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Abstract: Cancer is a major public health problem, and is now the world’s leading cause of 

death. Traditional Chinese medicine (TCM)-combination therapy is a new treatment approach 

and a vital therapeutic strategy for cancer, as it exhibits promising antitumor potential. Nano-

targeted drug-delivery systems have remarkable advantages and allow the development of 

TCM-combination therapies by systematically controlling drug release and delivering drugs 

to solid tumors. In this review, the anticancer activity of TCM compounds is introduced. The 

combined use of TCM for antitumor treatment is analyzed and summarized. These combina-

tion therapies, using a single nanocarrier system, namely codelivery, are analyzed, issues 

that require attention are determined, and future perspectives are identified. We carried out a 

systematic review of .280 studies published in PubMed since 1985 (no patents involved), in 

order to provide a few basic considerations in terms of the design principles and management 

of targeted nanotechnology-based TCM-combination therapies.

Keywords: cancer, codelivery, combination therapy, nanotargeted drug-delivery system, tumor 

targeting, TCM

Introduction
Cancer is the leading cause of disease-associated death in China,1 and is now the 

world’s leading cause of death.2 According to the Global Cancer Report 2018 on the 

trend of 36 cancers in 185 countries worldwide by the WHO, the global burden of 

cancer is increasing at an alarming rate (one in eight deaths on average are due to 

cancer). The report also pointed out that the incidence and mortality rate of cancer 

continues to rise each year, with developing countries accounting for approximately 

60% of the world’s new cases and 70% of annual deaths. In 2018, nearly half the 

world’s new cases of cancer occurred in Asia, most of which occurred in China.3 Bray 

et al2 provided a status report on the global burden of cancers using GLOBOCAN 

2018. It is estimated that there will be 18 million new cases of cancer and 9.6 million 

cancer deaths in 2018. Lung cancer and breast cancer are the most frequent cancers 

in men and women, respectively, and the two leading causes of cancer death. Due to 

the high incidence and mortality rate of cancer, the global health care burden is also 

increasing rapidly.

Surgical treatment, chemotherapy, and radiotherapy are the primary treatment 

methods for cancer.4 If cancer patients are diagnosed early and receive timely surgical 
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treatment, the probability of surviving for 5 years after 

surgery is greatly improved. However, when cancers are 

diagnosed late, the vast majority of patients are already in 

the terminal stages, and thus may have lost the opportunity 

of surgical treatment. In addition, due to adverse reactions 

caused by radiotherapy, such as fatigue, gastrointestinal 

reactions, skin damage, bone-marrow suppression, and 

cardiotoxicity,5 chemotherapy is still the main method of 

cancer treatment.

Nevertheless, due to lack of specificity and poor targeting, 

chemotherapy drugs not only kill tumor cells but also act 

on normal tissue, causing a reduction in immunity, signifi-

cant side effects, and low drug efficacy. In addition, cancer 

patients can develop resistance to a single chemotherapy drug 

in clinical practice, resulting in a decrease in the subsequent 

curative effect. Multidrug resistance (MDR) was once con-

sidered the leading cause of chemotherapy failure, and may 

also promote tumor metastasis and recurrence.6 Based on 

recent statistics from the American Cancer Society, .90% 

of cancer patients die from different levels of MDR.

Therefore, the treatment of cancer should be changed 

from an initial single medication to combination therapy. 

The combination of two or more active antitumor ingredi-

ents plays a crucial role in complementarity and synergy, 

and has become the preferred scheme in cancer treatment. 

Notably, the combination of traditional Chinese medicines 

(TCMs) with chemotherapeutic drugs and the combination 

of various TCMs, which involves multiple targets and mul-

tiple signaling pathways, have improved efficacy compared 

with drugs with a single molecular target and become a new 

strategy for tumor therapy in recent years.7 Due to a great 

deal of investment and rapid development, nanotechnology 

is already used in various fields of biomedical science.8 

Novel nanoformulation-based drug-delivery systems, such as 

liposomes, nanoparticles (NPs), vesicles, mesoporous silica 

NPs (MSNs), and micelles, provide promise in overcoming 

current limitations, including poor targeting, insufficient 

absorption, poor pharmacokinetics and bioavailability, and 

limited biodistribution.9–11

In this review, the anticancer activity of TCM compounds 

is introduced. The combined use of TCMs for antitumor 

therapy is analyzed and summarized. These combination 

therapies using a single nanocarrier system, namely code-

livery, are analyzed to determine their potential in prolonging 

drug duration in vivo, targeting drug delivery, and reducing 

toxicity (Figure 1). Matters requiring attention and future 

perspectives in this field are also reviewed, in order to 

accelerate the clinical application of combination antitumor 

therapy using targeted nanotechnology.

