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Background: In view of the growing importance of nanotechnologies, the detection/identification 

of nanoparticles type has been considered of utmost importance. Although the characterization 

of synthetic/organic nanoparticles is currently considered a priority (eg, drug delivery devices, 

nanotextiles, theranostic nanoparticles), there are many examples of “naturally” generated 

nanostructures – for example, extracellular vesicles (EVs), lipoproteins, and virus – that provide 

useful information about human physiology or clinical conditions. For example, the detection 

of tumor-related exosomes, a specific type of EVs, in circulating fluids has been contributing 

to the diagnosis of cancer in an early stage. However, scientists have struggled to find a simple, 

fast, and low-cost method to accurately detect/identify these nanoparticles, since the majority 

of them have diameters between 100 and 150 nm, thus being far below the diffraction limit.

Methods: This study investigated if, by projecting the information provided from short-term 

portions of the back-scattered laser light signal collected by a polymeric lensed optical fiber 

tip dipped into a solution of synthetic nanoparticles into a lower features dimensional space, 

a discriminant function is able to correctly detect the presence of 100 nm synthetic nanoparticles 

in distilled water, in different concentration values.

Results and discussion: This technique ensured an optimal performance (100% accuracy) in 

detecting nanoparticles for a concentration above or equal to 3.89 µg/mL (8.74E+10 particles/mL), 

and a performance of 90% for concentrations below this value and higher than 1.22E-03 µg/mL 

(2.74E+07 particles/mL), values that are compatible with human plasmatic levels of tumor-

derived and other types of EVs, as well as lipoproteins currently used as potential biomarkers 

of cardiovascular diseases.

Conclusion: The proposed technique is able to detect synthetic nanoparticles whose dimen-

sions are similar to EVs and other “clinically” relevant nanostructures, and in concentrations 

equivalent to the majority of cell-derived, platelet-derived EVs and lipoproteins physiological 

levels. This study can, therefore, provide valuable insights towards the future development of 

a device for EVs and other biological nanoparticles detection with innovative characteristics.

Keywords: optical fiber sensors, light scattering effects, nanoparticles detection, extracellular 

vesicles (EVs) detection, lipoproteins detection, virus detection, nanoparticles, Brownian 

motion, diffusive analysis

Introduction
Nanoparticles, independent of their nature (synthetic or biological), are currently a 

“hot” R&D topic in several fields, including material sciences (ceramics), cosmetics 
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(eg, nano-liposome-based skin care products), paints, 

medicine (eg, drug delivery devices, theranostic nanopar-

ticles), textiles, military technology, food industry (eg, 

non-permeable membranes), etc.1–6 With the advent of 

nanotechnologies, a vast range of synthetic nanoparticles 

has been proposed for biomedicine applications, including 

cell targeting for drug or genetic material delivery, tissue 

engineering, biosensing, among others.1 In particular, it 

is important to highlight the great interest that has been 

observed in developing organic nanoparticles able to incor-

porate both imaging and therapeutic properties, the ther-

anostic nanoparticles.2,3 Usually, a theranostic nanoparticle 

results from the conjugation of therapeutic agents (such as 

anticancer drugs and photosensitizers, such as porphyrins, 

chlorins, or cyanines) with existing imaging nanoparticles 

(eg, quantum dots, gold nanocages, organic dyes, fluorescent 

proteins).2,3 More precisely, the association of a nanopar-

ticle imaging vehicle with a photosensitizer has been the 

main principle of the photodynamic therapy (PDT) to treat 

cancer, which therapeutic effect results from the combined 

action of the photosensitizer, light, and molecular oxygen.3 

PDT-based theranostic nanoparticles have shown excellent 

therapeutic efficacy, due to characteristics such as negligible 

dark toxicity, rapid cellular uptake, and high-energy photo-

irradiation, among others.2,7 However, there are still some 

difficulties in understanding the behavior of synthetically 

generated nanoparticles, even the organic ones, in biologi-

cally relevant environments, mainly at a basic level. This is 

currently considered a limitation, since such knowledge is 

highly relevant for accurately determining the limitations, 

risks, and advantages of each nanomaterial considering its 

subsequent medical application.1 Additionally, several public 

health international organizations including the European 

Commission Council and the National Institutes of Health 

have been highlighting the urge of developing nanoparticles 

exposure risk assessment assays. Several concerns related to 

public safety and health and safety of workers and users have 

been raised, since very little is known about the physiological 

impact to their exposure.4–6,8

Although the identification and characterization of syn-

thetically produced nanoparticles are considered a priority, 

there are also many examples of “naturally” generated 

nanostructures that provide useful information about human 

physiology, for example extracellular vesicles (EVs) – that 

can be excreted by cells, platelets, or even by the placenta 

of pregnant women – and lipoproteins.9–11 These biological 

nanostructures can be found in circulating physiological 

fluids; most of them have diameters between 100 and 150 nm 

and have been considered as suitable biomarkers for the early 

diagnosis of certain chronic diseases (eg, cancer, autoim-

mune, cardiovascular, infectious, and metabolic diseases), 

as well as acute conditions,4–6,9,11 such as pre-eclampsia in 

pregnant women.10 Another interesting targets with similar 

characteristics to EVs that could contribute with impor-

tant information for human disease are the virus and viral 

particles.12 The majority of these structures also have sizes 

at the nanometer scale (between 20 and 200 nm) and can be 

used to study their pathogenic impact on the human DNA, 

or can be manipulated to lose their viral cargo, and used as 

vehicles and templates for bioimaging and drug delivery 

for applications in biomedicine.12 For these reasons, there is 

a growing interest in developing novel methods for detect-

ing and quantifying EVs and other “clinically relevant” 

nanoparticles.4–6 However, despite all the recent advances 

in this area, scientists have struggled to find a simple and 

fast method to accurately detect the presence of nanostruc-

tures and EVs, since their size is far beyond the light dif-

fraction limit.1,4

In fact, EVs such as exosomes, characterized by nanoscale 

dimensions, have been associated with significant roles in 

cancer diagnosis and prognosis.4–6,13 Recently, evidences 

that there are specific kinds of tumors whose cells excrete 

malignant exosomes, and that these tumor-derived exosomes, 

by expressing specific proteins or glycoconjugates,13 can 

contribute to an early cancer diagnosis, were found.5,6 This 

range of cancer types includes melanomas, pancreas cancer, 

or breast cancer.13 Additionally, since exosomes play a major 

role in the interaction phenomena between both distant and 

surrounding cells, recent studies showed that they can also 

provide useful information about cancer metastasis state in 

an early stage.4 In summary, the early detection of tumor-

specific or metastatic-specific EVs in physiological fluids 

can be a significant contribution to avoid tumor spread into 

healthy organs and poor prognosis. However, EVs are not 

only important for early cancer assessment. In fact, there 

are other biological structures that also secrete EVs, such as 

platelets9 and endothelium, among others.10

Although the EVs secreted from nucleated cells have been 

much more extensively studied in comparison to platelet-

derived EVs, the latter constitute the major fraction of EVs 

in the circulating plasma, being considered suitable bio-

markers of thrombosis or inflammation.9 Additionally, recent 

evidence that the placenta of pregnant women can secrete 

syncytiotrophoblast EVs into the maternal circulation, which 

may contribute to the systemic inflammation characteristic 

of pre-eclampsia, causing endothelial dysfunction, activating 
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neutrophils, and triggering thrombin generation.10 Thus, the 

detection and study of such nanoparticles prove to be of 

utmost importance for pregnancy risk assessment in early 

stages. However, the few instruments currently available 

and compatible with the detection of such small structures 

(including platelet-, endothelium-derived EVs, and vesicles 

from other biological sources) are costly, complex, and, in 

some cases, time-consuming.4–6,13

There are other “clinically relevant” and naturally occur-

ring nanoparticles that, if detected in physiological fluids, 

can provide important information for health state assess-

ment. This is the case of plasma lipoproteins,11 such as, the 

Intermediate-Density Lipoprotein, which is a precursor of 

the Low-Density Lipoprotein, and which has been associated 

with the development of atherosclerosis. Its accurate detec-

tion/quantification on physiological plasma could provide 

valuable information about its atherogenic implications. 

