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Purpose: Tumor oxygenation is a critical parameter influencing the efficacy of cancer

therapy. Low levels of oxygen in solid tumor have been recognized as an indicator of

malignant progression and metastasis, as well as poor response to chemo- and radiation

therapy. Being able to measure oxygenation for an individual’s tumor would provide doctors

with a valuable way of identifying optimal treatments for patients.

Methods: Electron paramagnetic resonance imaging (EPRI) in combination with an oxygen-

measuring paramagnetic probe was performed to measure tumor oxygenation in vivo.

Triarylmethyl (trityl) radical exhibits high specificity, sensitivity, and resolution for quantitative

measurement of O2 concentration. However, its in vivo applications in previous studies have

been limited by the required high dosage, its short half-life, and poor intracellular permeability.

To address these limitations, we developed high-capacity nanoformulated radicals that employed

fluorescein isothiocyanate-labeled mesoporous silica nanoparticles (FMSNs) as trityl radical

carriers. The high surface area nanostructure and easy surface modification of physiochemical

properties of FMSNs enable efficient targeted delivery of highly concentrated, nonself-quenched

trityl radicals, protected from environmental degradation and dilution.

Results: We successfully designed and synthesized a tumor-targeted nanoplatform as

a carrier for trityl. In addition, the nanoformulated trityl does not affect oxygen-sensing

capacity by a self-relaxation or broadening effect. The FMSN-trityl exhibited high sensitiv-

ity/response to oxygen in the partial oxygen pressure range from 0 to 155 mmHg.

Furthermore, MSN-trityl displayed outstanding intracellular oxygen mapping in both

in vitro and in vivo animal studies.

Conclusion: The highly sensitive nanoformulated trityl spin probe can profile intracellular

oxygen distributions of tumor in a real-time and quantitative manner using in vivo EPRI.

Keywords: tumor oxygenation, electron paramagnetic resonance imaging (EPRI),

mesoporous silica nanoparticles (MSNs), triarylmethyl (trityl) spin probe

Introduction
Tumorswith lower levels of oxygen, known as hypoxia, have been recognized to increase

malignant progression and metastasis, as well as respond poorly to chemo- and radiation

therapy.1–4 Several agents exist that can be administered to patients prior to radiotherapy

to reduce hypoxia, such as high oxygen content gas breathing or nicotinamide, but these

have not shown sufficient benefit to warrant widespread clinical use.5 Being able to

measure oxygenation for an individual’s tumor would provide doctors with a valuable

way of identifying the best treatment for patients. In order to understand oxygen
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concentration (pO2) of tumor microenvironment, numerous

