targeting both

pathways can significantly increase objective response rates.

This was shown in a phase II trial where nivolumab plus

ipilimumab therapy displayed a 61% objective response rate

MHC

MHC

TCR

TCR

CD80

CD80 CTLA-4

CTLA-4

CD28
Activation

Inhibition

Ipilimumab

APC

PD1 PD-L1

PD-L1

Pembrolizumab
Nivolumab

Atezolizumab
Avelumab

Durmalumb
Tumor cellT cell

Figure 3 CTLA-4 and PD1/PD-L1 blockade using immune checkpoint inhibitors. Dendritic cells process and present tumor neoantigens through the MHC to the TCR on

T-cells in the draining lymph nodes. T-cell activation further requires a co-stimulatory signal by CD80-CD28 binding. Upon T-cell activation, CTLA-4 can be upregulated in

T-cells. CTLA-4 has a higher affinity towards CD80 than CD28; therefore, the overexpression of CTLA-4 interferes with the co-stimulatory CD80-CD28 signal preventing

T-cell activation. Ipilimumab prevents this mechanism by binding to CTLA-4 thus blocking its interaction with CD80. Once activated T-cells migrate to the tumor to mount

an immune anti-tumor response, tumor cells and macrophages can upregulate PD-L1 and suppress the immune response by interacting with the upregulated PD-1 on T-cells.

Anti-PD1 and anti-PD-L1 antibodies inhibit this adaptive immune resistance mechanism.

Abbreviations: CTLA-4, cytotoxic T-lymphocyte-associated antigen; PD-1, programmed cell death 1; PD-L1, programmed cell death ligand 1; MHC, major histocompat-

ibility complex; TCR, T cell receptor.
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compared to 11% with ipilimumab mono-therapy.126 Dual

immune checkpoint inhibition has shown great promise in

increasing therapeutic efficacy and nivolumab plus ipilimu-

mab combination has already gained approval for metastatic

melanoma, renal cell carcinoma and microsatellite instabil-

ity-high or mismatch repair deficient metastatic colorectal

cancer (Table 1). Notwithstanding, combined therapy also

seems to increase the frequency of immune-related

toxicities.127 Thorough reviews on strategies and novel con-

cepts for combination therapy can be found in.128,129

Additionally, alternative inhibitory pathways of the antitu-

mor immune response are also being targeted for clinical

development; for example, blockade of LAG-3, TIM-3,

TIGIT, VISTA, and others have started early clinical trials;

and are reviewed elsewhere.130

Bispecific antibodies (BsAbs)

