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Introduction: Exome sequencing is recognized as a powerful tool for identifying the genetic 

cause of intellectual disability (ID). It is uncertain, however, whether only the exome of the 

proband should be sequenced or if the sequencing of parental genomes is also required, and the 

resulting increase in diagnostic yield justifies the increase in costs.

Patients and methods: We sequenced the exomes of eight individuals with sporadic syn-

dromic ID and their parents. 

Results and discussion: Likely pathogenic variants were detected in eight candidate genes, 

namely homozygous or compound heterozygous variants in three autosomal genes (ADAMTSL2, 

NALCN,  VPS13B), one in an X-linked gene (MID1), and de novo heterozygous variants in four 

autosomal genes (RYR2, GABBR2, CDK13, DDX3X). Two patients harbored rare variants in 

two or more candidate genes, while in three other patients no candidate was identified. In five 

probands (62%), the detected variants explained their clinical findings. The causative recessive 

variants would have led to diagnosis even without parental exome sequencing, but for the het-

erozygous dominant ones, the exome trio-based approach was fundamental in the identification 

of the de novo likely pathogenic variants.
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Introduction
Intellectual disability (ID) is a complex and heterogeneous clinical condition that affects 

1%–2% of the general population, and can result from genetic or environmental fac-

tors, or a combination of both. However, most severe forms of ID have a single genetic 

basis, ranging from chromosomal alterations to point mutations.1–3

About 700 genes have already been associated with ID;4 however, a clear genetic 

explanation for the phenotype of many patients remains unknown. The implementation 

of whole exome sequencing (WES) in the last decade increased the identification yield 

of new mutations and genes associated with various diseases, and led to the demon-

stration that de novo mutations are a frequent cause of ID.5 WES has also successfully 

identified autosomal recessive6,7 and X-linked8,9 causative mutations in ID cohorts.

In non-familial cases, the situation is complicated by the lack of information on 

the type of inheritance underlying the phenotype. To date, studies of sporadic cases 

that have been performed using WES to elucidate the causes of ID have led to the 

diagnosis of 15%–30% of the patients.10–12

Through the exome sequencing of probands and their unaffected parents (trio 

analysis), this work aimed at identifying variants, which could explain ID in sporadic 
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cases, and evaluating the utility of trio-based exome sequenc-

ing in the identification of pathogenic variants.

Patients and methods
The patients were referred to the Genetic Counseling Service 

of the Department of Genetics and Evolutionary Biology, 

Institute of Biosciences, University of São Paulo. The study 

was approved by the Ethics Committee of the institution. 

Written informed consent was obtained from the parents of 

all patients.

The patients had ID ranging from moderate to severe and 

other associated clinical signs. Table 1 summarizes the main 

clinical findings of the patients in the cohort.

Genomic DNA from peripheral blood samples was 

extracted, according to standard procedures. Fragile-X syn-

drome (AmplideX® FMR1; Asuragen, Austin, TX, USA) and 

genomic imbalances (180K platform; Agilent Technologies, 

Santa Clara, CA, USA, or 850K platform; Illumina, San 

Diego, CA, USA) had previously been excluded in these 

families.

Genomic libraries were constructed using the SureSelect 

XT or SureSelect QXT kit V6 (Agilent SureSelect Whole 

Exome Enrichment kit), according to the manufacturer’s 

instructions, with 100× coverage and 90% of the targets 

covered at 20×; sequencing was performed on the Hiseq 

2500 sequencer from Illumina. The quality of the sequencing 

was verified through the FastQC program (Babraham Insti-

tute). The raw reads were aligned to the reference genome 

(GRCh37/hg19), using the Burrows–Wheeler Aligner,13 and 

pre-processed according to GATK toolkit,14 which involves 

indel realignment, base quality score recalibration, base 

alignment quality scoring, and variant calling. Filtering 

and prioritization were conducted using VarSeq® software 

(Golden Helix, Bozeman, MT, USA) and variant effect 

predictor. After coding, non-synonymous variants fitting the 

models of dominant de novo or recessive homozygote/com-

pound heterozygote/hemizygote were filtered per frequency 

(1%) against the databases: NHLBI ESP6500SI-V2 exomes 

variant frequencies, ClinVar,15 dbSNP138, 1000 Genome 

Project,16 ExAC Browser,17 and ABRAOM.18

After variant filtering, in silico prediction of pathogenicity 

of variants was performed using five prediction algorithms, 

namely SIFT,19 PolyPhen-2,20 Mutation Taster,21 Mutation 

Assessor, and FATHMM.22 The VarElect online tool was used 

to prioritize variants according to the phenotype. The OMIM 

database and scientific literature were used to compare the 

expected phenotypes with the clinical features of the patients.