Antitumor effects of TCMs
Herbs, animals, and minerals are used widely as health foods 

and medicines to remedy various diseases in Asia, and have 

been collected and recorded as effective and traditional 

therapies in the TCM literature. For example, artemisinin 

was isolated by Youyou Tu at the China Academy of Tradi-

tional Chinese Medicine in Beijing, and is now an effective 

medicine in the treatment of malaria. As a result, Tu won 

the Nobel Prize in Physiology or Medicine in 2015. In most 

developing countries, 80% of the population continue to use 

traditional medicines for primary health care.12 From 2016 to 

2017, the total amount of TCM herbal medicines and other 

related products exported to the Belt and Road Initiative 

countries reached US$295 million. In addition, the WHO 

also recognized traditional medicine in its influential global 

medical compendium.13

Figure 1 Advantages of targeted nanotechnology-based TCM-combination therapy.
Notes: (A) Antitumor effects of TCM; (B) antitumor effects of TCM-combination therapy; (C) antitumor effects of targeted nanotechnology-based TCM-combination 
therapy.
Abbreviations: TCM, traditional Chinese medicine; MDR, multidrug resistance.
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Worldwide, including in Western countries, TCM has 

been increasingly used in the past few decades, and is well 

known for its vital role in cancer prevention and treat-

ment. A number of studies have confirmed that the active 

ingredients in TCM (curcumin [Cur], gambogic acid, and 

baicalein [BA], among others) are able to effectively induce 

apoptosis, interfere with tumor progression, inhibit tumor 

development, inhibit angiogenesis, cause cell-cycle arrest, 

and block metastasis. A summary of the antitumor effects of 

drugs isolated from TCMs is shown in Table 1. Structures 

of TCM compounds are shown in Figure 2.

Antitumor effects of TCM-
combination therapy
Initially, cancer therapy consisted of a single drug, which 

could involve a single target. However, malignant disease 

is caused by many complicated factors, and treatment with a 

single drug is not adequate. Patients are usually susceptible to 

drug resistance after sequential cycles of therapy with these 

chemotherapy drugs,100 and a single medication frequently 

causes serious side effects. For instance, although cisplatin is 

clinically effective, it lacks selectivity for tumor tissue, result-

ing in serious side effects, such as kidney-function damage,101 

neurotoxicity,102 ototoxicity,103 and the emergence of MDR, 

resulting in the failure of chemotherapy.104 In addition, long-

term or high-dose cisplatin treatment can also cause severe 

anemia.105 Therefore, the clinical application of single drugs, 

such as cisplatin, has been greatly restricted.

Cancer therapy urgently requires a new therapeutic 

approach to overcome these shortcomings. Combination-

drug therapy is a new mode of treatment, and has gradually 

gained the attention of researchers.106 Combination therapy 

involves the simultaneous or sequential use of two or more 

medicines for therapeutic purposes, and gradually plays a 

meaningful role in a complementary way, has synergistic 

action, and alleviates adverse reactions. It can not only pro-

duce a better therapeutic effect by regulating multiple signal-

ing pathways in abnormal cells and act on multiple targets 

simultaneously but also reduce the occurrence of MDR and 

reduce both the dosage and side effects. The combination 

of two or more active antitumor ingredients is now a vital 

treatment method for tumors, and has received US Food and 

Drug Administration (FDA) approval.107

Based on classic TCM theory, the combination of antitu-

mor TCMs exhibits promising potential in cancer treatment 

such as: 1) enhancing the therapeutic efficacy of chemo-

therapeutic drugs – due to the combined effects of Cur and 

cisplatin determined in vitro and in vivo, experimental results 

demonstrate that Cur can enhance the antitumor effect of 

cisplatin in A549 cells in vitro, the combination markedly 

inhibiting tumor growth and promoting apoptosis in the 

A549-xenograft mouse model;108 2) achieving synergistic 

therapeutic effects – resveratrol and Cur synergistically cause 

apoptosis in breast cancer cells by p2 (Waf/Cip1)-mediated 

inhibition of the Hedgehog–Gli cascade;109 3) reversing drug 

resistance – the combination of cryptotanshinone and cispla-

tin leads to cell death and apoptosis, and cryptotanshinone 

reverses cisplatin resistance in human lung carcinoma A549 

cells by downregulating the Nrf2 pathway;110 4) reducing 

the dose of drugs – combination therapy with triptolide and 

cisplatin completely suppresses tumor growth, suggesting 

that lower concentrations of cisplatin and triptolide may 

produce a synergistic anticancer effect;111 and 5) prolong-

ing survival – As
2
O

3
 combined with ginsenoside Rg

3
 can 

significantly inhibit the proliferation of NCIH1299 cells 

and prolong survival of tumor-bearing nude mice, with a 

significant effect on lung cancer treatment.112 In addition, 

TCM-combination therapy results in good prognosis, has 

fewer adverse reactions, has long-lasting curative effects, 

regulates the expression of intracellular marker proteins, and 

reduces the side effects of drugs.112–115 Further superior effects 

are shown in Table 2. The anti–lung cancer and anti–breast 

cancer mechanisms of TCM-combination therapy are shown 

in Figures 3 and 4. TCM-combination therapy achieves the 

effects that single chemotherapeutic drugs fail to achieve, and 

has become the main direction in clinical and experimental 

research on antitumor therapy.116

Nevertheless, there are three possible interactions in drug 

combinations: antagonistic, additive, and synergistic effects. 

