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Purpose: The aim of this study is to investigate the effects of epigallocatechin-3-gallate 

(EGCG), a major polyphenol extracted from green tea, on the osteoblastogenic differentiation 

of human adipose-derived stem cells (hASCs).

Patients and methods: hASCs were acquired from human adipose tissue. With informed 

consent, subcutaneous adipose tissue samples were harvested from periorbital fat pad resections 

from ten healthy female adults who underwent double eyelid surgery. hASCs were cultured in 

osteogenic medium with or without EGCG (1 μM, 5 μM, or 10 μM) for 14 days. We evaluated 

the effects of EGCG by quantifying cell growth, ALP activity (an early osteoblastogenic differ-

entiation marker), BSP, OCN (a late osteoblastogenic differentiation marker), and extracellular 

matrix mineralization. We also performed Western blots to measure osteoblastogenesis-related 

proteins such as Runx2 and adipoblastogenesis-related transcription factors, such as STAT3, 

C/EBP-α, and PPAR-γ.

Results: EGCG at 5 μM resulted in significantly higher cell proliferation and ALP activity 

than did the control on days 3, 7, and 14. On day 7, 5 μM EGCG significantly enhanced 

BSP expression. On day 14, EGCG at all concentrations promoted OCN expression. In addi-

tion, EGCG at 5 μM resulted in the highest level of extracellular matrix mineralization. On 

day 3, the expression levels of Runx2 were significantly higher in the 5 μM EGCG group 

than in the other groups, whereas later, on days 7 and 14, Runx2 expression levels in the 

EGCG group were significantly lower than those of the control group. EGCG at all three 

concentrations was associated with significantly lower levels of phosphorylated STAT3, 

C/EBP-α, and PPAR-γ.

Conclusion: EGCG at 5  μM significantly enhanced the osteoblastogenic differentiation 

of hASCs.

Keywords: EGCG, hASCs, osteoblastogenesis, STAT3, bone regeneration

Introduction
Large-volume bone defects (LVBD) can result from congenital nonunion, trauma, 

inflammation, or osteosarcoma resection and can severely impair esthetics and 

musculoskeletal function.1 It remains highly challenging to repair LVBD in the f﻿ield 

of orthopedics and maxillofacial surgery. It has been reported that 5%–10% of all frac-

tures are associated with impaired healing, resulting in delayed union or nonunion.2–4 

How to repair large bone defect remains an important clinical problem, and none 

of the approaches proposed to date have proven to be very effective.5 LVBD may 

require bone grafting to fill defects and provide support. Autologous bone grafting 

is regarded the gold-standard treatment option for LVBD due to its osteoconductive, 
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osteoinductive, and osteogenic characteristics.6 However, 

its use is limited by insufficient availability, donor-site pain 

and morbidity, and varied resorption rates.7 The conventional 

alternatives to autologous bone grafting, including allograft-

ing and xenografting, cannot heal LVBD because they lack 

either osteogenic cells or osteoinductive growth factors. 

In the clinic, autologous bone grafting remains indispens-

able to compensate for these shortages in alternative grafts. 

In these cases, the abovementioned limitations of autologous 

bone grafting remain.

In recent years, cell-based tissue engineering has shown 

promise for application potential in bone regeneration.8 

Bone marrow-derived stem cells (BMSCs) were originally 

considered to be the primary cell resource for bone tissue 

engineering.9 However, the application of BMSCs is associ-

ated with several disadvantages, such as donor-site pain and 

low cell output, leading to sustained efforts to search for 

alternative cells.10 Human adipose-derived stem cells (hASCs) 