Another example are viral agents.12 They have physical and 

biochemical characteristics similar to EVs and lipoproteins in 

terms of size and polydispersity degree.14 Its early detection 

in physiological fluids and further characterization has been 

considered the gold-standard approach for avoiding disease 

dissemination.12 However, the detection of lipoproteins or 

viruses are both also diffraction-limited tasks.14

The current methods employed for nanoparticles detec-

tion and identification include Electron Microscopy, Con-

ventional and High-resolution Flow Cytometry, Nanoparticle 

Tracking Analysis, Affinity-based Assays and Dynamic 

Light Scattering (DLS).1,5,15 High-resolution flow cytometry 

is used in ~90% of the EVs and other biological nanoparticles 

characterization assays.1,15 Despite the improvements in reso-

lution included in this new method in comparison with con-

ventional flow cytometry, it is still based on bulky and even 

more expensive equipment (requiring high-powered lasers, 

with a smaller focused beam spot size, detectors with higher 

sensitivity, and smaller collection optical apertures in com-

parison with conventional flow cytometry).5 Additionally, as 

the former version, high-resolution flow cytometry still needs 

to analyze two kinds of signal: the scattering and fluorescence 

signals, acquired upon sample irradiation. This, therefore, 

increases the amount of specialized lab equipment needed 

and the cost of computational and control systems.5 Alterna-

tively, the DLS, by taking advantage from the information 

generated by the Brownian motion of nanoparticles, that is 

translated into the light that is scattered by the ensemble of 

nanotargets, is considered a suitable nanoparticle detection 

technique.1,5 It is based on the time-dependent fluctuations in 

light scattering intensity caused by constructive and destruc-

tive interference phenomena.16 These fluctuations are due to 

frequency shifts which are imparted by the time-dependent 

position or velocity of the suspended nanoparticles that scat-

ter the light.16 In terms of data processing and analysis, the 

DLS is based on the application of the Photon Autocorrela-

tion Function (PAF) to the scattered light intensity and in the 

calculation of PAF exponential decay.1,5,16 However, in the 

majority of the cases, the DLS requires the sampling of the 

acquired scattered signal at multiple rates, in order to obtain 

an adequate fitting of the correlation function exponential 

decay to accurately determine the diffusion coefficient and 

associated measures.17 Additionally, the correlation function 

is measured discretely only over an incomplete range of 

time increments between time samples, and there is always 

noise associated with the data.1,5,17 Globally, DLS also needs 

highly time-consuming and costly equipment, control, and 

data analysis systems.

For the above-mentioned reasons, any kind of affordable, 

fast, simple, highly sensitive, and specific technique that is 

able to detect the presence of nanoparticles as small as 100 

nm in diameter would be a significant contribution toward 

the development of a “lab-on-chip” device for EVs and other 

nanoparticles detection and characterization with innovative 

characteristics. With this in mind, we examined if the time 

and frequency domain characteristics of the back-scattered 

signal provided from a 100 nm polystyrene nanoparticles 

suspension are able to detect their presence (for different 

concentration values) only by dipping a polymeric lensed 

optical fiber tip in the solution. The attributes chosen to char-

acterize each class considered – “presence of nanoparticles” 

vs “no particles” classes – were based on our recent studies 

on particles identification through back-scattering light phe-

nomena.18–21 By applying a supervised discriminant analysis 

method – the Linear Discriminant Analysis (LDA) – we 

were able to detect the presence of nanoparticles in different 

concentration values in distilled water vs “blank” solutions 

(only containing water), by projecting an original set of .50 

attributes into two final ones, and find the most suitable line 

between classes, considering the newly projected features. 

Since one of the most important parameters of a biosensor is 

its Limit of Detection (LOD) – the smallest concentration of 

the analyte that the biosensor is able to detect – we also evalu-

ated the classes distinction performance of the LDA-derived 

separation line for decreasing analyte concentration values.

The proposed method was able to correctly distinguish 

all samples (100% accuracy) for analyte concentrations 

above or equal to 3.89 µg/mL (8.74E+10 particles/mL) 

and 90% of the total number of evaluated samples for 
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an analyte concentration of 1.22E-03 µg/mL (2.74E+07 

particles/mL). Thus, our method does not require bulky 

equipment, fluorescent probes, or antibodies, being mainly 

characterized by a spherical polymeric lens on the top of an 

optical fiber and a photodetector. Despite being validated 

just for the particular case of synthetic nanoparticles with 

similar size, physical properties and considering matching 

physiological concentration values, this study can provide 

useful information, as a preliminary validation step of a 

possible method for the biological nanostructures differen-

tiation method. We postulate that the present study could 

be the first step towards the future development of a novel 

device for EVs and other biologic nanoparticles detection 

and classification.

Materials and methods
In the following sections, the fabrication method of the poly-

meric micro-lens on the top of a cleaved end of an optical 

fiber, the optical setup mounted to collect the back-scattered 

signal, as well as the nanoparticles detection method through 

signal analysis will be detailed. The optical fiber used along 

the study was a Thorlabs single mode fiber (SMF @ 980 nm) 

with the reference SM 980–5.8-125 (Thorlabs, Newton, NJ, 

USA). Polystyrene nanoparticles from NANOCS® with a 

diameter of 100±10 nm were used in the experiments. These 

nanoparticles were supplied by NANOCS® as 1% suspen-

sions in aqueous solution, and were stored at 4°C when not 

used to avoid any damage.

Polymeric micro-lens fabrication method
The spherical lens on the top of an optical fiber used to 

tightly focus the laser beam was fabricated through a self-

guided photopolymerization method previously developed 

by our lab in collaboration with Soppera and colleagues.22–25 

According to previous studies also conducted by our lab,18,19,21 

these lenses are able to simultaneously trap and capture 

enough information through the light scattered by the trapped 

particle to identify its type, for particles with diameters 

above 1 µm. However, considering that the total optical 

force exerted on a given particle results from the sum of the 

scattering and the gradient forces, and that both depend on 

the particle diameter, the optical trapping of nanoparticles 

(with diameters below 1 µm and, therefore, beyond the light 

diffraction limit) is not expected.26 The strong decrease of 

trapping forces with the nanoparticle radius is not compatible 

with its stable immobilization.26 Although the trapping of 

nanoparticles using this type of lenses is not expected, taking 

into account its geometry and properties, there is previous 

evidence that they are able to capture significant information 

for the detection of nanostructures.18,19,21 Thus, the same fabri-

cation method as the one employed to fabricate the spherical 

lenses for simultaneous trapping and sensing in our previous 

studies was applied here. It consisted of the assembly of 

cross-linked polymeric structures through monomers linking, 

triggered by light of a specific wavelength. Since pentaery-

thriol triacrylate and the solution commercially known as 

Irgacure 819 were used as monomer and photo-initiator in 

this polymerization reaction, respectively, and the latter is 

sensitive to wavelength values between 375 and 450 nm, a 

violet 405 nm laser was used to trigger the chain reaction. The 

fabrication method is composed of several steps. In the first 

stage, an optical fiber is cleaved at one of its extremities and 

is positioned vertically in a moving stage, in a way to inject 

the violet laser light at its distal end. After the laser is cor-

rectly aligned, the fiber extremity to be polymerized is slowly 

dipped into a solution of 0.2% of photo-initiator relative to 

the monomer. After this, the end of the fiber was carefully 

removed from the solution, and a liquid drop was formed 

in its extremity. Then, the laser was turned on and the drop 

cured. After washing out the non-polymerized remaining 

liquid on the fiber extremity with ethanol, a waveguide-like 

tip aligned to the fiber core with a spherical shape is possible 

to obtain on the top of the optical fiber. The visual aspect of 

this structure is depicted in Figure 1.22–24 This micro-lens is 

assembled on the top of the fiber due to a self-guiding effect, 

since, during photopolymerization, the refractive index of 

the growing tip increases, creating a self-assembly effect, 

reaching a value of 1.52 when completely polymerized. The 

most delicate procedure from all the fabrication method was 

the injection of light from the laser into the optical fiber. 