studies have attempted to address this issue by utilizing oxy-

gen-sensitive fluorescence, phosphoresce, or radioactive

probes in tumors and tissues of living animals. First, oxygen

electrode provides quantitative and reliable oxygen measure-

ment and has been used as a gold standard for oxygen detection

and in vivo local oxygen calibration, especially for the devel-

opment of new oxygen measurement techniques.6–8 However,

invasive, point measurement approaches make it difficult for

clinical use. NIR-fluorescence probes and phosphorescence

lifetime measurement have also been employed to estimate

partial pressures of oxygen tension in tumor.9–11Unfortunately,

the penetration depth of optical light in living animals is

limited. Optical signals also have some potential interference

from biological molecules. To more closely approach clinical

use, three-dimensional in vivo imaging for hypoxia has been

achieved with positron emission tomography (PET), magnetic

resonance imaging (MRI), and electron paramagnetic reso-

nance imaging (EPRI). 18F-misonidazole with PET has

shown a strong correlation with treatment outcome in head

and neck cancer12 and tumor metastasis.13 Tachibana et al also

found 18F-misonidazole to be used as a clinical prognostic

indicator of radiotherapy for tumor hypoxia detection.14

However, studies have concerns for the high background

from nonmetabolized drug of 18F-misonidazole.15 62Cu-

diacetyl-bis(N4-methlythiosemicarbazone (62Cu-ATSM) with

PET was also used to find a “hot spot” to guide intensity-

modulated radiation therapy (IMRT) to enhance radiation

cure of tumors containing hypoxic regions.16,17 Larger and

longer follow-up studies are needed to refine the clinical

usage of imaging hypoxia in radiation delivery. Blood oxyge-

nation level-dependent MRI (BOLD-MRI) and dynamic con-

trast-enhancedMRI (DCE-MRI) are both potential and clinical

approaches for tumor hypoxia imaging. However, MR oxygen

signals are relative and not individually quantitative. No abso-

lute pO2 values can be used to compare between different

patients.18–23 Electron paramagnetic resonance (EPR) spectro-

scopy and imaging have been extensively utilized to measure

physiological parameters, such as tissue metabolic activity,

redox state, and oxygen (O2) concentration.19,24–29 One of

the major foci of EPR spectroscopic imaging has been used

to map the spatial distribution of dissolved O2 in extracellular

tissue.Owing to its high specificity, freedom fromconfounding

variation, reproducibility, sensitivity, and noninvasiveness,

EPR-based measurement of O2 concentrations offers advan-

tages over other techniques. Most importantly, the quantitative

nature of EPRI for oximetric images is repeatable, and thus

successive oxygen images can be compared between pre- and

post-chemo- or radiotherapy treatments, and also compared

between patients. Triarylmethyl (trityl), an EPR oxygen mea-

surement agent, exhibits high stability and narrow line width

under physiological conditions. However, its in vivo applica-

tions in previous studies have been limited by the required high

dosage, its short half-life, and poor intracellular

permeability.30,31 Thismakes intracellular pO2 imaging impos-

sible. To address these limitations, we developed a novel nano-

formulated fluorescent mesoporous silica nanoparticle

(FMSN) EPR spin probe, FMSN-trityl, to facilitate in vivo

measurement of tumor oxygenation using EPRI. Here, we

employed FMSNs as carriers for trityl.MSNs’ unique physical

properties, such as high surface areas, low systemic toxicities,

and flexible functionalization of their three topological

domains, make them ideal as carriers for intracellular oxygen

measurement. 1) Nanochannel: the nanostructure and physio-

chemical properties of MSNs provided trityl radical protection

from degradation inside living animal cells, to profile real-time

intracellular oxygen distributions within the region of interest.

2) Framework: fluorophores were co-condensed into the silica

framework of MSNs to enable fluorescence tracking both

in vitro and in vivo. 3) Exterior surface: FMSN exteriors

were labeled with polyethylene glycol (PEG) polymers to

increase their water solubility, and labeled with tumor-

associated glycoprotein 72 (TAG-72), a glycoprotein found

on the surface of many cancer cells as a targeting moiety. To

the best of our knowledge, this is the first study to use

a nanoformulated spin probe for quantitative intracellular

tumor oximetric images.

Materials and methods
Materials
The materials employed in this study are listed as follows:

ammonium hydroxide (NH4OH, 30–33%, Sigma-Aldrich,

Darmstad, Germany), hexadecyltrimethylammonium bromide

(CTAB, 99%, Alfa Aesar, Haverhill, MA, USA), tetraethox-

ysilane (TEOS, 98%, Sigma-Aldrich), ammonium nitrate

(NH4NO3, Sigma-Aldrich), 3-aminopropyltriethoxysilane

(APTES, 99%, Sigma-Aldrich), N-trimethoxysilylpropyl-N,

N,N-trimethylammonium chloride (TA), N-octane (Alfa

Aesar), ethanol (99.5%, J.B. Baker, Phillipsburg, NJ, USA),

fluorescein isothiocyanate (FITC, Thermo Fisher Scientific,

Waltham, MA, USA), silane PEG-NHS (PG2-NSSL-1k,

Nanocs, New York, NY, USA), TAG72mAb (CC49,

GTX17361, GeneTex, Irvine, CA, USA), wheat germ
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agglutinate AlexaFluor 594 (WGA-594, Thermo Fisher

Scientific), PBS (Thermo Fisher Scientific), ProLong®

Diamond Antifade Mountant (Thermo Fisher Scientific),

Hoechst 33,342 (AAT Bioquest, Sunnyvale, CA, USA), tiar-

ylmethyl (OX063d24 trityl(methyl-tris[8-carboxy-2,2,6,6-tet-

rakis[(2-hydroxy-2d2-ethyl]benzo[1,2-d:4,5-d0] bis[1,3]

dithiol-4-yl], trisodium salt (GE Healthcare, London, UK),

and vinyl polysiloxane mode material (GC America Inc.,

Alsip, IL, USA).