are highly promising because of their greatly increased acces-

sibility, higher yield efficiency, less painful harvest proce-

dures, and lower donor-site morbidity when compared with 

BMSCs.11 Furthermore, hASCs proliferate more rapidly12 and 

enter senescence in later passages than do BMSCs.13

On the other hand, although hASCs exhibit multipotency 

as do other mesenchymal stem cells (MSCs), they also show a 

native tendency toward adipogenic differentiation. The activa-

tion of PPAR-γ, a key gene for adipogenic differentiation, not 

only promotes adipogenesis but also downregulates the expres-

sion of Runx2 and interferes with its transactivation ability, 

thereby suppressing osteogenic differentiation. Consequently, 

the osteogenic commitment of hASCs is more complicated 

than that of BMSCs and requires both suppression of its 

adipogenic differentiation and enhancement of its osteogenic 

differentiation. One way to facilitate osteogenesis in hASCs 

is to add osteogenic agents.14,15 However, it has been shown 

that the responses of hASCs to bone morphogenetic protein 2 

(BMP-2), a well-established osteoinductive growth factor, are 

highly unpredictable and largely donor-dependent.1,16–18 There-

fore, sustained efforts have been made to seek effective agents 

to induce the osteogenic differentiation of hASCs in vitro.

Green tea is one of the most popular beverages in the 

world, with well-recognized benefits to health. Habitual tea 

drinking may reduce the risk of hip fractures19,20 and may 

help to retain bone mineral density (BMD) in postmeno-

pausal women.21 In line with the beneficial effects of green 

tea, epigallocatechin-3-gallate (EGCG), the most abundant 

polyphenol in green tea,22 shows various beneficial effects, 

such as antioxidant, anti-inflammatory, anticancer, and 

antiatherogenic effects.23–25 Such effects of EGCG may be 

associated with the activation of genes and signaling path-

ways, such as the mitogen-activated protein kinase (MAPK)-

dependent pathway and the ubiquitin/proteasome degradation 

pathway.22,26,27 EGCG was shown to enhance the osteogenesis 

of BMSCs and osteoblast-like cells28,29 and to inhibit the 

adipogenesis of preadipocytes.30 However, there has been no 

direct experimental evidence identifying EGCG’s effects on 

osteogenic differentiation in hASCs.

In this study, we aimed to investigate the effects of EGCG 

at different concentrations on the osteogenic and adipogenic 

differentiation of hASCs and to explore the application 

potential of EGCG in hASC-based bone tissue engineering.

Materials and methods
Adipose tissue donors
After obtaining informed consent, subcutaneous adipose 

tissue samples were harvested from periorbital fat pad resec-

tions from ten healthy female adults (age range: 25–35 years, 

mean: 30 years) who underwent double eyelid surgery (the 

First Affiliated Hospital, Zhejiang University, Hangzhou, 

China). We obtained approval from the institutional review 

board (IRB). All participants were well-informed of the 

purpose and each submitted written informed consent before 

participating in the study. This study was conducted in accor-

dance with the Declaration of Helsinki.

hASC isolation and preparation
To isolate hASCs, adipose tissue was cut into 1 mm3 pieces 

and undesirable components, such as vascular cells and con-

nective tissues, were eliminated. The 1 mm3 adipose tissue 

was enzymatically digested with 0.1% collagenase A (Sigma-

Aldrich Co., St Louis, MO, USA) in DMEM (Corning 

Incorporated, Corning, NY, USA) under continuous shaking 

conditions for 30 min at 37°C. Cells were then suspended in 

DMEM with 100 U/mL penicillin, 100 μg/mL streptomycin 

(Sigma-Aldrich Co.), 10% FBS (Thermo Fisher Scientific, 

Waltham, MA, USA), and 2  mM l-glutamine. This was 

followed by centrifugation at 1,200 rpm for 4 min. The cell-

containing interface was harvested and cultured in DMEM 

with 100 U/mL penicillin, 100 μg/mL streptomycin (Sigma-

Aldrich Co.), 10% FBS (Thermo Fisher Scientific), and 

2  mM l-glutamine (Sigma-Aldrich Co.). Cells were then 

seeded at a density of 2×104/cm2 into overturned culture 

flasks in a 5% CO
2
 incubator at 37°C. The medium was 

refreshed every 3 days. When nearly 80% confluent, hASCs 

were harvested by adding 0.25% trypsin (Thermo Fisher 

Scientific). In all experiments, hASCs at passage 4 were used. 