Considering that the fiber employed behaves as a multimode 

fiber at the photopolymerization wavelength, the fiber mode 

to be excited must be carefully chosen. Considering that, by 

exciting the optical fiber fundamental mode, a spherical tip 

whose diameter perfectly matched to the fiber core could be 

obtained at the cleaved extremity of the fiber,22–24 this was the 

mode selected to excite in this experiment. However, there 

are other factors that could influence the final geometry of 

the micro-lens.27 Polymerization laser exposure time, laser 

intensity, or the length/curvature radius of the monomer/

initiator solution drop are parameters which determine 

the final geometry of the tip. Such attributes were already 

optimized in previous studies.21–24 The optimal parameters 

of an exposure time of 60 seconds and a laser irradiation 

power of 5 µW at 405 nm were employed in the fiber tip 

fabrication process.
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Optical setup for back-scattered signal 
acquisition
The optical setup mounted to manipulate the fabricated fiber 

tool with the polymeric micro-lens on its top is depicted in 

Figure 2. consists of an inverted microscope (Zeiss Axiovert 

200M microscope, from Carl Zeiss®, Oberkochen, Germany) 

controlled via a computer using the dedicated software 

Micro-Manager 1.3 and equipped with a digital camera 

(CoolSnap HQ from Roper Scientific, Sarasota, FL, USA) 

for visualization and image acquisition.

A motorized micromanipulator from Eppendorf ® 

(Hamburg, Germany) with four degrees of freedom (x, y, 

z, and angular) was included in the setup to hold a capillary 

with the fiber tool inside. A 980 nm laser (500 mW, Lumics, 

Figure 1 Bright-field microscopic images of the fabricated polymeric tip on the top of a single mode optical fiber dropped into a solution of distilled water. 
Notes: (A) The optical fiber image focus plan; (B) the fiber focus plan, and with the laser source turned on for back-scattered signal acquisition after the light input signal 
interacts with the surrounding media where the micro-lens is dipped.

Figure 2 Scheme of the optical setup used to manipulate the fiber tool with the micro-lens on its extremity and acquire the back-scattered signal for nanoparticles detection 
in aqueous media.
Notes: Adapted from Paiva J et al. Single particle differentiation through 2D optical fiber trapping and Back-Scattered signal statistical analysis: an exploratory approach. 
Sensors. 2018;18(3):710.21
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ref. LU0980M500) – linearly polarized light – was used 

to irradiate each sample (distilled water or distilled water 

containing polystyrene nanoparticles in different concen-

trations). An optical fiber coupler (configuration type 1×2, 

50/50@980 nm) was used to connect the laser to the fiber 

tip on the top of the optical fiber and to a photodetector 

(PDA 36A-EC, Thorlabs) to acquire the back-scattered 

signal. One of the ports of the optical coupler from the 

double extremity side was connected to the laser, while 

the other port was connected to the photodetector that 

was connected to the laptop. The other single port from 

the opposite side of the coupler was spliced to the optical 

fiber with the polymeric tip, which was previously inserted 

into the metallic capillary positioned into the motorized 

micromanipulator tilted at an angle of 50°.

This bi-directional configuration allowed the light to be 

transmitted in both the directions through the optical fiber, at 

the same time: from the laser source to the micro-lens on the top 

of the fiber; and from the surrounding environment (scattered 

radiation) collected at the end of the polymeric tip towards 

the photodetector. An acquisition board (DAQ) from National 

Instruments (Austin, TX, USA) was used to connect the photo-

detector to the computer for signal acquisition and to modulate 

the laser source, using a 1 KHz sinusoidal signal, to allow syn-

chronous detection of the back-scattered signal in a frequency 

band with lower electronic noise.21,28 Both the modulation and 

back-scattered signals were generated and recorded, using 

custom-built MATLAB® scripts that use functions from the 

Data Acquisition Toolbox from MATLAB®2015a. The laser 

power at the output of the micro-lens was set to 105±3 mW.

After the above setup was mounted, the signal acquisi-

tion procedure to obtain the data model for nanoparticles 

detection in aqueous solution was based on a simple assay. 

A 4 mL drop of each one of the solutions described in Table 1 

(distilled water only – Solution 1 – and distilled water with 

100 nm polystyrene nanoparticles from NANOCS® (New 

York, NY, USA) in suspension in different concentrations) 

was placed over a 35 mm Ibidi® micro rounded dish mounted 

over the inverted microscope. Then, the polymeric fiber tip 

was immersed in each solution, the laser was turned on, and 

the back-scattered signal acquired. A more detailed descrip-

tion about the signal acquisition and processing procedures 

is provided in the following section.

Nanoparticles detection using the 
polymeric micro-lens
Both the signal acquisition and nanoparticles detection 

model calculation procedures were performed using custom-

built MATLAB® R2015a scripts, using functions provided 

from the Signal Processing and Statistics Toolboxes from 

MATLAB®.

Back-scattered signal acquisition and 
processing steps
Once the polymeric tip was immersed in each one of the 

solutions of Table 1 and the laser turned on at a power 

105±3 mW @980 nm, 60 seconds of back-scattered signal 

were continuously acquired for 10 different fiber tip positions 

within the sample. In order to simulate a real scenario, the 

polymeric fiber tip was randomly displaced (toward any of 

the three x, y, and z directions) within the sample between 

different acquisitions for the same solution. Considering that, 

in a real situation, the proposed method should be able to 

identify the presence of nanoparticles from a specific type 

Table 1 Description of the solutions evaluated in this study. Distilled water refractive index (RI)=1.327 (@λ=980 nm); polystyrene 
RI=1.5731

Solution number Solvent Solute Drop volume Concentration  
(µg/mL)

Concentration 
(particles/mL)

1 Distilled water – 4 mL 0 0

2 100 nm polystyrene 
particles

55.38 1.25E+12

3 37.59 8.46E+11

4 19.14 4.31E+11

5 3.89 8.74E+10

6 0.16 3.51E+09

7 1.56E-02 3.51E+08

8 3.90E-03 8.77E+07

9 2.44E-03 5.48E+07

10 1.22E-03 2.74E+07
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independent of the location where the fiber probe was dipped 

into the sample, several acquisitions were, therefore, per-

formed for different positions of the probe, even at different 

micro-lens height relative to the micro dish bottom or to the 

solution surface. The back-scattered signal acquisitions were 

recorded via a photodetector connected to the laptop through 

the data acquisition board (DAQ from National Instruments, 

Austin, TX, USA) at a sampling rate of 5 KHz. At the end 

of the experiment, a total of 6,000 seconds of back-scattered 

signal were acquired.