Preparation of nanoparticles
Synthesis of FMSNs and modification of PEG and

TAG72mAb

FMSNs were synthesized according to our previous

studies.32,33 1 mg of FITC was stirred in an APTMS–ethanol

solution (0.1 M in 5 mL of ethanol) in complete darkness for

24 hrs to synthesize FITC-APTMS. 0.58 g of cetyltrimethy-

lammonium bromide (CTAB) was completely dissolved in

300 mL of 0.17 M ammonium hydroxide (NH4OH), and 5.0

g of n-octane was added into the mixed solution for pore size

enlargement. After stirring gently at 40°C for 1 hr, 5 mL of

FITC-APTMS and 5 mL of 0.2 M TEOS were introduced

into the mixed solution. 4 hrs later, 1.0 M TEOS was added

dropwise into the mixed solution. The solution was then

stirred for another 1 hr, followed by aging for 24 hrs at 40°

C. As-synthesized FMSNs were then collected and washed

by centrifugation (12,000 rpm for 30 mins) three times and

subsequently dispersed in 99.5% ethanol. To increase water

solubility, PEG was utilized to modify the surfaces of

FMSNs. 75 mg FMSN was resuspended in ethanol and

stirred with 25 mg of silane-PEG-NHS at 60°C for 24 hrs.

For CTAB template removal, the as-synthesized FMSNs

were refluxed with 250 mg ammonium nitrate in 99.5%

ethanol at 60°C for 2 hrs. Then, N-trimethoxysilylpropyl-N,

N,N-trimethylammonium chloride (TA) silanes were used to

increase the positive charge of nanoparticle. 300 μL of TA

wasmixed with extracted FMSN products described above at

60°C overnight and followed by EtOH washing three times.

The collected FMSN products were washed and reacted with

200 μL of TAG72mAb in PBS for 2 hrs at 4°C. The final

products were then collected by 12,000 rpm centrifuging and

redispersed in water.

Loading of FMSN-PEG-TAG72 with trityl

Triarylmethyl (trityl) spin probe, OX063d24 trisodium

salt, was first dissolved in water, and the pH was adjusted

to 7.4. 384 μL of 12.4 mM OX063d24 trityl was mixed

with 20 mg FMSN-PEG-TAG72 for 2 hrs at room

temperature. The loaded products were then collected

and washed by 12,000 rpm centrifuging. The dark green

color of OX063d24 trityl was dissolved in the aqueous

solution well prior to the reaction. After 2 hrs of reaction

and centrifuging, the supernatant appeared light green, and

the pellets (FMSNs with trityl) exhibited a dark green

color. The quantitative loading capacity was evaluated

from the 468 nm absorption of trityl by UV-Vis spectro-

photometer (Agilent, Santa Clara, CA, USA).

Oxygen response and cell oxygen

consumption
The oxygen-sensing triarylmethyl (trityl) EPR spin probe

used in this study is OX063d24, deuterated OX063, and has

a peak-to-peak line width of 8 mG, which is half that of

native isotope abundance (OX063, 16 mG).34–36 0%, 3%,

6%, 9%, and 21% of oxygen were bubbled in a sealed vial

containing either trityl (OX063d24) or FMSN-trityl (FMSN

with OX063d24) samples for 20 mins until equilibrium.

EPR scanning was then performed. The EPR spectra were

recorded at room temperature using 250 MHz EPR spectro-

scopy (Center of EPR Imaging In Vivo Physiology, The

University of Chicago) with the following parameters: mod-

ulation frequency of 5 kHz, time constant of 1 ms, power of

5.00 mW, scan points of 512, dwell time of 1 ms, and scan

field width of 2.5 G. For cell oxygen consumption assay,

FMSN-trityl treated cells were washed and collected into

a sealed quartz flat cell chamber. The loading/processing

time was controlled within 5 mins before the EPR scan to

obtain the most accurate oxygen information. The following

parameters were used for the Bruker X-band EPR spectro-

meter: frequency of 9.42 GHz, microwave power of 2 mW,

modulation frequency of 100 kHz, scan points of 512, dwell

time of 1 ms, and modulation amplitude of 0.06 G.