Potentially pathogenic variants in the proband were 

validated by Sanger sequencing also performed to analyze 

the presence or absence of the same variants in their parents. 

Variants were classified according to the ACMG guideline.23

Results and discussion
We sequenced the exomes (WES) of eight patients with idio-

pathic syndromic ID and their parents (trios). Rare variants 

in eight genes were detected in five patients: a homozygous 

variant in ADAMTSL2; compound heterozygous variants in 

NALCN and VPS13B; a variant in the X-linked gene MID1; 

and four heterozygous de novo variants in the autosomal 

genes RYR2, GABBR2, DDX3X, and CDK13. Table 2 summa-

rizes the WES findings; the variants in bold were considered 

as causative of the clinical phenotypes. The likely pathogenic 

variants found in this study were missense, except for those 

in VPS13B (stop gain), and the clinical impact could only 

be estimated, even with the help of prediction algorithms. 

Figure 1 illustrates the results, showing the de novo variant 

Table 1 Main clinical findings of the patients in the cohort

Patients Sex Age (years) Clinical signs

1 Male 5 Intrauterine growth restriction, premature birth, intellectual disability, autistic behavior, 
cardiac abnormalities (interatrial communication and pulmonary stenosis), cryptorchidism, 
facial dysmorphisms

2 Female 11 Intellectual disability, absent speech, seizures, bilateral congenital cataract, hypotonia of 
upper and lower limbs

3 Female 6 Intellectual disability, hypotonia, high-arched palate, facial dysmorphisms, renal and cardiac 
malformations

4 Male 11 Intellectual disability, absent speech, no ambulation, epileptic encephalopathy
5 Female 5 Intellectual disability, short stature, microcephaly, palpebral ptosis, myopia, decreased visual 

acuity, optic atrophy, neutropenia
6 Female 23 Intellectual disability, absent speech, bilateral hearing loss, facial dysmorphisms, arachnoid 

cyst, bilateral preauricular appendages, polycystic kidney disease
7 Male 17 Intellectual disability, short stature, and myotonia
8 Female 6 Intellectual disability, poor speech, facial dysmorphisms
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detected in GABBR2 and the maternally inherited variant 

in MID1.

As shown in Table 2, Patient 1 had rare variants of uncer-

tain significance (VUS) in three different genes:a missense 

variant in RYR2, a gene associated with dominant arrhythmo-

genic right ventricular dysplasia or ventricular tachycardia, 

neither of the conditions documented in the patient; a homo-

zygous missense variant in ADAMTSL2, whose mutations 

are known to cause recessive Ehlers–Danlos syndrome, not 

compatible with the patient’s phenotype; and a maternally 

inherited missense variant in the MID1 gene, associated with 

Opitz G/BBB syndrome, which could explain the cognitive 

impairment, cardiac defects, and cryptorchidism exhibited 

by the patient. The variant in MID1 was predicted as dam-

aging (SIFT –  http://sift.jcvi.org/) or probably damaging 

(PolyPhen-2 – http://genetics.bwh.harvard.edu/pph2/), but 

the RYR2 variant was also considered probably damaging, 

and diagnosis of Opitz G/BBB syndrome mostly relied on 

the fact that the MID1 variant could explain the phenotype.

Patients 4, 6, and 8 carried de novo variants. The variants 

in GABBR2 and in CDK13 had not been described in the 

searched databases (GnomAD, dbSNP, and ClinVar) and are 

therefore novel, while the variant in DDX3X had already been 

described in ClinVar and classified as probably pathogenic.

Patient 4 harbored VUS in GABBR2. Variants in this gene 

have been described recently, and the associated phenotype 

has not been consolidated in OMIM, but they emerge as 

important contributors for epileptic encephalopathies,24–27 in 

accordance with our patient clinical phenotype.