Therefore, if we do not understand interactions among drugs, 

blindly combining drugs will not only fail to achieve the 

desired response but also lead to reduced efficacy and increased 

toxicity, and even produce drug-borne diseases. For instance, 

the combination of paclitaxel (Ptx) and BA shows antagonism 

in breast cancer MCF7 cells,117 and Liu et al118 suggested that 

the combination of gambogic acid and bortezomib should be 

avoided in patients. In addition, attention should be paid to 

the proportion and sequence of the two drugs in combination.

Applications of targeted 
nanotechnology in TCM-combination 
therapy
During the early 20th century, Paul Ehrlich proposed 

the concept of targeted drugs, which consisted of three 
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components: the drug, targeting moiety, and drug carrier. 

The main aim was to deliver the drug to the specific target 

organ under the specific guiding mechanism.168 Targeted 

preparations are characterized by increasing the intensity 

of pharmacological action in target tissue, controlling drug 

release, and decreasing systemic adverse reactions. Targeted 

drug-delivery systems have become one of the important 

high-profile topics in modern pharmacy. Nanotargeted drug-

delivery systems have remarkable advantages in improving 

the bioavailability of drugs, enhancing the targeting ability 

of drugs, improving the distribution and pharmacokinetic 

properties of antitumor drugs in vivo and in vitro, increas-

ing the stability of drugs, solubilizing poorly soluble drugs, 

protecting drugs from degradation in vivo, intelligently 

regulating the release of components, enhancing efficacy, and 

reducing toxicity.169–172 Moreover, metastasis of neoplastic 

cells is the major cause of death in cancer patients,173,174 and 

nanosize drug-delivery systems also provide an encouraging 

strategy for lymphatic metastases.175 In 2004, the National 

Cancer Institute (NCI) launched the NCI Cancer Nano-

technology Alliance, which aims to use nanotechnology to 

combat cancer.176

In recent years, many types of nanopreparations of 

TCMs, which involve the combination of nanotargeted 

drug-delivery systems and the advantages of TCM compo-

nents in the treatment of tumors, have been reported.177–179 

Simultaneously, nanotargeted drug-delivery systems are also 

promising multidrug carriers and allow the development of 

drug combinations by systematically controlling drug release 

and delivering drug to solid tumors.180 Codelivery of multiple 

antitumor agents in a single well-designed nanocarrier has 

significant advantages over monotherapy.181,182 Generally, 

drug targeting can be classified into three categories: passive 

targeted preparations, active targeted preparations, and other 

physicochemical targeted drug-delivery systems.

Passive targeted drug-delivery systems
In a passive targeted drug-delivery system, lipids, adipoids, 

proteins, and biodegradable high-molecular-weight poly-

mers are mainly used as carriers, and the drug is encapsu-

lated or embedded into various colloidal systems, forming 

stable structures, such as polymeric NPs (PNPs), micelles, 

nanovesicles, and liposomes, to increase drug concentration 

in tumor cells, decrease drug distribution in blood and other 

organs, and prevent toxicity and adverse reactions. This spon-

taneous accumulation, or “passive” targeting, is particularly 

effective against tumors, due to leaky angiogenic vessels and 

poor lymphatic drainage of the tumor, which is currently T
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referred to as the enhanced permeability and retention (EPR) 

effect. That is to say, the high permeability of tumor blood 

vessels allows nanosystems to enter the interstitial spaces of 

the tumor, while impaired lymphatic filtration allows these 

nanosystems to remain there. This phenomenon does not exist 

in normal tissue. Currently, EPR-mediated drug delivery is 

considered effective in delivering drugs into tumors, espe-

cially nanocarriers (Figure 5). The size of the particles is also 

closely related to their distribution.183 The different sizes of 

these nanosystems decide the in vivo distribution behavior. 

Nanopreparations of ,100 nm can be slowly accumulated in 

bone marrow; nanocarriers of 100–200 nm are apt to become 

enriched in the solid-tumor site; nanosystems of 0.2–3 µm 

are taken by macrophagocytes in the liver and spleen and 

particles of .7 µm are often intercepted by pulmonary 

capillary beds and enter the pulmonary tissues or alveoli.184

Liposomes
Liposomes are microvesicles with one or more aqueous 

cavities formed by the encapsulation of one or two amphi-

philic molecular double-layer membranes, and the drug is 

encapsulated or embedded into the liposomes to form the 

liposome drug. Due to the similarity between the structure 

and the biological membrane, the encapsulation of water-

soluble and fat-soluble drugs can reduce the drug dose, 

lower drug toxicity, delay release, lower in vivo elimination 

speed, change in vivo distribution of the drug, and achieve 

targeted release. Due to these advantages, liposome drugs 

have attracted considerable attention, and many studies have 

been carried out on them.185

Plumbagin is a quinonoid isolated from the roots of Plum-

bago zeylanica (bai hua dan in Chinese).186 It has high antip-

roliferative activity against a variety of tumor cell lines,187,188 

and its anticancer properties have also been demonstrated 

in vivo.186 Celecoxib and plumbagin are two antitumor drugs 

that synergistically kill melanoma cells instead of normal 

cells. The combined use of these two agents in traditional 

approaches was not possible, due to their poor bioavail-

ability and toxicity concerns. In order to circumvent these 

challenges, Raghavendra et al182 developed a nanoliposome 

containing celecoxib and plumbagin, named CelePlum 777, 

which has good stability and can release these two drugs 

Figure 2 Chemical structures of the active components in traditional Chinese medicine.
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at optimal proportion to achieve the maximum synergistic 