The signal processing procedure applied here was already 

successfully adopted in previous studies to differentiate types 

of microparticles, bacteria, and cells.18,19,21 It consists of a 

sequence of stages that were applied to each acquisition with 

a duration of 60 seconds considering each fiber tool position 

and solution from Table 1, resulting in a dataset composed 

of short-term signal portions of 2 seconds (please consult 

Figure 3 for a scheme explaining all the steps performed since 

signal acquisition to class differentiation). Two classes were 

considered to allow nanoparticles identification in a solu-

tion: “No polystyrene nanoparticles present in the solution” 

– Solution 1 from Table 1 – and “Polystyrene nanoparticles 

present” – solutions 2–10 from Table 1. According to this 

scheme, each 60 seconds acquisition is at first segmented in 

2-second signal portions (after signal processing procedure). 

Then, a set of 53 features including time- and frequency-

domain parameters representing each 2-second segment is 

extracted from the recently generated dataset. As it would 

be difficult to design an interrogation system able to read, 

at the same time, all the 53 parameters for sensing purposes 

or to build a decision function taking into account so many 

attributes, we applied a features dimensionality reduction 

method – the LDA29–32 – to obtain the two most representative 

features from the entire dataset. Each feature resulted from 

a weighted linear contribution of the original 53 parameters. 

After creating these two novel features for each 2-second 

signal portion, fiber tool position and solution (from the 

ones characterized in Table 1), the discriminant function 

corresponding to the LDA-derived 2-classes separation 

line was calculated.31,32 In order to determine the LOD of 

the proposed method, the number/percentage of fiber tool 

position spots analyzed that were misclassified, taking into 

account the previously calculated separation line, was evalu-

ated for the several nanoparticles concentration values tested 

(Table 1). The following section contains a more detailed 

description about the LDA and the calculation of the linear 

discriminant function.

The signal processing method consisted of the following 

steps: filtering, normalization, epoching, and artifact 

rejection (stages A, B, C, and D of Figure 3, respectively). 

The signal was, at first, filtered using a Butterworth high-

pass filter with a cutoff frequency of 500 Hz to remove 

low-frequency interferences, since the input laser signal 

was modulated using a 1 kHz sinusoidal function. This 

Figure 3 Scheme explaining all the steps adopted in this study, from signal acquisition to the calculation of a discriminant function to separate the two classes. 
Notes: (A) After the back-scattered signal being acquired for each fiber tool location spot and solution, each whole 60 seconds acquisition was filtered using a 500 Hz 
high-pass filter. (B) Then, each entire acquisition was normalized, by computing the z-score for each signal value. (C) After normalization, each entire signal was segmented 
into short-term signal portions of 2 seconds. (D) The 2-second signal portions whose values did not comply with the condition |z-score||,5 were removed, to increase the 
Signal-to-Noise Ratio (SNR). (E) After signal processing, the obtained dataset was composed of 2-second short-term signal portions for each class. (F) A set of 53 parameters 
based on the time and frequency-domain information was extracted from each 2-second signal portion. (G) Then, two features that gather the most important information 
provided by the 53 original parameters were generated through the LDA technique. (H) The separation line or discriminant function that better splits the two classes 
considering a 2D space formed by the two novel features was calculated. At the end of the proposed differentiation problem, the equation of this separation line dictates 
the class where a sample/set of samples belong, after projecting the 53 features into the two LDA-derived ones. Figure adapted from Workman, C et al. A new non-linear 
normalization method for reducing variability in DNA microarray experiments. Genome biology, 2012;3(9):research0048-1.49
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type of filter was already successfully applied in previous 

microparticles type differentiation problems using the 

light scattered by the immobilized target by optical 

trapping.18,19,21,28 In order to standardize comparisons, 

the z-score for each 60-seconds acquisition for each 

fiber location acquisition and solution was computed, by 

subtracting the mean over the 60-seconds signal to each 

signal value and dividing the obtained result by the SD 

of the whole 60-seconds acquisition. This reduced the 

influence of possible differences on signal amplitude due to 

the amount of light collected by the lensed tip, considering 

the acquisition spots located at different heights. Then, the 

z-scored signal was split into 2-second short-term signal 

portions. In order to improve the Signal-to-Noise Ratio, the 

noisy 2-second segments of the back-scattered signal were 

removed from the dataset if some of their values exceeded, 

in magnitude, the threshold of |z-score||=5.

Plots of signal portions for each class (“no nanoparticles 

present in media” vs “nanoparticles present”) are provided 

in Figure 4. Frequency amplitude spectrum profiles for each 

class and considering different nanoparticles concentration 

values are provided in Figure 5. After signal processing, 

Figure 4 Plots of the processed back-scattered signal portions acquired when the fabricated fiber tool was dipped into (Ai) and (Aii) Solution 1, the “blank” solution 
containing only distilled water; (Bi) Solution 5, a distilled water solution containing 100 nm polystyrene nanoparticles in a concentration of 3.89 µg/mL; and (Bii) Solution 
10, with 100 nm polystyrene nanoparticles in a concentration of 1.22E-03 µg/mL in distilled water.
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we obtained a final dataset composed of 2-second back-

scattered signal portions (see Table 2 for a characterization 

of the final dataset obtained).

Nanoparticles detection using short-term 
back-scattered signal portions
After signal processing and dataset creation, a set of 53 

frequency- and time-domain features were extracted from 

each of the 2-second back-scattered signal portions. These 

parameters are enumerated in Table 3 and described in 

the following sub-section. Its relevance for target type 

differentiation was already assessed in previous studies, 

however considering scatterers with dimensions higher than 

or equal to 1 µm.18–21

Back-scattered signal-based features
Both time- and frequency-domain signal-derived features 

were used. The original 53 features set can be divided 

into four categories: time-domain statistics; time-domain 

histogram; frequency-domain Discrete Cosine Transform 

(DCT); and frequency-domain wavelet-derived parameters. 

The following attributes were considered within the scope of 

Figure 5 Single-sided amplitude spectrum of the Fast Fourier Transform (FFT) of filtered back-scattered signal portions of 60 seconds before being z-scored and acquired 
using distilled water and 100 nm nanoparticles solutions in concentrations of (A) 3.89 µg/mL and (B) 1.22E-03 µg/mL.
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Table 2 Final dataset characterization

Solution number No of acquisition spots Avg. no of 2-second signal 
portions per acquisition spot

Total no of signal portions
(all spots)

1 10 16±6 157

2 13±6 131

3 12±3 117

4 12±2 117

5 10±5 96

6 16±5 158

7 18±3 182

8 19±3 188

9 15±6 147

10 18±5 177

Total 1,470

Note: Solution 1 corresponds to the “no particles” class and solutions 2–10 correspond to the “presence of nanoparticles” class.
Abbreviations: No, number; Avg, average.
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Table 3 Summary of the 53 features used in classes distinction

Type Group Number Feature/parameter

Time domain

Time-domain statistics

1 SD

2 Skew

3 Kurt

4 IQR

5 E

Time-domain histogram
6 μNakagami

7 ωNakagami

Frequency domain DCT

8 1st Coefficient (EDCT[l
1])

9 2nd Coefficient (EDCT[l
2])

10 3rd Coefficient (EDCT[l
3])

11 4th Coefficient (EDCT[l
4])

12 5th Coefficient (EDCT[l
5])

13 6th Coefficient (EDCT[l
6])

14 7th Coefficient (EDCT[l
7])

15 8th Coefficient (EDCT[l
8])

16 9th Coefficient (EDCT[l
9])

17 10th Coefficient (EDCT
[l10])

18 11th Coefficient (EDCT[l
11])