The phenotype profile of hASCs (passage 4) was evaluated 

through flow cytometry analysis using PE-labeled cluster 
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designation CD29, CD31, CD44, CD45, CD73, CD90, and 

CD105 antibodies (data not shown).31,32

hASCs were seeded in DMEM with 100 U/mL penicillin, 

100 μg/mL streptomycin, 10% FBS, and 2 mM l-glutamine. 

When 60%–70% confluence was reached, we replaced the 

medium with osteogenic differentiation medium (basal 

culture medium plus ascorbate, β-glycerophosphate, and 

dexamethasone as supplements) (HUXMD-90021; Cyagen 

Biosciences Inc, Guangzhou, China) with vehicle (0.1% 

PBS) or with EGCG at different concentrations (1 μM, 5 μM, 

or 10 μM). The medium was refreshed every 3 days until the 

end of the culture period.

Cell growth assay
Cell growth was analyzed using a cell counting kit-8 (CCK-8; 

Dojindo Co., Kumamoto, Japan). Briefly, hASC cells were 

planted in 96-well plates (5,000 cells per cm2) and incubated 

at 37°C in a 5% CO
2
 humidified atmosphere for 24 h. Then, 

the cells were divided into four groups and were treated with 

EGCG (0 μM, 1 μM, 5 μM, or 10 μM). After the treatment, 

the cells were first washed with PBS and then with 100 μL 

DMEM. Ten microliters of CCK-8 solution was added to 

each well; the plates were then incubated for one more hour. 

The absorbance was measured by a microplate reader at a 

wavelength of 450 nm to count the number of viable cells.

ALP staining and quantification
The hASCs were seeded in six-well plates and cultured in 

EGCG at varying concentrations (0 μM, 1 μM, 5 μM, or 

10 μM). On day 14, ALP staining was carried out using a 

BCIP/NBT Alkaline Phosphatase Color Development Kit 

(Beyotime, Shanghai, China). Briefly, the cells were fixed 

with 4% paraformaldehyde and then incubated in a mixture 

of nitro-blue tetrazolium and 5-bromo-4-chloro-3-indolyl-

phosphate. The ALP staining was observed under an optical 

microscope (Olympus IX71; Olympus Corporation, Tokyo, 

Japan). Culture medium was collected after 3 days, 7 days, 

and 14 days. This was followed by centrifugation at 1,000 rpm 

for 10 min. The supernatants were harvested and then tested. 

The quantification of ALP activity was determined using 

an Alkaline Phosphatase Detection Kit (Nanjing Jiancheng 

Bioengineering Institute, Nanjing, China).

Mineralization
Matrix mineralization was analyzed by Alizarin red stain-

ing (ARS). hASCs were fixed in 4% paraformaldehyde 

for 30 min and rinsed with PBS before staining. To detect 

calcium deposits, hASCs were stained with Alizarin red 

(40 mM, pH 4.2; Cyagen) for 3–5 min and then rinsed twice 

with PBS. Subsequently, an inverted microscope was used 

to visualize staining. Bright red nodules showed mineralized 

matrix deposition that indicated osteoblastogenic differen-

tiation of hASCs. The area of mineralization was calculated 

using software ImageJ.

Western blotting
Primary antibodies against osteocalcin (OCN; Sigma-Aldrich 

Co., catalog number: SAB1306277), bone sialoprotein 

(BSP, diluted 1:1,000; Cell Signaling Technology, Boston, 

MA, USA; catalog number 5468S), Runx2 (diluted 1:1,000; 

Cell Signaling Technology; catalog number 8486), STAT3 

(diluted 1:1,000; Cell Signaling Technology; catalog number 

9139), pSTAT3 (diluted 1:2,000; Cell Signaling Technology; 

catalog number 9145), PPAR-γ (diluted 1:1,000; Cell Signal-

ing Technology; catalog number 2435), C/EBP-α (diluted 

1:1,000; Cell Signaling Technology; catalog number 8178), 

and β-actin (diluted 1:1,000; Cell Signaling Technology; 

catalog number 4970) were incubated with the blots at 4°C 

overnight. Horseradish peroxidase-conjugated anti-rabbit 

or anti-mouse secondary antibodies (Cell Signaling Tech-

nology) were used as secondary antibodies at a dilution of 

1:10,000 and incubated at room temperature for 1 h.