killing effect. Compared to nanoliposomes containing indi-

vidual drugs, CelePlum 777 can enhance the inhibition of 

melanoma-cell proliferation in vitro and reduce the growth 

of melanoma tumors, with negligible systemic toxicity in 

nude mice. The goal of loading different individual drugs 

into a nanoliposome that releases the drugs at synergizing 

ratios was realized.

Previous studies have shown that Cur can reduce side 

effects caused by cisplatin (cis-diamminedichloroplatinum 

[CDDP]), including ototoxicity,189 nephrotoxicity,190 and 

neurotoxicity.191 In addition, Cur can also overcome resis-

tance to CDDP and improve the sensitivity of hepatocellular 

carcinoma cells to CDDP.192 However, due to poor water-

solubility and the different pharmacokinetics of CDDP 

and Cur,193 the cocktail of both drugs controlling the drug 

proportions and dose regimen at target cancer cells would be 

challenging. Based on a previous approach and advantages of 

the liposome, Cheng et al194 developed a liposomal delivery 

system using a reverse-microemulsion and film-dispersion 

method, which coencapsulated CDDP and Cur and trans-

planted them into hepatocellular carcinoma cells. The anti-

tumor activity of CDDP-Cur liposomes against HepG2 cells 

was higher than that of free drug or encapsulated-monodrug 

therapy, and retention was prolonged (t
½
=2.38 hours). 

Therefore, coloaded liposomes can be used as an effective 

treatment for tumors, with great clinical application potential.

Polymeric nanoparticles
NPs are solid colloid particles 10–100 nm in size formed 

by drug dissolution, encapsulation, or adsorption on macro-

molecular materials. NPs within the particle-size range of 

10–100 nm can hide the physicochemical characteristics of 

the drug, and the in vivo process of the drugs depends on 

the physicochemical characteristics of the carriers.195 NPs are 

characterized by a relatively simple preparation process, a 

significant solubilization effect on active components, signifi-

cantly improved drug targeting to tumors, and proneness to 

surface modification. They can improve drug stability, reduce 

digestive tract stimulation, achieve sustained release or con-

trolled release,196 effectively overcome multiple physiological 

barriers encountered in vivo, and achieve accurate, safe, effi-

cient, and targeted therapeutic effects. Coating the surface 

of NPs with polyethylene glycol (PEG), or “PEGylation”, 

is a commonly used approach to improve the efficiency of 

drug delivery to target cells and tissue. PEGylation is capable 

of achieving prolonged blood circulation of nanocarriers, 

and can improve colloidal stability by providing steric 
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Figure 3 Anti–lung cancer mechanism of TCM-combination therapy.
Abbreviations: Cur, curcumin; Rsv, resveratrol; Tmp, tetramethylpyrazine; Cts, cryptotanshinone; Qct, quercetin; Bbr, berberine; Dhb, dihydroberberine; GA, gambogic 
acid.

κ

Figure 4 Anti–breast cancer mechanism of TCM-combination therapy.
Abbreviations: Cur, curcumin; Rsv, resveratrol; Bbr, berberine; Hcpt, hydroxycamptothecin; Qct, quercetin; GNA, gambogenic acid; BA, baicalein.

κ

κ

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


International Journal of Nanomedicine 2019:14 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

2041

Ma et al

surface hindrance. In addition, it has the ability to improve 

particle dispersion and decrease hemolysis.197,198 Polylactic-

co-glycolic acid (PLGA), a biodegradable polymer, is 

atoxic to final degradation products and has been approved 

by the FDA.181,199 The antitumor effects of codelivered 

PNPs in TCM combinations are shown in Table 3.

Lipid–polymer hybrid nanoparticles
As indicated, it has been demonstrated by the increas-

ing numbers of research reports that biodegradable PNPs 

and liposomes have become the two main types of active 

TCM nanocarriers. Lipid–polymer hybrid NPs (LPNs) are 

nuclear-shell NPs formed by polymer core–lipid/lipid–PEG 

shells206,207 that have the advantages of biodegradable PNPs 

and bionic liposomes.

Li et al208 prepared LPNs and PNPs loaded with cisplatin 

and Cur. Results indicated that LPNs had higher anticancer 

efficacy than PNPs and free drugs. Cytotoxicity was highest 

in vitro and antitumor effect best in vivo. Therefore, LPNs 

can be used as a targeted and synergistic nanodrug codelivery 

system for tumor chemotherapy. In a similar study, Zhu 

et al209 developed vincristine–quercetin (Qct) dual-loaded 

LPNs. The experimental results proved that the LPNs loaded 

with both drugs exhibited better antitumor efficacy in vitro 

and in vivo.