Aconceptually different strategy to engage the immune system

in tumor cell depletion consists in the use of bispecific anti-

bodies (BsAbs), wherein one arm of the BsAb targets a tumor

cell antigenwhile the other arm recruits and activates Tcells, or

other immune effector cells. Additionally, various BsAb for-

mats have been designed for therapeutic approaches that do not

involve direct immunomodulation; eg, cross-linking or inhibi-

tion of two different receptors.131,132 A plethora of bispecific

antibody formats have started clinical development, and have

been reviewed by others.133–135 Nonetheless, only two bispe-

cific formats have obtained approval by established regulatory

agencies for cancer therapy. The first case – catumaxomab –

comprises a hybrid rat-mouse full-size mAb with specificity

toward tumor-expressed EpCAM and to the CD3 T cell co-

receptor. Catumaxomabwas approved by the EMA in 2009 for

treatment of malignant ascites in EpCAM positive

carcinomas.136 Conversely, the other marketed BsAb – blina-

tumomab – comprises two scFv proteins connected by

a peptide linker; a BsAb format called Bispecific T cell

Engagers (BiTE). Blinatumomab binds to CD19 expressed

onmalignant B lymphocytes, while also engaging the CD3 co-

receptor to recruit Tcells. Blinatumomab was approved by the

FDA in 2014 under the accelerated approval program, for use

in precursor B-cell ALL.122

Another flourishing strategy in cancer immunotherapy

with bispecifics involves the recruitment and activation of

NK cells. Analogous to BiTEs, Bispecific Killer cell

Engagers (BiKEs) possess two scFv fragments; one directed

towards a tumor antigen and another scFv that engages

FcγRIIIa (CD16) on NK cells. Moreover, trispecific formats

(TriKEs) have been created by incorporating an additional

scFv fragment targeting another tumor antigen;137 or alter-

natively containing IL-15 to induce NK cell expansion.138

Several BiKEs and TriKEs are undergoing preclinical

development.139,140 Other strategies to target NK cells for

tumor eradication have been reviewed in.141

Nanoparticle delivery vehicles to improve

tumor delivery
In cancer therapy, NP delivery systems offer the possi-

bility to modify the pharmacokinetic profile of small

molecule cytotoxins and increase tumor targeting as

a means to improve therapeutic indices and safety pro-

files. NP delivery systems are typically in the 10–100

nm range, making them susceptible to accumulation in

tumor tissues as a consequence of the EPR effect. The

EPR refers to the enhanced accumulation of nanostruc-

tures in tumor tissue following extravasation through the

endothelium that irrigates the neoplasm. The vasculature

in these sites is formed rapidly due to an increased

demand of oxygen and nutrients and secretion of vascu-

lar effectors, leaving large fenestrations or endothelial

gaps that allow diffusion of NPs that are otherwise too

large to penetrate through healthy capillaries.142–144

Moreover, accumulation of NPs is further enhanced by

a decrease in lymphatic drainage.142,145 Preferential

accumulation due to the EPR effect is termed passive

targeting and is an inherent property of nano-sized mate-

rials. Importantly, the contribution of the EPR effect in

preclinical and clinical settings has been debated and it

is known to depend on myriad factors relating to tumor

characteristics, including localization, stage, vascular

density, fibrotic tumor microenvironment, lymphatic

drainage and vascular architecture.143,146,147 Still, the

EPR remains a fundamental principle behind the design

and development of NP delivery strategies for solid

tumors. Several NPs have also been developed as ima-

ging agents; however, this section discusses only those

formats intended for therapeutic purposes in oncology.

Since the first reports of the EPR effect in 1986,142

interest in the development of NP-delivery platforms has

increased substantially and has led to the approval of sev-

eral NP formulations. At present, liposomal delivery sys-

tems comprise the vast majority of NP-based therapeutics

approved for clinical use in oncology and those undergoing

clinical development.148 Doxil (doxorubicin encapsulated in

PEGylated liposomes) was the first nano-carrier to be

licensed in the US in 1995 for treatment of AIDS-related
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Kaposi’s sarcoma. The first approval of Doxil served as

