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Background: To investigate hypoglycemic activity and elucidate the active composition of the 

fruit blueberry (Vaccinium corymbosum).

Methods: Methanol extracts of blueberry (MEB) were separated using a D101 macroporous 

resin column to yield quinic acid derivative (Fr.1)- and flavonoid (Fr.2)-rich fractions. The 

effects of the blueberry extracts on mRNA expression of GLUT-2 (glucose transporter type 2) 

and PPARγ (peroxisome proliferator-activated receptor-γ), as well as on the activities of PPRE 

(peroxisome proliferator response element) and NF-κB were analyzed in LO2
 
normal liver cells. 

Real-time PCR was used to detect the expression of GLUT-2, PPARγ, TNF-α, IL-1β, and IL-6 

mRNA. The PPRE and NF-κB activities were detected by a luciferase reporter assay. Western 

blotting was used to detect the levels of PPARγ, GLUT-2, and p65. The active compositions 

were isolated using various chromatography columns, and were analyzed by NMR. 

Results: mRNA and protein expression of GLUT-2 and PPARγ were significantly increased 

upon treatment with 400 μg/mL extracts of blueberry (P<0.05). The PPRE activity was also 

significantly increased in a dose-dependent manner upon administration of MEB (P<0.05). Fur-

thermore, the NF-κB activity induced by lipopolysaccharides was inhibited by MEB (P<0.05). No 

fraction separated from MEB exhibited PPRE activation or NF-κB inhibition activity. Blueberry 

extract may execute its hypoglycemic activity by stimulating expression of GLUT-2 and PPARγ, 

and by inhibiting the inflammatory pathway. Together, quinic acid derivatives and flavonoids may 

result in a synergistic effect. Fourteen phenolic acids, including eight flavonoids, four quinic 

acid derivatives, and two other phenolic acids, were isolated and identified, and caffeoylquinic 

acid derivatives and quercetin glycosides were found to be the major constituents of blueberry. 

Conclusion: Blueberry may have hypoglycemic activity that functions through synergistic 

effects with caffeoylquinic acid derivatives and quercetin glycosides.

Keywords: blueberry, hypoglycemic activity, liver cells, caffeoylquinic acid derivatives, fla-

vonoids, synergistic effect

Introduction
Diabetes is a type of endocrine and metabolic disease caused by an absolute deficiency 

(type I) or relative deficiency (type II, insulin resistance) of insulin secretion, which is 

characterized by hyperglycemia, as well as complications, such as chronic impairment 

of the eyes, kidney, heart, blood vessels, and nervous system.1 Currently, diabetes is 

one of the most harmful diseases to human health, and the number of diabetes patients 

in China has reached more than 150 million.2 Patients with type II diabetes account 

for more than 90% of the total number of diabetes patients, and the incidence of dia-

betes is associated with many factors, including changes in dietary patterns, unhealthy 
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lifestyles, reduction of physical activity, increase in mental 

stress, environmental pollution, smoking, lack of public 

awareness and self-awareness, and population aging.3 The 

main target drugs for the treatment of type II diabetes include 

insulin secretagogues (sulfonylureas, glibenclamides), 

insulin sensitizers (thiazolidinediones, biguanides), amylin 

analogs (Planklin), α-glucosidase and amylase inhibitors 

(acarbose), DPP-VI inhibitors, glucagon-like peptide-1 

(GLP-1), sodium-glucose cotransporter-2 (SGLT-2) inhibi-

tors, protein tyrosine phosphatase 1B (PTP-1B) inhibitors, 

and peroxisome proliferator-activated receptor-γ (PPARγ) 