19 12th Coefficient (EDCT[l
12])

20 13th Coefficient (EDCT[l
13])

21 14th Coefficient (EDCT[l
14])

22 15th Coefficient (EDCT[l
15])

23 16th Coefficient (EDCT[l
16])

24 17th Coefficient (EDCT[l
17])

25 18th Coefficient (EDCT[l
18])

26 19th Coefficient (EDCT[l
19])

27 20th Coefficient (EDCT
[l20])

28 21th Coefficient (EDCT[l
21])

29 22th Coefficient (EDCT[l
22])

30 23th Coefficient (EDCT[l
23])

31 24th Coefficient (EDCT[l
24])

32 25th Coefficient (EDCT[l
25])

33 26th Coefficient (EDCT[l
26])

34 27th Coefficient (EDCT[l
27])

35 28th Coefficient (EDCT[l
28])

36 29th Coefficient (EDCT[l
29])

37 30th Coefficient (EDCT[l
30])

38 Number of coefficients that capture 98% of the original 
signal (NDCT)

39 Total spectrum AUC (AUCDCT)

40 Maximum peak amplitude (PeakDCT)

41 Total spectral power (PDCT)

42 Haar Relative Power 1st level (E1
Haar)

43 Haar Relative Power 2nd level (E2
Haar)

44 Haar Relative Power 3rd level (E3
Haar)

45 Haar Relative Power 4th level (E4
Haar)

(Continued)
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the time-domain statistics: SD, Skewness (Skew), Kurtosis 

(Kurt), IQR, and Entropy (E).

Taking into account the adequacy of the Nakagami 

distribution in describing biological-derived back-scattered 

echos in statistical terms,33 the two parameters µ
Nakagami

 and 

ω
Nakagami

, derived from the Nakagami distribution Probability 

Density Function, were also included in the features set. 

Both parameters were tuned to better fit the approximation 

corresponding to each 2-second signal portion distribution 

to the Nakagami distribution. In total, seven time-domain 

features were created to characterize each short-term 

signal portion.

In order to extract frequency-domain information from 

the back-scattered signal, the DCT was used in detriment of 

the widely used Fast Fourier Transform. The latter injects 

high-frequency artifacts in the transformed data, mainly when 

applied to short-term signals, thus generating parameters that 

contain noisy information. In contrast, the DCT is able to cap-

ture minimal periodicities of the analyzed signal and export 

that information into uncorrelated coefficients that can be 

used as non-redundant features.34 Taking into consideration 

that the first n coefficients of the DCT of a scattered signal 

are defined by the following equation:35

E l k
l k

N
for l nDCT

k

N
[ ] [ ]cos

( )
, ,=

+





=
=

−∑ ε
π 2 1

2
1

0

1


�
(1)

where ε is the signal envelope calculated using the Hilbert 

transform; by sorting the DCT coefficients from the highest 

to the lowest magnitude value and obtaining the following 

vector:

	 y E lDCT DCT n T= (  E , ..., [ ]) , � (2)

in which EDCT[l1] represents the highest DCT coefficient in 

magnitude, it is possible to determine the percentage of the 

total amount of the signal energy that each set of coefficients 

represents (organized from the highest to the lowest one). 

The percentage of the total of the signal energy represented 

by the first to the nth coefficient of the vector number two 

can be obtained by dividing the norm of the vector formed 

by the first till the nth coefficient by the norm of the vector 

comprising all the coefficients. After calculating the DCT 

for each 2-second back-scattered signal portion, the follow-

ing parameters were extracted: the number of coefficients 

needed to represent 98% of the total energy of the original 

signal (N
DCT

), the first 20 DCT coefficients extracted from 

the vector defined in equation (2), the Area Under the Curve 

(AUC) of the DCT spectrum (from 0–2.5 kHz) (AUC
DCT

), 

the maximum amplitude of the DCT spectrum (Peak
DCT

), 

and the signal power spectrum obtained through the DCT 

considering all the values within the frequency range ana-

lyzed (P
DCT

) (Table 3). The remaining 12 frequency features 

were derived from short-term signal portion decomposition 

using wavelets.35 Frequency information extraction through 

wavelets is a widely used signal processing technique, mainly 

in underwater species, and targets recognition through scat-

tered echos.35 Two types of mother wavelets were considered, 

taking into account their simplicity degree: the Haar and 

Daubechies (Db10).35 Six features were then created per 

mother wavelet, for each short-term signal portion, based 

on the relative power of the corresponding wavelet packet-

derived reconstructed signal (one to six levels) (see Table 3).

The LDA for features of dimensionality 
reduction
The LDA, also known as Fisher Linear Discriminant 

method, is a simple and widely used multivariate statisti-

cal technique.29,36 Fisher LDA is currently used both for 

dimensionality reduction and classes distinction (classifica-

tion).29,36 It aims to find the linear combination of a set of 

features that best separates two or more classes in a pattern 

Table 3 (Continued)

Type Group Number Feature/parameter

Wavelet packet decomposition

46 Haar Relative Power 5th level (E5
Haar)

47 Haar Relative Power 6th level (E6
Haar)

48 Db10 Relative Power 1st level (E1
Db10)

49 Db10 Relative Power 2nd level (E2
Db10)

50 Db10 Relative Power 3rd level (E3
Db10)

51 Db10 Relative Power 4th level (E4
Db10)

52 Db10 Relative Power 5th level (E5
Db10)

53 Db10 Relative Power 6th level (E6
Db10)

Notes: Adapted from Paiva J et al. Single particle differentiation through 2D optical fiber trapping and Back-Scattered signal statistical analysis: an exploratory approach. 
Sensors. 2018;18(3):710.21

Abbreviations: AUC, area under curve; DCT, discrete cosine transform; E, entropy; IQR, interquartile range; Kurt, kurtosis; Skew, skewness.
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recognition problem.36 This linear combination is represented 

in a subspace of lower dimension, in comparison to the 

original dataset, in a form of a separation curve/hyperplane, 

in relation to which the data points of the original problem 

are “separable”. Since the inclusion of redundant features in 

a binary/multiclass differentiation problem could introduce 

noisy information in the classification decision task, we 

applied the LDA to the original set of 53 features, in order to 

find their best projection onto a final set of two LDA-derived 

attributes that separates the two classes considered. Then, 

we verified the interclass distinction power associated to the 

separation line of the projected final features.

The original LDA/Fisher Discriminant Analysis algorithm 

was, at first, proposed for binary problems. Then, several 

generalizations were proposed for multiclass approaches.29,36 

Starting with the most simple case, suppose we are observing 

a sample of data – D-dimensional, with mean vector µ and 

covariance matrix Σ drawn from two classes, each described 

by a multivariate normal density, defined by:37

P x k x x
D

k

T
k

( )
(

( (| = − − µ − µ
−1

2

1

2

1

π)
exp ) )

∑







∑k k

�

(3)

for classes k=1, 2. Fisher, who derived the discriminant 

analysis, started to search for a direction q, maximizing the 

separation between the two classes, according to:37

	
S

q

q

T

T
( ) 2q =

µ −[ ( )]
1

2µ

�
(4)

The separation between classes is then maximized for 

q=Σ−1(µ
1
−µ

2
), corresponding to maximize the distance 

between the means between the two classes and, at the same 

time, to minimize the variance in each class. Considering a 

two-dimensional (2D) space (two features characterizing 

each class), the separation hyperplane would, therefore, be 

a one-dimensional (1D) line, and the values corresponding 

to the original data samples would be converted into the 

distance to the separation line (Figure 6).36

The LDA-derived hyperplane was then used in this 

particular problem for several purposes: dimensionality 

reduction, classification and interpretation of the importance 

of the set of features originally chosen (by calculating the 

corresponding coefficient of the projection line for each 

feature).29,36 However, due to intrinsic amplitude differences 

between features and in order to project them to the same 

values space range, a normalization procedure had to 

be applied to each sample of the original dataset, before 

performing the LDA. The samples average value across each 

feature was subtracted to each data sample from that feature, 

and then divided by the corresponding feature SD.29

In this particular binary separation problem, since our final 

aim was to determine the most suitable 1D separation line for 

each solid phase concentration value evaluated (for facilitating 

visual interpretation and to reduce computational complexity), 

we projected the original set of 53 time- and frequency-

domain features into two final ones. The performance 

evaluation method regarding each LDA-derived separation 

line calculated for each nanoparticle concentration is described 

in the following paragraph. The LDA was performed using 

the Statistical Pattern Recognition Toolbox38 for Matlab®.