Statistical analysis
All results were presented as mean ± SD for at least three 

independent experiments. Differences among groups were 

analyzed by ANOVA (for experiments with more than two 

groups). A two-tailed value of p,0.05 was considered to be 

statistically significant. Statistical analysis was performed 

using GraphPad Prism 6 (GraphPad Software, Inc., La 

Jolla, CA, USA).

Results
Effect of EGCG on the growth of hASCs
On day 3, EGCG at 5 µM but not at 1 µM or 10 µM resulted in 

significantly higher cell viability than did the control (without 

EGCG) (Figure 1). On day 7, EGCG at all concentrations 

significantly enhanced cell viability as compared to the con-

trol. On day 14, 5 µM EGCG induced significantly higher 

cell viability than did the control, whereas 1 µM or 10 µM 

EGCG did not. Among these three different concentrations, 

5 µM EGCG showed a consistent ability to promote cell 

viability in hASCs.

Effect of EGCG on osteoblastogenic 
differentiation of hASCs
EGCG at 5 µM strongly promoted ALP expression of hASCs 

when compared to the control group on day 14 (Figure 2A). 
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ALP activity quantification assay showed that 5 µM EGCG 

significantly promoted ALP activity on all the time points, 

whereas 1 µM and 10 µM EGCG did so on days 3 and 14 

but not on day 7 (Figure 2B).

After 7 days, 5 µM EGCG significantly enhanced the 

expression of BSP, whereas EGCG at 1 µM and 10 µM had 

no significant effect on BSP expression when compared to 

the control (Figure 3A and B). Western blot analysis showed 

that 1 µM and 10 µM EGCG resulted in significantly higher 

expression of OCN in hASCs on day 14 (Figure 3C and D). 

OCN expression at 5 µM EGCG was higher than that of the 

control on day 14. At the same time point, 5 µM and 10 µM 

EGCG significantly promoted extracellular mineralization, 

whereas 1 µM EGCG had no significant effect when com-

pared to the control (Figure 4). All these results showed that 

5  µM EGCG was optimal for inducing osteoblastogenic 

differentiation of hASCs.

Effect of EGCG on the expression of 
osteoblastogenic and adipoblastogenic 
transcription factors
After 3 days of culture, the level of Runx2 expression in 

5 µM EGCG was significantly higher when compared to the 

other groups (Figure 5A and B). On day 7, Runx2 expres-

sion in 5 µM EGCG was significantly downregulated, and 

in the other two EGCG groups, Runx2 expression levels 

were lower than those of the control (Figure 5C and D). 

On day 14, EGCG at all three concentrations was associated 

with significantly lower levels of Runx2 expression when 

compared to the control (Figure 5E and F).

On days 3 and 14, EGCG at all concentrations signifi-

cantly downregulated the expression of PPAR-γ in compari-

son with the control (Figure 6A, B, E, and F). On day 7, 5 µM 

EGCG significantly suppressed the expression of PPAR-γ 

(Figure 6C and D). EGCG at 5 µM showed the most effi-

cacy to suppress PPAR-γ expression. The level of C/EBP-α 

expression in all EGCG groups was significantly lower than 

that of the control on day 14 (Figure 7). Compared to the 

concentrations of 1 µM and 10 µM, EGCG at 5 µM exhibited 

stable and consistent ability in downregulating PPAR-γ and 

C/EBP-α expression.
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Figure 1 CCK-8 was used to analyze cell proliferation of hASCs at various 
concentrations of EGCG.
Notes: Cell growth in EGCG groups was higher than in the control group on days 
3, 7, and 14; 5 μM was optimal to enhance cell proliferation. All data are presented 
as mean and SD. *p,0.05; **p,0.01; and ***p,0.001 (N=4).
Abbreviations: CCK-8, cell counting kit-8; EGCG, epigallocatechin-3-gallate; 
hASCs, human adipose-derived stem cells.