agonists, among others.4–9 Glucose transporter 2 (GLUT-2) is 

a membrane protein that mediates glucose transport. Hepatic 

cell expression of GLUT-2 not only plays an important role 

in glucose metabolism, but also has a close association with 

diabetes or its associated complications. In the diabetic rat 

model, glucose-impaired insulin secretion has been proven 

to be associated with the reduction or inhibition of GLUT-2 

expression by islet b cells, which plays an important role in 

the development of diabetes.10 Recent studies have shown 

that inhibition of CB1R can downregulate GLUT-2 expres-

sion and reduce glucose reabsorption, which may support 

the rationale for clinical testing of peripherally restricted 

CB1R antagonists or the development of novel renal-specific 

GLUT-2 inhibitors against diabetic nephropathy.11 PPARγ 

is a nuclear receptor that is mainly expressed in the large 

intestine, adipose tissue, and liver. PPARγ binds to PPRE 

(peroxisome proliferator response element), which has a 

variety of biological effects and plays an important role in 

adipocyte differentiation, glucose and lipid metabolism, insu-

lin resistance, and the inflammatory response. PPARγ is also 

the effective target of thiazolidinedione (TZD) hypoglycemic 

drugs for the treatment of type II diabetes. PPARγ expression 

is down-regulated in liver tissues in type II diabetic db/db 

mice, and amelioration of hyperlipidemia and hyperglycemia 

are related to the up-regulation of PPARγ expression.12 The 

transcription factor nuclear factor (NF-κB) mediates inflam-

mation and stress signals. Numerous studies have indicated 

that there is a close relationship between NF-κB signaling 

and diabetes. Inhibition of the NF-κB cell signaling pathway 

improves insulin sensitivity in the liver.13 Suppression of the 

NF-κB signaling pathway prevents diabetic liver injury in 

type II diabetic rat models.14

Blueberry belongs to the genus Vaccinium of Ericaceae. 

Vaccinium are perennial shrub fruit trees that originated in 

North America. There are more than 400 species of Vaccinium 

all over the world. Blueberries are mainly grown in the US, 

and are also known as American blueberries. Wild blueberries 

in China are mostly grown on Changbai Mountain, the Da 

Hinggan Mountains, and in the forest area of the Xiao Hing-

gan Mountains, most of which are in the Da Hinggan Moun-

tain region. Previous research has shown that blueberries 

contain abundant nutritional elements, such as anthocyanins, 

organic acids, phenolic acids, superoxide dismutase (SOD), 

pectin, polysaccharides, and pterostilbene, among others.15–18 

Blueberry is one of the five healthy fruits recommended 

by the Food and Agriculture Organization of the United 

Nations (FAO), because dietary consumption of blueberries 

has been demonstrated to be very beneficial to human health 

and provides effective protection against diseases, includ-

ing lowering blood pressure, inhibiting tumorigenesis, and 

potentially preventing neurodegenerative disease.19–21 These 

effects play an important role in the treatment of diseases 

such as diabetes, liver disease, cancer, cardiovascular disease, 

and anemia, among others.22,23 A previous report showed 

that blueberry extract has good hypoglycemic activity. The 

study demonstrated that anthocyanins from blueberry have 

the potency to alleviate symptoms of hyperglycemia using a 

diabetic mice model;24 however, its effective mechanism is not 

clear. To investigate the underlying mechanism of blueberry 

extract in decreasing the blood glucose level, the intent of 

the present research was to investigate the effect of blueberry 

extract on GLUT-2 and PPARγ mRNA expression, as well as 

on PPRE and NF-κB activity in liver cells, and to identify 

the chemical composition of the main active components by 

means of separation using various chromatography columns 

to clarify the hypoglycemic mechanism of blueberry.

Materials and methods 
General experimental procedures
1H and 13C nuclear magnetic resonance (NMR) data were 

recorded on a Varian 500 MHz instrument (Varian Inc., Palo 

Alto, USA) with TMS as the internal standard. Electrospray 

ionization mass spectral (ESI-MS) data were acquired on a 

Q-Star Elite mass spectrometer (Applied Biosystems MDS, 

Waltham, MA, USA). The UV spectra were measured on 

a SHIMADZU UV-2450 UV-visible spectrophotometer 

( Shimadzu Corporation, Kyoto, Japan). High-performance 

liquid chromatography (HPLC) was performed on a Hitachi 

Elite LaChrom system (Elite Lachrom Hitachi, Japan) con-

sisting of a L2130 pump, L-2200 autosampler, and L-2455 

diode array detector, all of which were operated by EZChrom 

Elite software (Scientific Software, Agilent Technologies, 

Santa Clara, USA). All solvents were of either analytical or 

HPLC grade and were purchased from Wilkem Scientific 

(Thermo Fisher Scientific, Shanghai, China). 
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Cell culture
Dulbecco’s modified Eagle’s medium (DMEM) and fetal bovine 