In vitro cell uptake and competition assay
Human colon adenocarcinoma LS-174T cells were

obtained from the American Type Culture Collection

(Rockville, MD, USA). LS-174T cells expressed TAG-72

glycoprotein and were used as a positive control to eval-

uate the binding efficiency for TAG-72 monoclonal anti-

body or binding peptide.37,38 LS-174T cells were treated

with PBS (control), trityl-loaded FMSN-PEG or trityl-

loaded FMSN-PEG-TAG72 for 2 hrs, and the cells were

washed by PBS three times. Confocal imaging (Leica TCS

SP5, Wetzlar, Germany) and flow cytometry (BD

Facscanto, Piscataway, NJ, USA) were then performed.
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Ethics statement
Animals used in these studies were approved under the

guidelines of the Institutional Animal Care and Use

Committee (IACUC) of the University of Chicago, which

complies with the guidelines outlined by the National

Institutes of Health. The authorization number for

Animal Use and Care Procedure (ACUP) is 71,697.

Tumor preparation and location
Six-week-old male nude mice were subcutaneously inocu-

lated with 2 million LS-174T cells in the middle distal

hind legs. Tumor was grown to 250 mm3 prior to EPR

imaging. Gas anesthesia with 1–2% isofluorane mixed

with medical grade air was adjusted to regularize breathing

and prevent animal motion during the injection and ima-

ging. Respiration frequency and depth were monitored

continuously. The tumor was immobilized with soft elastic

vinyl polysiloxane dental mold material. A digital needle

probe thermometer was used to measure rectal tempera-

ture. The temperature was maintained at 36°C to 37°C

with heating lamps. MRI location of the tumor was

obtained with a rapid acquisition with refocused echoes

(RARE). Spin-echo images were acquired at 9.4 T on an

Omega Bruker/GE imager with the following parameters:

repetition time=3,000 ms, effective excitation time=56 ms,

field of view=3.0 cm, matrix size=256×256, slice

thickness=1 mm, NEX=1, and rare factor=8. The MRI

with the water fiducials was registered with an image of

the EPR fiducials, according to previous studies.35,39

In vivo EPR imaging
AnMRI as noted above defined the 3D tumor boundary, EPR

images of extracellular pO2 were acquired with spin-lattice

relaxation oxygen imaging40 in 10 mins using a 250 MHz

pulse EPR imager.41,42 p pO2 image was initially acquired

with bolus intravenous (IV) injection of 135 μL of80 mM

OX063d24 spin probe (0.43 mmols/kg) solution and fol-

lowed by 3.5 μL/min continuously infusion over 30 mins

during three pO2 images. OX063d24 is a partially deuterated

trisodium salt of methyl-tris[8-carboxy-2,2,6,6-tetrakis[2-

hydroxy-12H-ethyl]benzo [1,2-d:4,5-d‘]bis [1,3]dithiol-4-

yl]-trisodium salt (MW 1451). It was synthesized by the

Novosibirsk Institute of Organic Chemistry.43 It is available

as OX71 from GE Healthcare (Little Chalfont,

Buckinghamshire, UK). One-half hour after the IV infusion,

3.36 mg FMSN-trityl-loaded nanostructures containing

0.21 mg trityl was injected intratumorally covering the

tumor at six equally spaced superficial locations and two

deep locations to produce a uniform distribution.44

Results and discussion
In this study, we developed a novel trityl-loaded FMSN to

facilitate in vivo measurement of tumor oxygenation using

EPR oximetry. We employed FMSNs as a carrier for triaryl-

methyl (trityl), an EPR oxygen detection agent, for intracellu-

lar oxygenation measurement (Figure 1). Figure 1A illustrates

the scheme of trityl-loaded FMSNs for EPR imaging. PEG

was modified on the exterior surface of FMSNs to increase the

water solubility in physiological environment. TAG72mAb,

the tumor-targeting moiety, was applied to the surface of

FITC-labeled MSN as a carrier for trityl radical for in vivo

tumor oxygen measurement. The positive charge from TA of

FMSNs interacts with trityl radical by electrostatic interaction.

The loading capacity of FMSN-PEG-TAG72 for trityl radical

was detected by 468 nm absorption of trityl through UV-Vis

spectrophotometer; it was found to reach 6.14%. Figure 1B

shows transmission electron microscope (TEM) image of

FMSNswith average size of approximately 70 nm in diameter.

Conjugation of PEG/TAG72mAb to FMSNs, confirmed by

thermogravimetric analysis, demonstrated weight losses of

FMSN, FMSN-PEG, and FMSN-PEG-TAG72 of 10.1%,

20.2%, and 22.1%, respectively, as shown in Figure 1C.