Figure 2 Effects of EGCG on ALP activity.
Notes: (A) Dose effect of EGCG on ALP staining in hASCs was determined under osteogenic induction on day 14. The ALP staining method revealed that the number 
of ALP-positive cells was increased by EGCG. ALP staining in the 5 μM EGCG group was strongest among all EGCG groups. (B) The ALP activity of hASCs for all groups 
at various time points was quantitatively analyzed. Compared to the control group, ALP activity was strengthened by EGCG through the whole period (days 3, 7, and 14). 
All data are presented as mean and SD. *p,0.05; **p,0.01; and ***p,0.001 (N=5). Bar=200 μM.
Abbreviations: EGCG, epigallocatechin-3-gallate; hASCs, human adipose-derived stem cells.
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β

β

Figure 3 Western blotting was used to analyze the expression of osteogenic genes BSP and OCN in hASCs cultured at various concentrations of EGCG for 7 days and 
14 days.
Notes: (A) The level of BSP was significantly promoted in the 5  µM EGCG group. (B) BSP mRNA expression of osteogenic induction on day 7. (C) The level of 
OCN was strengthened in the EGCG groups. (D) OCN mRNA expression at day 14 of osteogenic induction. All data are presented as mean and SD. *p,0.05; **p,0.01 
(N=3).
Abbreviations: BSP, bone sialoprotein; EGCG, epigallocatechin-3-gallate; hASCs, human adipose-derived stem cells; OCN, osteocalcin.

Figure 4 Effect of EGCG on mineralization.
Notes: (A) Dose effect of EGCG on matrix mineralization in hASCs was determined under osteogenic induction conditions on day 14 by ARS. ARS in the 5 μM EGCG 
group was much stronger than in the other groups. (B) Mineralization was quantitatively analyzed. The calcium content in the 5 μM EGCG group was 1.47 times greater 
than that of the control group. In the 10 μM EGCG group, the calcium content was 1.29-fold greater than that of the control group. All data are presented as mean and SD. 
*p,0.05, **p,0.01 and ***p,0.001 (N=3). Bar=200 μM.
Abbreviations: ARS, Alizarin red staining; EGCG, epigallocatechin-3-gallate; hASCs, human adipose-derived stem cells.
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Five and 10  µM EGCG significantly downregulated 

expression levels of phosphorylated STAT3 but promoted 

unphosphorylated STAT3 on day 14 (Figure 8). The expres-

sion levels of p-STAT3 and STAT3 in 1  µM were not 

significantly different from those of control. The concentra-

tion of 5 µM demonstrated the highest potential to restrict 

expression of p-STAT3.

Discussion
Cell-based bone tissue engineering is an interdisciplinary 

technology that combines stem cells and technologies in 

material engineering and bioactive reagents with the ultimate 

goal of regenerating bone tissues in LVBD.14,33,34 For hASC-

based tissue-engineered bone, the application of bioactive 

agents to efficaciously induce the osteoblastogenic differen-

tiation of hASCs is pivotal for the success of this technique. 

One attractive group of such bioactive agents are monomers 

extracted from plants. Previous studies showed that EGCG, 

the main component of the tea polyphenols, promoted the 

osteogenic differentiation of BMSCs28,29 and human primary 

dedifferentiated fat cells.35 In this study, for the first time, we 

showed that EGCG significantly promoted the proliferation 

β

β

β

Figure 5 Western blotting was used to analyze the expression of osteogenic genes Runx2 in hASCs cultured in various concentrations of EGCG for 14 days.
Notes: (A) The level of Runx2 in the 5 µM EGCG group was significantly higher than that of the control and other EGCG groups. (B) Runx2 mRNA expression at day 3 
of osteogenic induction. (C) On day 7, Runx2 expression was significantly downregulated in the 5 µM EGCG group. (D) Runx2 mRNA expression at day 7 of osteogenic 
induction. (E) The levels of Runx2 in EGCG groups were significantly lower than those in the control group on day 14. (F) Runx2 mRNA expression on day 14 of osteogenic 
induction. All data are presented as mean and SD. *p,0.05; ***p,0.001 (N=3).
Abbreviations: EGCG, epigallocatechin-3-gallate; hASCs, human adipose-derived stem cells.
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and osteoblastogenic differentiation of hASCs, thereby show-

ing promising application potential.