serum (FBS) were purchased from Gibco (Grand Island, NY, 

USA). Human non-tumor hepatic LO2 cells were purchased 

from the Chinese Academy of Sciences (Shanghai, China). 

Cells were maintained in DMEM supplemented with 10% FBS 

and incubated in a humidified incubator at 37°C in 5% CO
2
. 

Extraction and isolation
The fruits of the blueberry species (Vaccinum corymbosum) 

were collected locally from Xinqizhou blueberry farms (Nan-

chang, Jiangxi, China) in June 2015. Fresh fruits (10.0 kg, fresh 

weight) were extracted exhaustively with MeOH (3×20 L) 

at room temperature to yield MeOH extracts. A part of the 

extracts (50 g) was dissolved in distilled deionized  water (250 

mL), filtered, and then loaded onto a D101 macroporous resin 

column (5×60 cm).25 A 5-fold column volume of water was first 

used to wash the polysaccharide and protein materials. Next, 

a 5-fold column volume of 30% ethanol was used to wash the 

quinic acid derivatives (Fr.1), and 70% ethanol was further 

used to wash the flavonoid (Fr.2) constituents.

Fr.1 (15 g) was chromatographed on a C18 MPLC column 

(3.5×40 cm) and eluted with a gradient system of MeOH/

H
2
O (1:9 to 8:2, v/v) to afford five sub-fractions (A

1
–A

5
), 

which were combined based on analytical HPLC analyses. 

Fraction A
2
 was separated using a Sephadex LH-20 column 

(3.5×120 cm), eluted with MeOH, further separated by 

semi-preparative HPLC, and eluted with a gradient system 

of MeOH/H
2
O to yield compounds 9–12. Fraction A

4
 was 

separated by semi-preparative HPLC and eluted with a gra-

dient system of MeOH/H
2
O to yield compounds 13 and 14. 

Fr.2 (11 g) was separated using a Sephadex LH-20 column 

(3.5×120 cm) and eluted with MeOH to afford three sub-

fractions (B
1
–B

3
). Fraction B

2 
was separated by a C18 MPLC 

column (3.5×40 cm) and eluted with a gradient system of 

MeOH/H
2
O (2:8 to 8:2, v/v) to afford five sub-fractions (C

1
–

C
5
), which were combined based on analytical HPLC analyses. 

Sub-fraction C
2
 was separated by semi-preparative HPLC and 

eluted with MeOH/H
2
O to yield compound 6. Sub-fraction 

C
3
 was separated by semi-preparative HPLC and eluted with 

a gradient system of MeOH/H
2
O to yield compounds 1–4. 

Sub-fraction C
4
 was separated by semi-preparative HPLC 

and eluted with a gradient system of MeOH/H
2
O to yield 

compounds 5, 7, and 8.

Luciferase reporter assays
For detecting PPRE activity, LO2 cells were co-transfected 

with p-PPRE-luc and pSV40-β-galactosidase.26 After 6 h, 

the cells were subjected to different fractions of blueberry 

extracts for 24 h and then harvested to measure the luciferase 

activity. For detection of the NF-κB activity, LO2 cells were 

co-transfected with p-NF-κB-luc and pSV40-β-galactosidase. 

After 6 h, the cells were subjected to lipopolysaccharides or 

different fractions of blueberry extracts for 24 h and then 

harvested for measurement of the luciferase activity.