Ruttala et al210 developed nanocarriers loaded with 

Ptx and Cur using a method different from the previously 

mentioned studies. Ptx-loaded albumin NPs were prepared 

and encapsulated in PEGylated hybrid liposomes contain-

ing Cur by a thin-film hydration method. This combination 

guaranteed the release of Ptx and Cur in a sustained and 

sequential manner. Compared with a cocktail combination, 

the dual-drug-loaded nanocarrier had a better cytotoxic effect 

at a lower dose. Therefore, such coloading drug-delivery 

systems can be used as a promising treatment method to 

improve clinical efficacy in various malignant tumors. 

NPs containing genistein and Ptx have also showed similar 

experimental results.211

Nanostructured lipid carriers
Nanostructured lipid carriers (NLCs) are novel lipid NPs 

and mixtures of solid and liquid lipids, which have the 

advantages of excellent drug-loading capacity and sustained-

release properties. Jiang et al212 prepared etoposide (Etp)- and 

Cur-loaded NLCs by the solvent-injection technique. Etp-

Cur NLCs had the highest cytotoxicity in vitro and higher 

accumulation in tumor tissues in vivo compared with other 

preparations, including Etp NLCs, Etp + Cur solution, Etp 

solution, and NLCs. In addition, Etp-Cur NLCs displayed 

low cytotoxicity in normal tissue in vivo, suggesting that 

NLCs could serve as a promising therapeutic strategy in the 

treatment of tumors.

Mesoporous silica nanoparticles
MSNs have attracted much attention due to their potential 

biomedical applications. MSNs possess many attractive fea-

tures for application in the delivery of TCMs, such as the size 

of tuning particles/pores, large surface, large pore volume, 

high loading capacity, mass producibility, biocompatibility, 

and chemical inertia.213,214 TCMs can be dissolved in surfac-

tant micelles, simultaneously hydrolyzed, and concentrated 

with silica to form NPs.

Jia et al215 prepared NPs using the self-assembly in situ 

drug-loading approach, in order to deliver the anticancer 

Figure 5 Passive (A) and active (B) targeting of tumors.
Abbreviation: EPR, enhanced permeability and retention.
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drug Ptx and the MDR-reversal agent tetrandrine (Tet) to 

increase the intracellular concentration of Ptx, enhance its 

antitumor effect, and minimize the exposure of normal cells 

to Ptx and Tet. The study demonstrated that Tet significantly 

increased the accumulation of NPs in cells. Furthermore, Ptx-

Tet–cetyltrimethylammonium bromide MSNs suppressed 

tumor-cell growth more efficiently than the delivery of Ptx 

(Ptx–cetyltrimethylammonium bromide MSNs) or free Ptx 

alone. The prepared NPs released the drugs easily in the 

acidic environment of tumors, and thus, side effects and 

toxicity in normal tissue and organs were reduced. This nano-

carrier may have important potential in clinical applications 

to avoid MDR by codelivering multiple TCMs. Solid self-

nanoemulsifying drug-delivery systems containing tamoxifen 

and Qct have also shown similar experimental results.216

PEGylated lipid bilayer–supported mesoporous silica 
nanoparticles
The anticancer drug axitinib (Axt) is a small-molecule tyro-

sine kinase–receptor inhibitor of VEGFR1, -2, and -3.217,218 

Another anticancer drug, celastrol (Cst), can induce the 

suppression of angiogenesis219 and enhance the antitumor 

activity of standard chemotherapeutic drugs.220 Choi et al221 

loaded Cst into an MSN carrier and subsequently coated it 

with a lipid bilayer containing Axt, denoted by “ACML”, to 

increase the synergistic efficacy of the two agents. The differ-

ence in drug loading resulted in a sequential-release pattern 

where Axt was released first to exert its anticancer effect, 

and then Cst was released to further induce a synergistic 

effect. The experimental results showed that the synergistic 

apoptotic effect of ACML against cancer cells was stronger 

than the Axt-Cst cocktail. Moreover, ACML had a greater 

tumor-inhibitory effect than either drug administered alone 

in a tumor-xenograft mouse model. It has been proved that 

PEGylated lipid bilayer–supported MSNs have the potential 

to be used as an effective therapeutic strategy for malignant 

tumors.

Micellar systems
Self-assembled polymeric micelles have been studied 

widely, due to their excellent role in cancer treatment. 

Polymeric micelles have a core–shell structure, where hydro-

phobic drugs are soluble and remain stable in the hydrophobic 

core of the micelles, and the hydrophilic shell can prolong 

internal circulation and improve spatial stability by reducing 

opsonization during blood circulation. Furthermore, poly-

meric micelles can selectively and effectively accumulate 

in tumor tissues due to the EPR effect, thus enhancing the 

therapeutic effects of the loaded chemotherapeutic drugs. 