The BMP family belongs to the superfamily of TGF-beta 

(TGF-β). The typical role of BMPs is to induce cartilage and 

bone formation. The ability of exogenous BMPs to promote 

osteogenic differentiation of hASCs in vitro is highly depen-

dent on several factors, such as BMP type, concentration, 

differentiation medium, and administration time point.36–38 

To achieve optimal osteoinductive efficacy, BMPs need to 

be gradually delivered to the target site at low levels and 

in a sustained manner rather than in a single, high-dose 

burst.39 Although BMPs have been reported to promote both 

osteogenic and adipogenic differentiation of many other 

MSCs, their effect on the osteogenic commitment of hASCs 

remains uncertain and controversial.1 A potential mechanism 

is that BMP alone can simultaneously activate and induce 

osteogenic or adipogenic signaling in different cells of one 

hASC pool that is highly dependent on the epigenetic status 

of hASCs.1 Both signaling pathways antagonize one another 

through different signaling levels. The mutual suppression 

γ
γ

β

γ

β

γ

γ

β

γ

Figure 6 Western blotting was used to analyze the expression of adipogenic genes PPAR-γ in hASCs cultured in various concentrations of EGCG for 14 days. EGCG 
suppressed the expression of PPAR-γ, and 5 μM was optimal for suppressing PPAR-γ expression.
Notes: (A) On day 3, EGCG at all concentrations significantly suppressed PPAR-γ expression. (B) PPAR-γ expression at day 3 of osteogenic induction. (C) On day 7, EGCG 
at 5 μM significantly downregulated PPAR-γ expression. (D) PPAR-γ expression at day 7 of osteogenic induction. (E) EGCG at all concentrations significantly suppressed 
PPAR-γ expression on day 14, and the expression level in the 5 μM EGCG group was lowest. (F) PPAR-γ mRNA expression at day 14 of osteogenic induction. All data are 
presented as mean and SD. *p,0.05; **p,0.01; and ***p,0.001 (N=3).
Abbreviations: EGCG, epigallocatechin-3-gallate; hASCs, human adipose-derived stem cells.
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and inhibition between these two signaling pathways result 

in a noncommitment stage. Unlike BMPs, we showed that 

EGCG not only promoted the osteogenic differentiation but 

also suppressed the adipogenic differentiation of hASCs, 

suggesting a promising application of EGCG in hASC-based 

bone tissue engineering.

In this study, we used three concentrations of EGCG, 

namely, 1 µM, 5 µM, and 10 µM, to investigate the effects 

of EGCG on the osteoblastogenic differentiation of hASCs. 

Cell viability in the 5 µM EGCG group showed the highest 

levels on days 3, 7, and 14. Compared to 5 µM EGCG, 

higher doses of EGCG, eg, 10 µM, did not enhance cell 

viability, which had similar levels to those of 1 µM EGCG. 

This result suggested that EGCG supports cell proliferation 

in a dose-dependent manner. EGCG, a potent antioxidant, 

plays a major role in reducing levels of excessive ROS,40 

which are well-known to be deleterious. However, a suit-

able EGCG dosage might maintain ROS at favorable levels 

to benefit cell proliferation and growth, as a basal level of 

ROS is considered necessary for many cellular functions. 