a benchmark for the validation of NP systems in oncology,

and the formulation is currently also FDA approved in

ovarian cancer and multiple myeloma.149 Importantly, the

approval granted for the aforementioned indications was

based on superior safety profiles compared to established

therapy, and it also demonstrated superior efficacy in

Kaposi’s sarcoma.150–152 Thereafter, 10 other nanotherapeu-

tics have entered the clinic (Table 2). Except for Abraxane

(albumin-bound paclitaxel) and NanoTherm (iron oxide

NPs), all other approved nanomedicines consist of liposo-

mal chemotherapeutics.148,153

Subsequent advancements in NP synthesis and engi-

neering have allowed for the development of multifunc-

tional NP delivery platforms with expanded therapeutic

capabilities. For instance, a highly attractive characteristic

of NPs is the possibility to functionalize their surface with

multiple bioactive substances that can aid in tumor locali-

zation, treatment and diagnosis. A representative case is

CYT-6091, a construct composed of PEGylated gold

NPs carrying tumor necrosis factor alpha (TNFα) on its

surface that has shown promising results in a phase

I clinical trial, wherein the maximum tolerated dose of

nano-formulated TNFα exceeded that of native TNFα by

threefold due to enhanced localization in tumors.154

Furthermore, NPs can be functionalized with biomolecules

that target the tumor stroma to induce changes in the

extracellular matrix (ECM) and facilitate uptake. This

strategy is conceptually appealing, and it is thought to

hold great promise, yet it requires further understanding

of the cross-talk between the multiple paracrine interac-

tions that take place during the formation of the

ECM.155,156 Additionally, the physicochemical properties

of the NP format can be tailored to enable controlled

release of a drug cargo upon exposure to tumor-specific

or external stimuli. Examples of these NP vehicles include

pH-responsive polymeric micelles, temperature responsive

polyN-isopropylacrylamide NPs, light responsive meso-

porous silica NPs and redox-responsive copolymer-based

micelles.157–160

3.6. Approved nanoparticles in oncology

Name NP carrier Targeting Payload Indications Approval date
(FDA)

Doxil/

Caelyx149
Pegylated

liposome

Passive Doxorubicin ● HIV associated Kaposi’s sarcoma

● Ovarian cancer

● Multiple myeloma

1995 (FDA)

1996 (EMA)

Daunoxome171 Non-pegylated

liposome

Passive Daunorubicin ● HIV associated Kaposi’s sarcoma 1996 (FDA)

Discontinued

DepoCyt172 Non-pegylated

liposome

Passive Cytarabine ● Lymphomatous meningitis 1999 (FDA)

Discontinued

Myocet173 Non-pegylated

liposome

Passive Doxorubicin ● Metastatic breast cancer 2000 (EMA)

Abraxane174 Albumin

nanoparticle

Passive Paclitaxel ● Advanced non-small-cell lung cancer

● Metastatic breast cancer

● Metastatic pancreatic adenocarcinoma

2005 (FDA)

2008 (EMA)

Oncaspar175 PEG protein

conjugate

Passive L-Asparaginase ● Acute Lymphoblastic Leukemia 2006 (FDA)

MEPACT176 Non-pegylated

liposome

Passive Mifamurtide ● Non-metastatic resectable osteosarcoma 2009 (EMA)

Nanotherm177 Iron oxide

nanoparticle

Passive Thermal

ablation*

● Glioblastoma 2010 (EMA)

Marqibo178 Non-pegylated

liposome

Passive Vincristine ● Philadelphia chromosome-negative acute lym-

phoblastic leukemia

2012 (FDA)

Onivyde179 Pegylated

liposome

Passive Irinotecan ● Metastatic pancreatic adenocarcinoma 2015 (FDA)

Vyxeos180 Non-pegylated

liposome

Passive Daonorubicin/

cytarabine

● Acute myeloid leukemia 2017 (FDA)

Note: *Thermal ablation is not a payload but a fundamentally different therapeutic approach.

Abbreviations: FDA, Food and Drug Administration; EMA, European Medicines Agency; HIV, human immunodeficiency virus.
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Drug-loaded NP
(Passive targeting)

mAb
(Active targeting)

Enhanced tumor delivery

mAb-targeted NP
(Passive+ active targeting

Figure 4 Harnessing the EPR effect to improve tumor delivery using nanoparticle carriers. Blood vessels that irrigate the tumor tissue are defective. The lack of pericytes

and altered structural features make the vessels less stable and leaky. Larger fenestrations between the endothelial cells allow nanoparticles to extravasate into the tumor.

The fibrotic extracellular matrix lacks proper lymphatic drainage, therefore, nanoparticles can accumulate in the tissue following extravasation (passive targeting).