Figure 1D shows the EPR spectra of trityl radial and FMSN-

trityl under an argon gas (0% oxygen) environment. Trityl

radical (Figure 1D, black line) presents a unique sharp shape

spectrum, and the peak-to-peak line width is approximately

80 mG. The spectrum of trityl radical encapsulated in FMSNs

(FMSN-trityl, Figure 1D, red line) remained in the same shape

and sharp peak as trityl alone, which implied that the electro-

static interaction between the TA group of FMSNs and the

carboxylic acid of trityl does not affect the oxygen-sensing

capacity of the spin probe by a self-relaxation or broadening

effect.

In order to demonstrate the oxygen-sensing ability of

FMSN-trityl, we bubbled argon gas (0% oxygen), 3, 6, 9%

oxygen-containing gas, ormedical grade air (21%oxygen) into

vials with FMSN-trityl/trityl-only aqueous solution and mon-

itored theEPR spectrum.Both trityl andFMSN-trityl exhibited

a high sensitivity/response to oxygen in the pO2 range from 0

to 155mmHg (0~21% oxygen) (Figure 2A). The peak-to-peak

linewidth of the spectrawas plottedwith oxygen concentration

and pO2 (mmHg), as shown in Figure 2B. Directly propor-

tional graphs were found for both trityl and FMSN-trityl, and

this result strongly suggested that FMSN-trityl can not only be

used as a spin probe for oxygen sensing, but alsomaintain high
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sensitivity as trityl alone. Trityl encapsulated in FMSNs pro-

vided a reversible oxygen sensing (data not shown) that was

able to report dynamic real time in situ oxygen mapping. The

nanosystem possessed great physical properties that can target

specific tumors, report intracellular oxygen information, and

extend imaging time. Furthermore, we clarified the possible

effect of pH levels on oxygen sensing for the trityl spin probe.

FMSN-trityl aqueous solutions were adjusted to indicate pH

(3, 5, 7, 9, 11), bubbled with air, and the spectrum and peak-to-

peak line width were acquired. The measurements from

FMSN-trityl were found to be consistent with the previous

data, and no impact was observed by changing the pH of the

aqueous solution (Figure 2C). This is extremely important for

our study, especially for cell study and in vivo animal demon-

stration, since pH levels in cells or tumor areas may exhibit

marked changes, such as endosome or lysosome, and acidic

environment of tumor.45,46

Figure 3 illustrates the localization and cell uptake effi-

cacy of FMSN-trityl by using confocal microscopy and flow

cytometer. LS-174T cells were treated with PBS (Figure

3A), trityl-loaded FMSN-PEG (Figure 3B), or trityl-loaded

FMSN-PEG-TAG72 (Figure 3C) for 2 hrs and extracellular

particles were washed out by PBS. The cells were also

counterstained with nucleus (blue) and cell membrane

(red) staining agents. In Figure 3C, confocal image showed

that the fluorescence-labeled MSNs were uptaken by cells

and localized in the cytoplasm. We further quantified the cell

uptake levels of TAG72mAb-labeled FMSNs. 55% cellular

uptake efficacy was found, which constitutes 3.5 times

enhancement of cell uptake compared with nontargeted

FMSN-PEG (Figure 3D). Cells treated with PBS were

served as control. The results from Figure 3 provide evi-

dence that FMSN-trityl has the ability to penetrate the cell

membrane and obtain intracellular oxygen information.

In an attempt to demonstrate oxygen sensing in a more

complicated system, we performed a cell oxygen consump-

tion assay. Five million cells were treated with the targeted

FMSN-trityl for 2 hrs, and the extracellular nanoparticles
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were washed out by PBS three times. Treated cells were then

trypsinized and loaded into a quartz-sealed flat chamber.

EPR spectra were constantly scanned in a function of time

for 900 s. Figure 4 shows the kinetics of oxygen consump-

tion measured by EPR in a suspension of LS-174T cells.