Quantitative real-time RT-PCR analyses 
Total RNA was isolated from hepatocytes using TRIzol 

reagent according to the manufacturer’s instructions 

 (Invitrogen Life Technology, Carlsbad, CA, USA). Total 

RNA was reverse-transcribed to cDNA using ReverTraAce 

(TOYOBO, Tokyo, Japan), as instructed. Quantitative real-

time PCR was performed by standard methods using species-

specific primer pairs (Table 1). The 18S rRNA expression 

levels were amplified and used for the calibration of real-time 

RT-PCR.

Western blotting
LO2 cells were washed in ice cold saline, collected, and lysed 

with a lysis buffer contained protease inhibitors cocktail 

(Roche Diagnostics, Neuilly SurSeine, France). The total 

protein was extracted by NE-PER (Pierce Biotechnology, 

Rockford, IL, USA), and the concentration of protein was 

quantified by bichinconinic acid (BCA) protein assay kit 

(Thermo Fisher Scientific, Waltham, MA, USA) according 

to the protocols of manufacturer. Samples (40 μg proteins 

per lane) were boiled for 100°C for 5 min and loaded on 

8%–12% SDS–polyacrylamide gel electrophoresis (SDS-

PAGE). The separated proteins of each lane representing 

one mouse were transferred to a polyvinylidene difluoride 

(PVDF) membrane (Millipore, MA, USA) and blocked in 

5% nonfat milk solution for 1 h at room temperature with 

gentle shaking. Membranes were incubated with primary 

antibodies for GAPDH, GLUT-2, PPARγ, and NF-κB p65 

(Abcam, MA, USA), diluted in 5% nonfat milk/TBST at 4°C 

overnight. Subsequently, each membrane was washed with 

TBST three times following incubation with horseradish 

peroxidase-conjugated secondary antibodies (rabbits and 

mouse) for 1 h at room temperature. Finally, specific bands 

of the membrane were performed using chemiluminescence 

(ECL) reagents (Millipore) and detected by Fluorescent 

Image Analyzer (FUJIFILM Corp, Tokyo, Japan).

Statistical analyses
All statistical analyses were performed with GraphPad Prism 

software. Values are expressed as the mean±SEM. Pairwise 
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comparisons were performed with Student’s t-test (two-

tailed), and multiple-group comparisons were performed 

with one-way ANOVA with Bonferroni’s post-hoc test. A 

P-value<0.05 was considered to be significant.

Results 
Effects of blueberry extracts on PPRE 
activity
Quinic acid derivatives and flavonoid glycosides were two 

major classes of the chemical constituents of blueberry. 

Methanol extracts of blueberry (MEB) were separated 

using a D101 macroporous resin column. A 5-fold column 

volume of water was used to wash the polysaccharide and 

protein materials. Next, a 5-fold column volume of 30% 

ethanol was used to wash the quinic acid derivatives (Fr.1), 

and 70% ethanol was further used to wash the flavonoids 

(Fr.2). The UV spectra of Fr.1 and Fr.2 were typical of quinic 

acid derivatives and flavonol, respectively. PPRE activity 

in liver cells has been linked to beneficial hypoglycemic 

effects. To determine the potential hypoglycemic activi-

ties of blueberry extracts, the effects of blueberry extracts 

on PPRE activity were determined by luciferase reporter 

assays. Three extracts (MEB, Fr.1, and Fr.2) from blueberry 

were used to treat human non-tumor hepatic LO2 cells. As 

shown in Figure 1A, MEB treatment (200 and 400 μg/mL) 

stimulated PPRE activity by 1.3- and 1.8-fold compared with 

the control. As indicated, there was no significant difference 

in the PPRE activity upon administration of extracts Fr.1 

and Fr.2 of blueberry (Figures 1B and 1C). These results 

indicate that MEB may affect the hypoglycemic activity 

of blueberry through the synergistic effects of quinic acid 

derivatives and flavonols.