Nanoparticles (NP) can be functionalized with monoclonal antibodies, or other active targeting agents, to promote specific internalization and drug delivery into targeted

cells (cancer cells or other cells in the tumor microenvironment) once they accumulate in the tumor through passive targeting.
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Active-targeting to increase specificity

Conceptually, the targeting capacity of NPs can be further

enhanced through the attachment of target-specific bio-

molecules, such as mAbs, antibody fragments, aptamers,

affimers and peptides. In this modality, NPs can initially

accumulate in tumor tissue due to passive targeting and

subsequently engage in high-affinity interactions with

tumoral targets (Figure 4).161–163 Most commonly, upre-

gulated cell surface receptors (eg, HER2, EGFR, trans-

ferrin receptor, folate receptor) are targeted, wherein the

multivalent presentation of targeting agent on the NP

surface can cause receptor cross-linking and induce

receptor-mediated endocytosis – an advantageous feature

for intracellular drug delivery.164 Monoclonal antibodies

play a pivotal role in this strategy due to their exquisite

specificity; as well as to the existence of well-established

techniques – primarily phage display – that allow for

high-throughput development of mAbs to specific anti-

gens. Additionally, the prevailing clinical success of

monoclonal antibodies is favorable for regulatory

approval.

At present, a plethora of active-targeted NPs have

undergone preclinical development, however only a few

have initiated clinical trials. A notable example is BIND-

014, a docetaxel-containing polymeric NP targeting the

prostate-specific membrane antigen that has recently

completed phase II clinical trials for various cancers,

where it has demonstrated clinical efficacy and accepta-

ble safety profiles.165 Recently, paclitaxel solid lipid

NPs conjugated to various antibodies as targeting agents

have demonstrated remarkable pharmacokinetic proper-

ties and efficacy in mouse models, and have started

clinical development.166

In its inception, active targeting was intended to aid

tumor localization and retention in conjunction with pas-

sive targeting. Notwithstanding, experimental data have

demonstrated that while engagement and internalization

within cancer cells are significantly increased, tumor

accumulation is only marginally improved.20,163,167 An

extensive analysis of in vivo data published from 2005 to

2015 showed that passive targeting results in 0.6% (med-

ian) of the injected dose accumulating in tumor tissue,

compared to 0.9% with active-targeted NPs.146 It is note-

worthy to underscore that these data were obtained with

several different NP formats administered in a wide vari-

ety of solid tumors. Still, it suggests that accumulation

via passive targeting is essential for enhanced delivery of

payloads through active-targeting. Consequently, suc-

cessful clinical implementation of both passive and

active-targeted NPs will require a better understanding

of the physiological factors that determine the extent of

EPR accumulation in order to identify patients that can

benefit from this approach.168 Alternatively, therapeutic

strategies to increase EPR-related accumulation can be

implemented, such as administration of angiotensin-II

receptor blockers to increase vessel perfusion, or sono-

poration to promote vascular permeability.169,170

Conclusion
Improving tumor penetration and distribution upon systemic

delivery are crucial requirements in mAb therapy to improve

clinical outcomes and prevent the emergence of acquired

resistance mechanisms. Preventing treatment failure due to

intrinsic resistance will require a better understanding of

cancer biology and the identification of novel biomarkers

for a better selection of therapeutic agents and treatment

regimens. The clinical pipeline of alternative mAb-based

approaches to enhance clinical efficacy has experienced

a marked expansion in the last decade. The formats discussed

in this review – ADC, immune-checkpoint inhibitors and

NP-delivery systems – are among key strategies with demon-

strated clinical benefits in the treatment of solid tumors. Of

note is the accelerated growth of the ICI class having

obtained regulatory approval for 6 distinct antibodies since

the year 2011 (first approval) and a remarkable broadening of

clinical indications. Despite their clinical success, these ther-

apeutics are based on relatively new technologies that are still

undergoing extensive efforts to optimize therapeutic poten-

tial. Numerous ICI antibodies targeting alternative targets for

immune inhibition (eg, LAG-3, TIM-3, TIGIT, VISTA, B7-

H3) are in phase I/II clinical trials. Safety concerns inherent

to the high potency and structural versatility of ADCs and

NPs have been prominent barriers in their implementation,

but clinical validation of novel designs could bring about

major breakthroughs in these fields in the coming years.
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