Classes separation performance evolution 
with nanoparticles concentration using 
linear discriminant functions
After normalizing each data sample according to each 

feature’s mean and SD values as described above, and 

projecting the original 53 features into the two final LDA-

derived features, for each nanoparticles concentration value 

evaluated (solutions 2–9 from Table 1), the “separability” 

performance/efficiency of the calculated projection line was 

evaluated.

Taking into account the simplest case (two dimensions/ 

two features – x and y space – and two classes), we 

can determine the best projection vector – slope of the 

Figure 6 Scheme explaining the intuition behind the LDA, considering a two 
class problem (class A and class B) and a two-dimensional original features space 
(2D, composed of two features).
Notes: Original data samples are then projected to a lower features dimensional 
space, composed of a single feature (1D, one-dimensional, line). The separation 
line is calculated in order to maximize the “separability” of the projected samples.
Abbreviation: LDA, Linear Discriminant Analysis.
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separation line – resultant from the LDA, starting by 

considering the mean vector of each class in the x-space 

and y-space by:29,36

	

µ
i

i x wN
x

i

=
1

∈
∑ ,

�

(5)
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Since Fisher suggested to maximize the difference 

between the means, normalized by a measure of the within-

class scatter to find the best separation line, we can define, for 

each class, the scatter, an equivalent of the variance, as:29,36

	

 s y
i

y w
i

i

2 2= − ( ) .
∈
∑ µ

�

(7)

Thus, the equation of the Fisher linear discriminant 

function (eg, the equation that defines the separation line) 

is defined by the linear function wTx that maximizes the 

criterion function:29,36
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in which  s s
1
2

2
2

 
represents the within-class scatter of the 

projected samples. If we consider that the within-class scat-

ter matrix S
W
 and the between-class scatter matrix S

B
 are 

correlated with both the projected means and scatter values 

s̃ and µ̃, respectively, by:25,32
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Then, the Fisher criterion is given by:25,32
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By solving the generalized eigenvalue problem 

(S
W

−1S
B
w = Jw), it is possible to determine the direction (w*) 

of the optimal separation hyperplane by taking:25,32

	
w

W
* ( ).= −−S 1

1 2
µ µ

�
(12)

Note that, for the simplest case considered (2D space – 

two features, two classes) such hyperplane is a line.

The above equations and assumptions were, therefore, 

considered in this particular binary problem. After 

calculating the values of the two projected LDA-features 

(LDA-derived features 1 and 2) for each data sample (for 

each class and solution), the data points corresponding to 

each acquisition spot and class were averaged and its mean 

represented in the 2D graphical space (corresponding to the 

graphical representation of LDA-derived feature 1 vs feature 

2) containing the LDA-based separation line calculated using 

equations 5–12, and all the mean values of the remaining 

acquisition locals for each class (see Figure 7). Then, the 

number of signal acquisition spots (from 1–10, see Table 2) 

whose class assignment (“no particles” vs “presence of 

nanoparticles”) was correctly performed, was determined 

for concentration value. This was done by considering the 

geometrical representation of each data sample 2D mean 

point in relation to the LDA-derived 1D line separation, and 

to the other mean points belonging to the same class. The 

separation performance of the two projected LDA-derived 

features as well as the separation line was evaluated for each 

nanoparticles concentration value, in order to determine the 

nanoparticles concentration corresponding to the LOD for 

this technique and binary separation problem in particular. 

Classes separation was evaluated, by verifying if the LDA-

derived separation line was able to correctly split data 

samples into two different classes and assign each sample 

to the correct one. Nine binary distinction problems were 

therefore performed: solutions 1 vs 2; solutions 1 vs 3; 

solutions 1 vs 3; solutions 1 vs 4; solutions 1 vs 5; solutions 

1 vs 6; solutions 1 vs 7; solutions 1 vs 8; and solutions 1 vs 9.

Results and discussion
Dimensionality reduction through LDA
For all the solutions evaluated (from 1–10, Table 1), we 

were able to project the original set of 53 features into only 

two. In order to understand the most relevant information for 

nanoparticles detection in aqueous media, we identified the 

most important features for classes differentiation, according 

to the associated projection coefficients that contributed for 

calculating the first LDA-derived feature (LDA feature 1). This 

feature corresponded to the linear discriminant component 

most significant for classes differentiation, from the two 

generated through the LDA. It can be determined by comparing 

the eigenvalues of the corresponding eigenvectors. The 

eigenvector with the higher eigenvalue corresponds to the 
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most significant linear discriminant component, the first LDA-

derived feature.29,36 In this particular case, all the binary problems 

evaluated (except the one involving solution 5) showed the 

same set of features as the five most representative ones for the 

differentiation problem. Their enumeration and corresponding 

coefficients representation for each binary problem can be 

found in Figure 8.

As expected, taking into account the recent evidences 

found in our studies about trapped microparticles type 

identification through back-scattering,18–21 the frequency 

Figure 7 (Continued)
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components of the back-scattered signal are highly relevant 

features for scatterers detection/identification in aqueous 

solutions. In fact, one of the features associated with the 

highest features projection coefficient absolute value in the 

majority of the cases was the fourth level power of the Db10 

wavelet-derived signal. The wavelet-derived characteristics 

were already considered the most suitable attributes for 

targets distinction in multiclass problems including bacteria 

type detection18 or synthetic microparticles and simple cells 

distinction and isolation.21 However, results show a slight but 

uniform dependence of the projection coefficients magnitude 

regarding the frequency-related features with nanoparticles 

concentration (Figure 8). In fact, the magnitude of the projec-

tion weight of E
Db10

4 in the first LDA-derived feature is the 

lowest, for the lowest concentration value, increases with 

the increase of nanoparticles concentration till certain value, 

decreases again for intermediate concentration values and, 

then, increases for maximal concentrations.

Projection weights associated with the DCT-derived 

features E
DCT

[l5] and E
DCT

[l6] also showed magnitude fluc-

tuations for different nanoparticles concentration values. 