Effects of blueberry extracts on NF-κB 
activity
Taking into account the importance of the NF-κB signaling 

pathway in diabetic liver injury and insulin resistance,27 we 

evaluated the effects of blueberry extracts on NF-κB activ-

ity using luciferase reporter assays. In consistent with the 

results of previous reports, LPS (10 ng/mL) activated the 

reporter gene by 6.9-fold compared with the control.28 MEB 

(100, 200, and 400 μg/mL) markedly repressed the NF-κB-

driven luciferase gene by 15%, 27%, and 40% (Figure 2A), 

respectively, compared with the levels in LPS-stimulated 

cells. However, extracts Fr.1 and Fr.2 of blueberry had no 

inhibitory effect on LPS-increased NF-κB activity (Figures 

2B and 2C). To further explore the influence of MEB on 

the major inflammatory signaling pathway of NF-κB, p65 

was then examined by Western blotting (Figure 2D). LPS 

increased protein levels of p65 compared to the control 

cell, while MEB inverted these variations (Figure 2D). 

Moreover, to test whether MEB suppressed downstream 

inflammatory cytokines of the pathway in mRNA, RT-qPCR 

was utilized to detect the expression of TNF-α, IL-1β, and 

IL-6 following LPS treatment (Figure 2E). Interestingly, 

MEB did produce a marked change with a significant 

decrease in these inflammation mediators when compared 

to LPS treated cells. These results confirmed that MEB 

are effective components of blueberry with regards to its 

hypoglycemic activity.

Effects of MEB on the expression of 
GLUT-2 and PPARγ mRNA and protein
To further detect the hypoglycemic activity of MEB, mRNA 

expression of GLUT-2 and PPARγ were measured in LO2 

Table 1 Primers used for quantitative real-time PCR

Gene Primer direction Sequences

GLUT-2 (NM_000340) Forward
Reverse

5′-GGACCTGCAATTTCATTGTAGCT-3′ 
5′-GAACAGGGTAAAGGCCAGGAG-3′

PPARγ (NM_138712) Forward
Reverse

5′-GCACTGGAATTAGATGACAGCG-3′
5′-GTGGTTCAGCTTCAGCTGGAG-3′

TNF-α (NM_000594) Forward
Reverse

5′-ACCTCTCTCTAATCAGCCCTCT-3′
5′-GGGTTTGCTACAACATG GGCTA-3′

IL-1β (NM_000576) Forward
Reverse

5′-GCAATGAGGATGACTTGTTCTTTG-3′
5′-CAGAGGTCCAG GTCCTGGAA-3′

IL-6 (NM_000600) Forward
Reverse

5′-AGCCACTCACCTCTT CAG AAC-3′
5′-ACATGTCTCCTTTCTCAGGGC-3′

18S rRNA (NR_003286) Forward
Reverse

5′-GGTCATAAGCTTGCGTTGATTAAG-3’
5′-CTACGGAAACCTTGTTACGACTTT-3’

Abbreviations: PCR, polymerase chain reaction; GLUT-2, glucose transporter type 2; PPARγ, peroxisome proliferator-activated receptor-γ.
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cells under treatment with MEB. We found that MEB induced 

GLUT-2 and PPARγ mRNA expression. Blueberry extract at 

a dose of 400 μg/mL enhanced GLUT-2 and PPARγ mRNA 

expression by 1.5- and 1.4-fold (Figures 3A and 3B), respec-

tively, compared with the control. The effects of MEB on the 

mRNA expression of GLUT-2 and PPARγ were confirmed by 

the Western blotting results in Figures 3C and 3D.

Chemical compositions analysis of 
blueberry extracts
To elucidate the chemical compositions of the blueberry 

extracts, MEB were first fractionated using a D101 macropo-

rous resin column to yield the Fr.1 and Fr.2 fractions. The two 

fractions were further purified using various chromatographic 

columns, including a Sephadex LH-20, octadecylsilane, and 

Figure 1 Effects of blueberry extract on PPRE activity. (A) Effects of MEB on PPRE activity. (B) Effects of extract Fr.1 of blueberry on PPRE activity. (C) Effects of extract 
Fr.2 of blueberry on PPRE activity. LO 2 cells were co-transfected with p-PPRE-luc and pSV40-β-galactosidase. After 6 h, the cells were subjected to different extracts of 
blueberry for 24 h and then harvested for measurement of the luciferase activity. All of the results are presented as the means±SD of three independent experiments (n=3). 
*p<0.05; ***p<0.001.
Abbreviations: PPRE, peroxisome proliferator response element; MEB, methanol extracts of blueberry; RLU, relative luciferase unit; SD, standard deviation.
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 semi-preparative HPLC, to yield pure compounds. The isolated 