Several previous studies suggested that EGCG ranging 

from 1 µM to 10 µM promotes cell proliferation.41,42 The 

result of Jin et al’s43 work showed that EGCG at 2.5 µM 

and 5 µM maximally enhanced the proliferation of human 

BMSCs, which is consistent with the findings in the pres-

ent study. However, the molecular mechanisms of EGCG 

promoting hASCs proliferation in a dose-dependent man-

ner remain unclear and require further study. ALP, an early 

osteoblastogenic differentiation marker, was activated to 

higher levels in the EGCG groups when compared to the 

control group on days 3 and 14. EGCG at 5 µM exhibited 

a consistent effect of significantly inducing higher levels of 

ALP activity at all time points (Figure 2), in agreement with 

results from Jin et al’s43 work, to the effect that 5 µM EGCG 

maximally elevated ALP activity in human BMSCs. BSP 

expression on day 7 was significantly promoted by 5 µM 

EGCG, also in accordance with the results of Jin et al.43 On 

day 14, the level of mineralization in the 5 µM EGCG group 

α
α

β

Figure 7 Western blotting was used to analyze the expression of adipogenic genes C/EBP-α in hASCs cultured in various concentrations of EGCG for 14 days.
Notes: (A) EGCG at all concentrations significantly suppressed the expression of C/EBP-α at day 14. The level of C/EBP-α expression was lowest in 10 μM EGCG. 
(B) C/EBP-α expression at day 14 of osteogenic induction. All data are presented as mean and SD. *p,0.05; **p,0.01; and ***p,0.001 (N=3).
Abbreviations: EGCG, epigallocatechin-3-gallate; hASCs, human adipose-derived stem cells.

Figure 8 Western blotting was used to analyze the expression of p-STAT3 (A) and STAT3 (B) in hASCs cultured in various concentrations of EGCG for 14 days. 
Notes: Compared to the control group, EGCG with the concentration of 5 μM and 10 μM decreased the phosphorylation of STAT3. (C) p-STAT3 and STAT3 mRNA 
expression at day 14 of osteogenic induction. All data are presented as mean and SD. *p,0.05; **p,0.01; and ***p,0.001 (N=3).
Abbreviations: EGCG, epigallocatechin-3-gallate; hASCs, human adipose-derived stem cells.

β
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was the highest in comparison with other groups (Figure 4). 

In previous studies, the optimal concentration to induce the 

mineralization of human BMSCs43 and human osteoblast-like 

cells44 was found to be 5 µM, which was consistent with our 

result for hASCs. Five micromolar EGCG was associated 

with significantly higher Runx2 expression in the early stage 

of osteoblastogenic differentiation and lower PPAR-γ and 

p-STAT3 expression when compared to the 1 µM and 10 µM 

EGCG groups, possibly indicating that osteodifferentiation 

in the 5 µM EGCG group was significantly higher.

Runx2 plays several roles throughout the process of 

osteoblastogenesis.45 It is an essential transcription factor that 

controls skeletal development by regulating the differentia-

tion of osteoblasts and the expression of many extracellular 

matrix protein genes during osteoblast differentiation.46,47 

Consistently, previous studies showed that EGCG signifi-

cantly elevated expression levels of Runx2 gene at early time 

points, eg, 24–48  h.28,35 During osteoblast differentiation, 

Runx2 upregulates the expression of bone matrix protein 

genes, including Col1a1, Spp1, Ibsp, Bglap, and Fn1, in vitro 

and activates many promoters, including those of Col1a1, 

Col1a2, Spp1, BGLAP, and Mmp13.48 In contrast, in the 

maturation stage, Runx2 should be downregulated to further 

support osteoblast maturation and to form mature bone.49 

The effects of EGCG on early upregulation and subsequent 

downregulation of Runx2 might be beneficial to the entire 

process of osteogenic differentiation. In our study, we found 

that Runx2 expression with 5 µM EGCG on day 3 (early 

osteoblastogenic differentiation stage) was significantly 

higher than that of the control and EGCG at 1 µM and 10 µM. 