Interestingly, coefficients magnitude was maximal for 

minimal concentrations for these features, decreased for 

intermediate concentrations, and then increased for higher 

nanoparticles concentration values. This suggests that a 

different kind of frequency information is more suitable 

for classes distinction considering different nanoparticles 

concentration values. Probably, DCT-derived features are 

more relevant for nanoparticles detection in lower concen-

tration values, while wavelet-based variables contain more 

important information for detecting nanoparticles at higher 

concentration values. Coefficients of time-derived parameters 

Figure 7 2D representation of the mean projected values considering each different acquisition spots and classes for the two final LDA features and corresponding separation 
line for nanoparticles concentration values (A) 55.38 µg/mL; (B) 37.59 µg/mL; (C) 19.14 µg/mL; (D) 3.89 µg/mL; (E) 0.16 µg/mL; (F) 1.56E-02 µg/mL; (G) 3.90E-03 µg/mL; 
(H) 2.44E-03 µg/mL; and (I) 1.22E-03 µg/mL. Red dots represent the class “no particles” and blue squares represent the class “presence of nanoparticles”.
Abbreviation: LDA, Linear Discriminant Analysis.
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ω
Nakagami

 and µ
Nakagami

 features show a similar behavior with 

nanoparticles concentration. They both decrease in amplitude 

for comparisons from low-to-intermediate nanoparticles 

concentration values. However, according to LDA, classes 

separation problems involving high solid phase concentra-

tion solutions are highly influenced by contributions from 

Nakagami time-related signal characteristics.

The only separation problem where the five most repre-

sentative features set did not match the one of Figure 8, was 

the separation problem involving solution 5 (nanoparticles 

concentration of 3.89 µg/mL). In this particular case, the five 

most significant features for the differentiation problem were: 

E
DCT

[l1]; E
DCT

[l2]; E
Db4

4; ω
Nakagami

; and µ
Nakagami

.

Taking into account that the contribution weights of 

the five top features range, in general, considering all the 

solutions compared, between ≈0.08 and ≈0.87, the contri-

bution of any other feature from the remaining 48 can be 

considered negligible. In fact, the relevance degree of their 

contribution to the classes distinction problem is, according 

to LDA, so low that they can be discarded. This is an impor-

tant conclusion for future studies, since we discarded 48 

features from an original group of 53. The remaining group 

can, therefore, be directly used for classification in future 

studies, without being projected into a lower dimensional 

features space, thus reducing computational complexity. 

This features set composed of five attributes is also robust 

to the target molecule concentration, not revealing relevant 

changes on its composition for different nanoparticles 

concentration values. Indeed, it was composed always by 

the same attributes.

Probably, these five features, mainly the frequency-

derived ones, are able to capture the time dependence patterns 

of the back-scattered radiation intensity that characterize the 

colloidal solutions (containing the liquid phase, distilled 

water, plus the solid phase, PS nanoparticles). These time-

dependent patterns were probably not observed for distilled 

water only, since nanoparticles dimensions – 100 nm – were 

large compared to the water molecules.39 Considering that 

PS nanoparticles were freely suspended in the aqueous 

solution, they were no longer stationary in the suspension 

media, rather they moved in a random walk fashion, dictated 

by a Brownian motion process.39 Thus, fluctuations on the 

scattering intensity that vary in time were introduced on the 

backscattered signal collected from the solution. These are, 

therefore, an indirect measure of the random walking of the 

nanoparticles39 and are probably the cause for this specific 

features set having enough information for detecting particles 

smaller than the wavelength of the light. Note that, accord-

ing to other studies, phase characteristics of the signal are 

even able to distinguish subpopulations of different types 

of nanoparticles which are similar in size, but composed of 

different materials (or different optical polarizabilities).40 

ω

Figure 8 The five most important features for binary distinction problems involving nanoparticles solutions with concentrations of 1.22E-03 (solution 10), 2.40E-03 
(solution 9), 3.90E-03 (solution 8), 1.56E-02 (solution 7), 0.16 (solution 6), 19.14 (solution 4), 37.59 (solution 3), and 55.38 µg/mL (solution 2), according to LDA and 
corresponding coefficients magnitude.
Abbreviation: LDA, Linear Discriminant Analysis.
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However, more detailed studies have to be conducted in 

order to confirm this hypothesis.

Nanoparticles detection through 
discriminant analysis
The number of correct class assignments vs total number of 

classifications performed (acquisition spots classified) for 

each one of the nine binary distinction problems, is provided 

in Figure 9. Class assignments were performed considering 

the location of LDA-derived separation line and features 

mean points for each sample, regarding each distinction 

problem, which are provided in Figure 7.

Taking into account the information provided in Figure 9, 

it is possible to analyze the evolution of classes separability 

with the concentration of nanoparticles. Our method 

correctly identified the presence of 100 nm polystyrene 

nanoparticles in all the acquisition spots evaluated within the 

solution, for concentrations above or equal to 3.89 µg/mL 

(8.74E+10 particles/mL). It was also able to verify that no 

particles were present in the acquisition spots evaluated 

within solution one (containing only distilled water). For these 

target concentration values, the proposed method is therefore 

characterized by an accuracy, specificity, and sensitivity rate 

of 100%. However, its classes distinction performance starts 

to decrease for concentration values below 3.89 µg/mL. From 

3.89–0.16 µg/mL inclusive, the accuracy of the method 

drops to 95% (19 acquisition spots correctly classified in a 

total of 20) (Figure 9B). Below or equal to 1.56E-02 µg/mL 

(3.51E+08 particles/mL) to the lower concentration analyzed 

(1.22E-3 µg/mL, 2.74E+07 particles/mL), the number of 

misclassified acquisitions increased to two, and the accuracy 

of the method decreased to 90% (18 acquisitions correctly 

classified in a total of 20). Considering these results, the 

LOD of the proposed method for an optimal accuracy 

(100% classes separation performance) corresponds to a 

nanoparticles concentration value of, at least, 3.89 µg/mL 

(8.74E+10 particles/mL). This value can be reduced to 

0.16 µg/mL (3.51E+09 particles/mL), for the cost of a less 

conservative misclassification rate (95% of classes separation 

performance). For a higher error rate (of 10%) the LOD can be 

fixed in 1.22E-3 µg/mL (2.74E+07 particles/mL) (Figure 9B).

From Figure 7, it is possible to observe that, as expected, 

the distance that separates each LDA-derived feature mean 

points from each class to the separation line decreases with 

decreasing nanoparticles concentration values.

In fact, the lower the concentration of nanoparticles, 

the harder is the differentiation task between the classes 

“distilled water” vs “distilled water with nanoparticles” 

using the back-scattered signal, since their similarity degree 

increases. However, the number of misclassified samples is 

balanced between classes, along the several comparisons 

performed. This suggests equivalent performance values 

in terms of sensitivity and specificity of the proposed 

method. Equivalent sensitivity and specificity are a highly 

advantageous characteristic of a detection method, especially 

if its final application is related to the identification of human 

physiological analytes. For example, different types of EVs 

are present in circulating fluids in distinct proportions.41 Some 

cancer-related exosomes (expressing tumor-specific cargoes) 

are present in the plasma of tumor patients in significantly 

higher concentrations than other types of nano/microvesicles.4 

A suitable EVs type isolation and detection method must be 

sensitive and specific, even if its target analyte is present in 

very tiny amounts in comparison to the other fluid compounds.
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Figure 9 Number of correct class assignments (signal acquisition spots classified) vs total number of class assignments performed for (A) all nanoparticles concentration 
solutions; and (B) zoom in of (A) for low nanoparticles concentration values.
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Although the reported results only validate the proposed 

method regarding the detection/identification of synthetic 

nanoparticles in aqueous solutions at low concentration values, 

this technique showed very advantageous characteristics that 

place it in a very competitive position and closer to the precise 

detection of more complex analytes, such as physiological 

EVs, lipoproteins, or virus. One of the main concerns related 

to the detection of such small structures is related with their 

constrained size – mainly in the range of 100–150 nm – 

which is far below the light diffraction limit.4,5,9,10 However, 

the proposed technique was shown to be suitable for the 

detection of nanoparticles in such size ranges. Another 

important constraint that must be considered is its LOD and 

the expected plasmatic levels of the different types of EVs and 

lipoproteins. For now, we have only the LOD reference values 

for the detection of polystyrene nanoparticles considering the 

proposed technique. However, this is not the only limitation.