As such, codelivery micellar systems have attracted consid-

erable attention.222,223

Doxorubicin (Dox) has extensive antitumor activity 

against various solid tumors, including lung cancers, mela-

noma, neurological cancers, sarcoma, leukemia, lymphoma, 

gastrointestinal cancers, genitourinary cancers, breast can-

cers, and ovarian cancers.14 Due to the rapid elimination 

of drugs in vivo, the cocktail combination of free Dox and 

Cur often fails to provide enough antitumor efficacy or low 

systemic toxicity. Furthermore, the combination of Dox 

and Cur has not been realized clinically. In recent years, a 

few studies have proposed that codelivering Dox and Cur 

may result in less toxicity, good drug-release profiles, and 

improved drug distribution in tumor tissue.224–226 Zhang et al223 

prepared dual-loaded micelles with coencapsulated Dox and 

Cur. The experimental results showed that Dox delivered by 

this method prolonged systemic circulation and increased its 

accumulation in the tumor, resulting in a lower level of the 

toxic metabolite doxorubicinol in heart tissue than free Dox 

alone or the cocktail combination. In addition, Gu et al225 

assembled micelles loaded with Dox and Cur. The micelles 

prolonged the circulation of Dox or Cur when compared with 

the individual administration of either, and exhibited strong 

inhibition of tumor growth and reduced Dox side effects.

Ptx has a broad spectrum of activity against various 

tumors. It has been used clinically for more than two decades. 

However, it is poorly soluble and has considerable limita-

tions in clinical applications. In addition, Ptx extravasation 

of cancer cells caused by Pgp activity is also a main factor 

limiting its clinical efficacy.227,228 Abouzeid et al229 prepared 

micelles loaded with Ptx and Cur using the thin-film hydra-

tion method. Cur–Ptx-loaded micelles released the entrapped 

drugs with a slow pattern, and resulted in a threefold inhi-

bition of tumors in vitro. The combination of Cur and Ptx 

was shown to reverse MDR in a resistant human ovarian 

adenocarcinoma model. Therefore, these combinations of 

micelles have significant advantages in vitro and in vivo over 

individual drug treatment, especially in drug-resistant tumors.

Microemulsions
A microemulsion is a transparent or semitransparent oil–

water system with low viscosity, isotropism, and thermody-

namic stability, and is spontaneously formed by an oil phase, 

water phase, emulsifier, and coemulsifier. As an ideal drug 

carrier, it has the advantages of solubilizing components with 

different solubility properties, good dispersibility, excellent 

absorbability, and increased bioavailability.230
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BA is one of the most commonly used traditional che-

motherapeutic drugs for the treatment of various cancers, 

including HCT116 human colon cancer,31 pancreatic cancer 

stem cells,32 and bladder cancer.33 It is known that BA has 

the ability to inhibit the function of Pgp.231 Meng et al230 

developed nanoemulsions (NEs) coencapsulating Ptx and 

BA using rotary evaporation. The research showed that 

compared with other Ptx preparations, Ptx-BA NEs had 

a better antitumor effect on MCF7/Tax cells. Studies on 

cellular uptake have shown that Ptx-BA NEs accumulate 

effectively in cancer cells. More importantly, Ptx-BA NEs 

have a higher antitumor effect than other Ptx formulations 

used in antitumor in vivo studies. The combined delivery of 

Ptx and BA by NEs may provide a potential combination-

treatment strategy to overcome MDR.

Nanovesicles
Nanovesicles are microvesicles with a quasiliposome dual-

layer structure formed by the self-assembly of synthesized 

or naturally modified amphiphilic polymers and cholesterol 

in hydrophilic media. In contrast to other micromolecular 

vesicles, the polymer vesicle is characterized by good 

molecular designability, high intensity of the vesicle, excel-

lent stability, and strong permeability.232,233 As a TCM carrier, 

it can improve histocompatibility and cell permeability and 

encapsulate hydrophilic drugs or lipophilic drugs.

Alemi et al234 loaded both Cur and Ptx into cationic 

PEGylated niosomal formulations using thin-film hydration 

method to enhance efficacy in MCF7 human breast adenocar-

cinoma cells. The combination of Ptx and Cur, particularly 

in the nanoniosome formulations, improved the effectiveness 

of cancer therapy. The novel cationic PEGylated niosome 

delivery of combined Ptx and Cur is an effective strategy in 

the treatment of breast cancer.

Schematic illustrations of these nanosystems for drugs 

are shown in Figure 6. In addition, graphene oxide,235 carbon 

nanotubes,236,237 nanorods,238 nanosponges,239 solid lipid 

NPs,240 nanometal–organic frameworks,241 metallosupra-

molecular nanogels,242 and microspheres243 all provide new 

opportunities for the antitumor effects of TCM-combination 

therapy.