This finding suggested that 5 µM EGCG bore a significantly 

higher capacity to initiate osteoblastogenic differentiation 

than EGCG at other concentrations. The Runx2 levels 

gradually decreased with time. On day 14, Runx2 expres-

sion levels (final osteoblastogenic differentiation stage) in 

all three EGCG groups were significantly lower than those 

of the control group (Figure 5E). Such a downregulation of 

Runx2 might be associated with the progress of osteoblastic 

differentiation and maturation.49

Since hASCs have an intrinsic tendency toward adipo-

genic differentiation,50 the osteogenic commitment of hASCs 

requires both suppression of adipogenic differentiation and the 

enhancement of osteogenic differentiation.51 Adipogenesis is 

a tightly controlled process that involves an intricate network 

of transcription factors acting at different time points during 

differentiation.52 Several studies have clearly established 

PPAR-γ as a key regulator of adipocyte development both in 

vitro and in vivo. This receptor is known to be obligatory for 

adipocyte differentiation and is, in many cases, sufficient to 

convert non-adipose cells to adipocyte-like cells.53 C/EBP-α 

is expressed late in adipogenesis and is a key regulator of adi-

pocyte differentiation.54 The relative importance of PPAR-γ 

and C/EBP-α in adipogenesis has been investigated, and 

the results showed that PPAR-γ can induce adipogenesis in 

C/EBP-α-/- mouse embryonic fibroblasts in vitro, whereas 

C/EBP-α is unable to do the same in PPAR-γ-/- mouse 

embryonic fibroblasts.55 These results confirm the leading 

role of PPAR-γ in adipocyte differentiation and indicate that 

C/EBP-α is not obligatory for activation of adipocyte-specific 

genes, provided PPAR-γ is ectopically expressed.55 We inves-

tigated the effect of EGCG on adipogenic differentiation by 

evaluating these two critical transcription factors: PPAR-γ 

and C/EBP-α. Tang et al56 found that EGCG from 10 µg/mL 

to 25 µg/mL significantly downregulated the expression of 

PPAR-γ and C/EBP-α in 3T3-L1 adipocytes. Consistent 

with their findings, our results demonstrated that EGCG 

significantly suppressed the expression of both PPAR-γ and 

C/EBP-α in hASCs in a dose-dependent manner; PPAR-γ 

expression levels were lowest at 5 µM EGCG compared to 

those in other EGCG groups (Figure 6). Therefore, it can be 

concluded that EGCG, in addition to promoting osteogenic 

differentiation, can significantly suppress the adipogenic 

differentiation of hASCs (Figures 6 and 7).

The STAT protein family was discovered in the course of 

studies of signaling specificity from IFN receptors.57 STAT3 

is one of the seven members of the STAT protein family that 

mediates the actions of many cytokines and growth factors.58 

Recent data, especially from the analysis of conditional 

loss of STAT3 protein in adult tissues, confirm that STAT3 

participates in various physiological processes and even 

directs seemingly contradictory responses.59 The function of 

STAT3 has been extensively studied in cell culture systems. 

Nicolaidou et al60 demonstrated that monocytes induced 

STAT3 activation in human BMSCs to promote osteoblast 

formation. Park et al61 discovered that EGCG administra-

tion modulated collagen production and proliferation in 

fibroblasts through STAT3 signaling. Mikami et al62 showed 

that siRNA knockdown of STAT3 resulted in a significant 

reduction of ALP activity in the BMSCs treated with dexa-

methasone and BMP-2. Other researchers found increased 

osteoblast-specific markers in STAT3 mRNA-downregulated 

osteoblasts.63,64 Currently, the relationship between STAT3 

and osteogenesis remains controversial.60,62–64 EGCG is 

involved in various signaling pathways to modulate cel-

lular responses.61 In our study, 5  μM and 10  μM EGCG 

significantly decreased the phosphorylation of STAT3 and 
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significantly increased osteogenic marker expression. How-

ever, 1 μM EGCG had no substantial effect on the phosphory-

lation of STAT3 in hASCs. Therefore, we speculated that the 

STAT3 pathway might be involved in the EGCG-induced 

osteogenesis of hASCs.

Conclusion
In the present study, we demonstrated that EGCG enhanced 

osteogenic differentiation and suppressed adipogenesis 

in hASCs at 5 µM. EGCG has the potential to be used in 

hASC-based bone tissue engineering.
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