Even if we had access to the LOD values regarding the 

detection of several types of EVs or lipoproteins using our 

technique, the plasmatic concentration values for the case of 

EVs considering human beings remain poorly understood.4,5 

In fact, there is still several information about human EVs 

and tumor-derived exosomes (plasmatic levels, molecular 

contents, functions, predominance, etc.) that is currently 

not well understood.4,5,41 Usually, scientists only compare 

EVs plasmatic levels between patients and healthy donors, 

or use relative amounts to perform exosomes quantification 

studies.42 We must take into account that, currently, 

exosomes quantification and isolation are complex and 

time-consuming processes, including long-term affinity 

assays or/and consecutive ultracentrifugations.4,5,42 For these 

reasons, relative quantities are much more straightforward to 

report.42 However, despite being few, there are some studies 

where exosomes quantification in human samples from 

both patients and healthy controls have been performed.43,44 

As an example, values for plasmatic levels of cancer-related 

exosomes, with dimensions of ≈100 nm, between 2.00E+12 

and 3.00E+12 particles/mL were recently found in human 

plasma samples from patients with gastrointestinal stromal 

tumors,43 a value that is perfectly compatible with the LOD 

of our technique corresponding to the optical performance. 

A recent study also reported that mesenchymal non-small-

cell lung cancer cells excrete exosomes characterized 

by diameters between 50 and 100 nm to the circulating 

fluids at concentration values between 4.00E+08 and 

8.00E+08 particles/mL.44 This study was also performed 

using human-derived cell samples. Although this type of 

exosomes is found in lower plasmatic levels, they are still 

completely compatible with a performance between 95% 

and 100% for the detection of synthetic nanoparticles by our 

method. Non-cancer-related EVs, such as vesicles derived 

from the placenta of pregnant women, which have been 

associated to the systemic inflammation characteristic from 

the pre-eclampsia condition, have also been found in plasmatic 

levels compatible to the LOD of our method. Values between 

107–108 particles/mL were found in the plasma of pregnant 

women diagnosed with pre-eclampsia.10 Platelet-derived EVs, 

which have shown suitable characteristics as atherosclerosis 

biomarkers, are physiologically present in plasmatic levels of 

108–109 particles/mL, concentrations also within the range of 

the detection ability of the proposed technique.9

Regarding the concentration of lipoproteins, since their 

plasmatic concentrations are in the range of few grams per 

mL11 and, therefore, far above the LOD of the technique, 

the obtained results showed that its application should 

be easily extensible to the detection and identification of 

lipoproteins suggestive of atherosclerosis and other abnormal 

cardiovascular conditions. However, we have always to 

consider that there are several properties completely different 

between synthetic and complex biological nanoparticles, 

as the EVs or lipoproteins. One of these parameters is the 

refractive index. The refractive index of the polystyrene 

(1.57)45 is higher than any biological material. Considering 

that the higher the difference between the refractive index 

of the surrounding media and the particle, the higher is the 

amount of light scattered by the particle, the back-scattered 

light collected from suspended polystyrene nanoparticles 

should contain a higher amount of information than the light 

scattered by any other biological nanoparticle. Additionally, 

assays involving EVs or any other physiological nanostructure 

require that nanoparticles should be suspended in a complex 

media such as Phosphate Buffered Saline (PBS) or Fetal 

Bovine Serum (FBS), and not in distilled water. Since 

these media are characterized by a myriad of compounds, 

including antibodies, proteins, ions, vitamins, among others, 

the detection of EVs and other nanostructures is expected 

to be more chaotic. However, the proposed method has 

already revealed prominent features that can contribute to the 

future development of a microdevice for EVs, lipoproteins, 

and other nanostructures detection with innovative 

characteristics. Its detection accuracy is equivalent to the few 

pieces of equipment currently capable of detecting EVs and 

other nanoparticles at concentration values above 10.9,46,47 

The majority of these devices are optical sensors based 

on Surface Plasmon Resonance effects.46,47 However, as 

mentioned above, they require complex, time-consuming, 
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and expensive microfabrication methods to be developed 

and are often dependent on delicate fiber tip functionalization 

processes,46,47 or affinity-based phenomena (requiring 

antibodies) for detecting analytes.46,47 Our technique, being 

simpler, less costly, and more versatile, ensures the same 

detection accuracy for nanoparticles concentration values, 

considering nanotargets within the size range of EVs.

It is also important to note that perturbations can 

arise during the photopolymerization lenses fabrication 

method, therefore modifying the modal field distribution 

along each lens. Some reflection from the core/cladding 

of the fiber boundary can also arise during the process.19 

Therefore, all these interdependencies could lead to some 

degree of variability on the scattering collecting perfor-

mance of the different lenses fabricated using the selected 

probes fabrication method. However, we believe that these 

small changes do not significantly influence nanoparticles 

detection/differentiation, because each probe is thoroughly 

characterized, and the system is trained, taking into account 

its intrinsic capability to detect the back-scattered signal. 

In future studies, we intend to implement improvements on 

the lenses fabrication protocol, including strategies for more 

stable modal excitation during photopolymerization, such as 

mode filtering, or polymerization at a wavelength where the 

fiber is single mode. These procedures will surely allow us 

to overcome these difficulties, enabling a more reproducible 

fabrication of polymeric lenses on top of optical fibers.

Conclusion
In this study we propose a novel, simple, and high-resolution 

nanoparticles detection method based on the analysis of short-

term back-scattered laser light signal portions collected by a 

polymeric lensed optical fiber, by dipping the fiber probe in 

a solution of nanoparticles in suspension. It does not require 

bulky and costly equipment, and is mainly characterized by a 

flexible and biocompatible polymeric micro-lens fabricated 

through a self-guided photopolymerization process on the 

top of an optical fiber, a photodetector and a microcontroller 

for data processing and analysis. Unlike DLS, it is fast, 

since it only requires back-scattered signal acquisitions with 

2 seconds. Contrary to flow cytometry, it is single-angle, 

since it is able to detect nanoparticles of interest using a 

unique random scattering collection angle. Additionally, it 

does not depend on any other type of signal beyond the light 

scattered by the ensemble of nanoparticles and it is label-

free, in contrast to other optical fiber sensors, which require 

fiber tip functionalization techniques using expensive dyes, 

antibodies, organic functional groups,48 or affinity-based 

techniques, using antibodies. According to the obtained 

results, it is able to ensure an optical performance (100% 

accuracy) in detecting synthetic nanoparticles in distilled 

water, for a concentration of nanoparticles of at least 3.89 

µg/mL (8.74E+10 particles/mL). However, it is also able 

to ensure a performance of at least 90% for concentrations 

lower than 3.89 µg/mL, but higher than or equal to 1.22E-
03 µg/mL (2.74E+07 particles/mL), considering the range 

of concentrations tested in this study. Considering that 

the “naturally generated” EVs (including exosomes) that 

have been associated with important roles for early cancer 

diagnosis and tumor metastasis assessment are characterized 

by diameters between 100 and 150 nm and plasmatic levels 

in the order of 108–1012, the proposed technique can be 

prominent for the development of an innovative device for 

EVs detection. It can also be used for detecting other types of 

nanostructures that provide relevant information about acute 

abnormal conditions, such as lipoproteins. This novel method 

can have an important impact in early cancer diagnosis, 

tumor metastasis assessment, tumor type differentiation 

protocols, and indirect health state monitoring. This can 

be incorporated into novel devices for Point-of-Care/Rapid 

Diagnostic micro-cell sensing.
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