Despite the EPR effect, most nanosystems fail to find 

their way toward tumor sites.244 Under most circumstances, 

90% or more of the administered nanosystems end up in the 

liver or spleen, increasing adverse systemic reactions and 

causing low therapeutic efficacy.245,246

Active targeted drug-delivery systems
An active targeting preparation is a drug-delivery system 

which can utilize the modified drug carrier as a “missile” 

and deliver the drug selectively to the target area to allow 

the drug to accumulate and exert its efficacy. The mecha-

nism of active targeting is that after surface modification 

with the specific targeted antibody or ligand via covalent 

or noncovalent binding, the nanodelivery system can avoid 

recognition and phagocytosis by macrophages and change 

Figure 6 Schematic illustrations of several nanosystems for drugs.
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natural in vivo distribution, so as to deliver the drug to the 

targeted tumor site and exert its active tumor-targeting 

effects.247 For instance, due to the difference between tumor 

cells and normal cells in terms of receptor expression or other 

biological characteristics, the tumor-targeted drug-delivery 

system has been developed to ensure that the drug acts only 

on tumor cells248 and induces the off-target effect in normal 

tissue, which has become a high-profile topic in studies on 

drug-delivery systems.

Transferrin (Tf)-modified nanocarriers
The Tf receptor is commonly present in normal cells and 

tumor cells. However, expression of the Tf receptor is 

approximately four to five times that on the surface of tumor 

cells than on normal cells.249 Transferrin can bind with the Tf 

receptor and be internalized into the cells under mediation 

by the receptors to reach the targeted site.

Cui et al250 designed Tf-decorated NPs (Tf-PEG Cur–Dox 

NPs) to codeliver Cur and Dox for breast cancer therapy. 

Results showed that the combination of Tf-PEG-Cur and 

Dox NPs exerted higher cytotoxicity in MCF7 cells compared 

with Tf-PEG-Cur NPs alone. Higher accumulation of Tf-PEG 

Cur–Dox NPs was observed in tumors compared to the Cur-

Dox injection. Therefore, Tf-PEG Cur–Dox NPs displayed 

higher efficiency in vitro and in vivo, and resulted in efficient 

tumor-targeted drug delivery, reduced cytotoxicity, and a 

stronger antitumor effect.

Folic acid–modified nanocarriers
Similarly to distribution of the Tf receptor on surfaces of 

tumor-cell membrane, folic acid receptors on tumor cells are 

overexpressed compared with normal cells, and their activity 

is also significantly higher than that on normal cells. In addi-

tion, folic acid is characterized by low immunogenicity, high 

modifiability, and high storability. Utilization of the differ-

ence in folic acid–receptor expression between tumor sites 

and normal tissue can achieve targeted delivery of a folic 

acid–modified drug to cancer cells.251,252

Prodrugs of Ptx and baicalein containing dual-targeted 

ligands of folate and hyaluronic acid have been synthesized. 

NPs loaded with these prodrugs (Ptx–baicalein) have also 

been prepared and the synergistic antitumor effect evaluated 

in vitro and in vivo. The results showed that the Ptx–baicalein 

NP drug-delivery system delivered Ptx–baicalein prodrugs 

to drug-resistant human lung cancer cells, and the delivery 

was proven to be effective. In addition, Ptx–baicalein NPs 

exerted an enhanced synergistic anticancer effect, which also 

overcame MDR to Ptx.253

Low-density lipoprotein–modified nanocarriers
The low-density lipoprotein (LDL) receptor is widely present 

on the surface of various cells and tissue types, but is overex-

pressed in tumor cells. LDL is an endogenous NP with good 

biocompatibility, good biodegradability, and low immuno-

genicity, and can avoid being recognized and cleared by the 

in vivo endogenous reticuloendothelial system.254,255 There-

fore, LDL is an ideal potential ligand for tumor targeting.

A novel nanocarrier containing Ptx-loaded micelles and 

siRNA-loaded LDL has been developed. Results showed 

that the delivery system delivered siRNA and Ptx directly to 

cancer cells, enhancing the intracellular release of drugs and 

genes, increasing intracellular drug concentration, decreasing 

drug efflux, prolonging circulation, and reversing MDR.256,257

Cell-penetrating/tumor-targeting peptide–modified 
nanocarriers
Nanocarriers using cell-penetrating and/or tumor-targeting 

peptides for functionalization are a promising strategy, and 

have attracted the attention of researchers. In our previous 

report, we reviewed the classification of polypeptide- and 

polypeptide-modified nanocarriers in detail.258 In this report, 

recent research progress is summarized in the following 

paragraphs.

Epigallocatechin-3-gallate (EGCG), a major polyphenol 

in green tea, has been widely studied as a potential anticancer 

drug. Narayanan et al259 prepared targeted drug-loaded 

core–shell NPs using anti-EGFR and anti-HER2 antibodies, 

and entrapped a combination of Ptx and EGCG at different 

doses in the core and shell, respectively, using emulsion 

precipitation. Cellular uptake in MDA-MB231 cells was 

higher for targeted NPs than untargeted NPs at 24 hours. 

The sequential release of EGCG followed by Ptx from this 

core–shell nanocarrier sensitized Ptx-resistant MDA-MB231 

cells to Ptx, induced their apoptosis, and inhibited NFκB 

activation. In addition, EGFR-peptide (GE11)-targeted, pH-

sensitive docetaxel Dtx–Cur NPs260 and arginylglycylaspartic 

acid–modified lipid-coated PLGA NPs targeting delivery of 

both sorafenib and Qct261 achieved significant inhibition of 

tumor growth in vitro and in vivo.