Patient 6 carried a known pathogenic variant in DDX3X; 

the disorder associated with this gene, x-linked mental retar-

dation, is clinically variable and includes other symptoms in 

addition to cognitive impairment, such as hearing loss, which 

is present in this patient. On the other hand, polycystic kidney 

disease, exhibited by the patient, has not been reported in 

DDX3X mutation carriers. Although mutations in DDX3X 

have only recently been reported, it is estimated that they 

are responsible for 1%–3% of idiopathic ID in females.28

Figure 1 Example of pathogenic mutations identified in the cohort.
Notes: (A) Image of the binary alignment map files showing the forward and reverse reads of a segment of the GABBR2 gene; the mutation from C to T in heterozygosity 
in the proband, not present in his parents, can be seen in dark blue. Underneath, Sanger sequencing validation of the C/T substitution, (B) Image of the BAM files showing 
the forward and reverse reads of a segment of the MID1 gene; the mutated allele, in heterozygosity in the mother and hemizygosity in the proband, is seen in dark blue. 
Underneath, Sanger sequencing validation of the C/T substitution.

A B
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Patient 8, carrier of a likely pathogenic variant in CDK13, 

exhibited ID and dysmorphic features commonly associated 

with CDK13 mutations, including hypertelorism, telecanthus, 

inverse epicanthal folds, broad nasal bridge, and low-set, 

posteriorly rotated ears. She did not present heart defects and 

seizures, which are frequently found among patients carrying 

CDK13 mutations. A recent paper by Hamilton et al shows 

that mutation in CDK13 results in syndromic ID, with or 

without congenital heart disease and seizures.28

In Patient 5, we identified potential pathogenic variants 

in more than one candidate gene. She was a compound 

heterozygote for variants in NALCN, a gene associated with 

recessive syndromic hypotonia and psychomotor retarda-

tion. This would have been considered as the probable cause 

of the phenotype if she was not a compound heterozygote 

for loss of function variants in VPS13B, associated with 

Cohen syndrome. The patient presented many clinical signs 

of Cohen syndrome in addition to ID, including low birth 

weight (2300 g), short stature (<5 centile), microcephaly (<<2 

centile), palpebral ptosis, myopia, decreased visual acuity, 

optic atrophy, and neutropenia, but loss of function of both 

VPS13B alleles would have led to Cohen syndrome diagnosis 

even if phenotypic data were not available. It is disturbing 

to realize that the NALCN variants, which were predicted 

to be damaging/likely damaging by SIFT and PolyPhen-2, 

respectively, would likely be considered responsible for the 

phenotype in the absence of the VPS13B variants. However, 

we cannot exclude the possibility that the NALCN variants 

contribute to the patient’s phenotype.

In the last few years, exome sequencing has become an 

important clinical tool in genetic diagnosis, at least in devel-

oped countries. An issue on the procedure is whether only the 

exome of the proband should be sequenced or sequencing the 

trio (probands plus parents) would be more cost-effective. 

Obviously, the latter approach costs three times more, and 

the magnitude of the increase in diagnostic yield is not clear, 

depending on the criteria of patient referral. Using the trio 

analyses of exome sequencing, we identified the probable 

genetic cause of the clinical phenotype in five out of eight 

patients with sporadic syndromic ID, which resulted in a 

diagnostic rate of 62%. It is important to note that some rare 

variants that were considered as candidate for the phenotypes 

were later excluded with the release of a database of variants 

in the Brazilian Population (http://abraom.ib.usp.br/), being 

relatively common variants among Brazilians.18

In the two patients with the diagnosis of recessive disor-

ders, the causative mutations would have been identified even 

if only the proband exomes had been sequenced. However, in T
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the three patients with dominant disorders, parental exome 

sequencing was instrumental to reach the conclusion that the 

de novo variants were likely pathogenic. A recent publica-

tion from the Deciphering Developmental Disorders Study 

on the exomes of 4,293 families reported damaging de novo 

mutations in 42% of the cohort.29 These results clearly show 

that parental exome sequencing is fundamental for efficient 

diagnosis in isolated cases.
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