Several spectra from representative time points are shown in

Figure 4A, and measured partial oxygen pressure with time

is plotted in Figure 4B. The starting pO2 was approximately

130 mmHg, which was consistent with another study,47

which showed that 8–9 mg/L dissolved oxygen at room

temperate water and pO2 continued to decrease at a rate of

0.075 mmHg/s. Oxygen partial pressure became flatter after

900 s, which might be ascribed to the ambient temperature-

induced apoptosis or low metabolism of cells. However, the

A B

C

180
160
140
120
100
80

Li
ne

 w
id

th
 (m

G
)

Li
ne

 w
id

th
 (m

G
)

60
40

160

120

80

40
2 7 12

pH

0

0 5 10

Oxygen (%)

pO2(mmHg)

15 20

50 100 150

Trityl

TritylMSN-trityl

FMSN-trityl

Magnetic field (gauss)
3416.6 3417.0 3417.4

Am
pl

itu
de

Figure 2 Oxygen response of FMSN-trityl. (A) EPR spectrum of trityl and FMSN-trityl at various oxygen concentrations. The spectra are scaled to the same maximum

amplitude height in the plots. (B) The dependence of peak-to-peak EPR spectrum line width of trityl/FMSN-trityl on oxygen partial pressure. (C) The dependence of peak-to

-peak EPR spectrum line width of FMSN-trityl at different pH levels.

A

B
10 um

10 um 20 um

C D
100 Control: 11%

FMSN-PEG: 15.8%
FMSN-PEG-TAG72:55%

80

60

%
 o

f m
ax

40

20

0
0

FITC-A subset

103

FITC-A
104 105

Figure 3 Cell uptake of FMSN-trityl. Fluorescent confocal images of cells treated with (A) PBS, (B) trityl-loaded FMSN-PEG, (C) trityl-loaded FMSN-PEG-TAG72. Trityl-

loaded FITC-MSNs (green); nucleus stain, DAPI (blue); and cell membrane stain, WGA647 (red). (D) Histogram of cell counts from flow cytometer. X-axis shows the

intensity of FITC.

Chen et al Dovepress

submit your manuscript | www.dovepress.com

DovePress
International Journal of Nanomedicine 2019:142968

Powered by TCPDF (www.tcpdf.org)

http://www.dovepress.com
http://www.dovepress.com


significant decline of oxygen concentration showed the sen-

sitive oxygen response of FMSN-trityl within a relatively

complicated cell system.

For in vivo tumor oxygenation, we used xenograft tumor

mice for tumor oxygen EPRI study. The leg/tumor was

immobilized with soft elastic vinyl polysiloxane dental

mold material. pO2 distributions of tumor were first imaged

by intravenously injected bolus of trityl spin probe and

followed by 3.5 μL/min continuous infusion over 30 mins

during three pO2 images. After half-hour washout, tumor

mice were than intratumorally injected with 3.36 mg trityl-

loaded FMSNs and monitored by EPRI for 1 hr. Three 1 mm

inner diameter, 3 to 4 cm long borosilicate glass sample tubes

containing either 10 mmol/L trityl (EPR imaging) or water

(MRI) were placed at various angles as fiducial markers for

co-registration of EPR imaging with MRI. With MRI for

image registration and anatomical guidance, the tumor out-

line could be contoured and transferred to an EPR image

(pink outline in Figure 5). Figure 5A displays the pO2

distribution measured from FMSN-trityl. Amplitude image

from Figure 5B shows the concentration of FMSN-trityl EPR

signal. Figure 5C shows the pO2 mapping measured from

trityl. In vivo results revealed an outstanding oxygen

response of the hypoxia tumor area, from 5.8 to 12.4 torr of

pO2 (data not shown). Low oxygen distribution was found on

the left side of the tumor. The result suggested that the

FMSN-trityl performed high oxygen sensitivity in a wide

oxygen range, especially within the low oxygen hypoxia

region.

Conclusions
The design of a nanoformulated EPR spin probe was

intended to demonstrate the feasibility of using mesopor-

ous silica nanoparticle as a carrier for tumor oxygen map-

ping. Nanoformulated trityl not only exhibited a narrow

sharp spectrum, but also demonstrated high sensitivity and

positive correlation to oxygen concentration. The in vitro

and in vivo animal study achieved excellent performance

in pO2 images. Overall, the results from this study indi-

cated that FMSN-trityl demonstrated the first quantitative

intracellular oxygen mapping using EPR; and the low

dosage and long imaging window further augmented the

value of this FMSN-trityl oxygen probe compared to

others. We believe that FMSN-trityl provides high-value

tumor oxygen information for in situ diagnostic imaging

for potential clinical uses.
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