In addition, galactosamine can recognize and bind to the 

asialoglycoprotein receptor on the surface of hepatocellular 

carcinoma cells, and a galactosamine-mediated drug-delivery 

carrier was significant for targeted liver cancer therapy.262,263 

Glycyrrhizin, glycyrrhetinic acid, and mannose can serve 

as the guiding group in liver-targeted drug-delivery systems, 

with good potential.264–270 As natural endogenous ligands, bile 

acids have good biocompatibility and are ideal routes for 

targeting hepatocellular cancer.271 In addition, sialic acid,272 
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human Nanog,273 and hyaluronic acid274 are excellent targets 

in cancer therapy. Vapreotide is a somatostatin analogue 

and can be also used as a ligand for targeted drug delivery 

based on its high affinity to somatostatin receptors, which are 

overexpressed in many tumor cells.275 Several studies have 

shown that double-modified nanocarriers have also attracted 

considerable attention in anticancer drug research.276,277 

Dual or multiple targeting also provides a new approach for 

antitumor therapy.

Physicochemical targeted drug-delivery 
systems
Physicochemical targeting refers to the binding of magnetic, 

pH-sensitive, temperature-sensitive, or electromagnetic 

wave–responsive materials onto the surface of drug-delivery 

systems (such as NPs and liposomes) to make them respond 

to various stimuli in vitro and in vivo (such as pH, tempera-

ture, applied magnetic fields, ultrasonic waves, infrared rays, 

and electromagnetic radiation) to ensure that the drug acts 

directly on the target area, increases drug concentration at 

the lesion site, and reduces adverse reactions. Most studies 

have used magnetic NPs, temperature-sensitive NPs, and 

pH-sensitive NPs.

NPs that are pH-sensitive have been designed to promote 

uptake in tumor cells278 and accelerate drug release at tumor 

sites, as the extracellular pH (6.5–7.2) of the tumor is dif-

ferent to that of normal tissue.216 Zhang et al278 developed 

a codelivery system for Dox and Cur using pH-sensitive 

NPs. Enhanced release in the acidic environment of cancer 

cells and enhanced cellular internalization of the cargoes 

delivered from Dox–Cur NPs were observed in SMMC7721 

cells and human umbilical vein endothelial cells compared 

to the free drugs. Therefore, pH-sensitive NPs can provide 

a promising strategy for the effective inhibition of cancer in 

a synergistic manner. Danafar et al279 achieved codelivery 

of Cur and sulforaphane (SF) with PEGylated gold-coated 

Fe
3
O

4
 magnetic NPs as an effective and promising antitumor 

agent. Results showed that SF–Cur coloaded Fe
3
O

4
@Au NPs 

caused a decrease in cell viability and induced apoptosis by 

increasing the Bax:Bcl2 ratio. Moreover, photosensitizer 

NPs,280 thermosensitive NPs,281 and redox-sensitive NPs282 

also provide new opportunities for nanosystems with anti-

tumor TCM combinations.

Conclusion
The significant challenge posed by cancers, as well as adverse 

reactions and drug resistance induced by long-term treatment 

of a single drug, compels us to change our focus from a single 

target to the regulation of networks in vivo. Many complex 

factors cause cancer; therefore, it is rational that treatment 

should involve multiple components, genes, systems, and 

target pathways. The combination of drugs has resulted in a 

new approach to cancer treatment. Rational combinations of 

drugs not only result in synergy but also reduce the occur-

rence of drug resistance and adverse reactions, which has 

resulted in combination therapy, thus becoming a significant 

antitumor treatment in the clinic and in research. As such, this 

significant research direction may allow medical researchers 

to identify a chemotherapeutic combination regimen with 

high efficacy and low toxicity.

The combination of TCMs for clinical therapy has 

increased. TCM combinations can exert improved syner-

gistic antitumor effects by adjusting the multiple signaling 

pathways of tumor cells. Compared with single-drug therapy, 

combinations of TCMs can reduce the toxicity and side 

effects of chemotherapy drugs and increase the antitumor 

effect of drugs. Simultaneously, TCM combinations and 

chemical drugs can improve immunofunction, relieve clinical 

symptoms, improve patient survival and quality of life, and 

improve the efficacy of chemotherapy drugs.

It should be noted that there are usually three approaches 

in targeted nanotechnology-based TCM-combination-

therapy: nanodrugs combined with conventional prepara-

tions, coloading of two or more anticancer drugs in a single 

nanocarrier system (recorded as codelivery), and combined 

administration of different nanosystems. The loading of two 

drugs into a single well-designed nanocarrier synchronizes 

the pharmacokinetic and biological distribution of different 

drugs to achieve a synergistic effect, which has distinct 

advantages. This method has been summarized in detail. 

An increasing number of studies have shown that dual 

nanosystems have distinct advantages in antitumor treat-

ment and can provide drugs for different targets or sites 

of action, as they are administered flexibly using different 

dose/time schedules. Consequently, the remaining two 

methods urgently require further investigation. In addition, 

with further comparative analyses of these three research 

methods, the most suitable form of drug use for cancers 

can be identified to provide basic considerations in terms of 

design principles and management progress.
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