compounds were characterized by 1H-unclear magnetic reso-

nance (1H-NMR), 13C-NMR, and ESI-MS. Fourteen phenolic 

acids, including eight flavonoids, four quinic acid derivatives, 

and two other phenolic acids, were isolated, and their structures 

were identified as isoquercetin (1),29 hyperin (2),29 guajavarin 

(3),29,30 quercitrin (4),29 astragalin (5),31 isomyricitrin (6),32 

helichrysoside (7),33 tiliroside (8),33,34 5-O-caffeoylquinic acid 

(9),31,35 3-O-caffeoylquinic acid (10),35 5-O-caffeoylquinic acid 

methyl ester (11),33 3-O-caffeoylquinic acid methyl ester (12),35 

methyl cinnamate (13),33 and methyl caffeate (14).33

Compounds 1–4 were obtained as yellowish amorphous 

powders. The UV spectrum showed a λ
max

 at approximately 

255 nm (band II) and 355 nm (band I). The 1H-NMR spectrum 

(Table 2) showed two meta proton peaks at approximately 

δ 6.10 (1H, d, J =2.0 Hz) and 6.30 (1H, d, J =2.0 Hz) ppm, 

consistent with the H-6 and H-8 on A-ring of flavonoid, and 

an ABX system at approximately 7.25–7.74 (1H, d, J=2.2 Hz, 

H-2′), 7.20–7.48 (1H, dd, J=2.2 Hz, 8.4 Hz, H-6′), and 6.78 

(1H, d, J=8.4 Hz, H-5′), corresponding to the catechol protons 

on the B-ring. One anomeric proton signal was found at [1: 

δ 5.15(1H, d, J=7.6), 2: δ 5.07(1H, d, J=7.6), 3: δ 5.07(1H, 

d, J=6.6), 4: δ 5.27(1H, d, J=1.1)]. These signals showed that 

compounds 1–4 contained the same aglycone of quercetin. 

Additionally, one methyl signal at δ 0.87(3H, d, J=6.1) of 

compound 4 was found, which can be easily identified as 

quercitrin (4). Through careful comparison of the 13C-NMR 

data of the sugar moiety carbon signals of compounds 1−3 

at [1: 102.8(C-1’’), 74.3(C-2’’), 76.7(C-3’’), 69.8(C-4’’), 

77.0(C-5’’), 61.1(C-6’’). 2: 103.9(C-1’’), 71.7(C-2’’), 73.7(C-

3’’), 68.6(C-4’’), 75.7(C-5’’), 60.5(C-6’’). 3: 102.3(C-1’’), 

71.4(C-2’’), 72.7(C-3’’), 67.7(C-4’’), 65.6(C-5’’)], the com-

pounds were identified as isoquercetin (1), hyperin (2), and 

guajavarin (3), respectively. Compounds 5 and 6 showed 

the same sugar moiety proton signals as those of compound 

1 in the 1H-NMR and 13C-NMR data, although the B-rings 

were different. An AA’BB’ system was found at 7.97 (2H, 

d, J=8.8 Hz, H-2’, 6’) and 6.84 (2H, d, J=7.8 Hz, H-3’, 5’) 

of compound 5 and at 7.30 (2H, s, H-2’, 6’) of compound 6; 

therefore, compounds 5 and 6 were identified as astragalin 

(5) and isomyricitrin (6).

Compound 7 showed the same aglycone as seen in com-

pounds 1–4. The UV spectrum showed λ
max

 values at 259 nm 

(band II) and 314 nm (band I), typical of the UV spectrum 

of the coumaroyl substituent quercetin glycoside.36 1H-NMR 

data confirmed this speculation, showing signals of quercetin 

Figure 3 Effects of MEB on the mRNA expression of GLUT-2 (A), PPARγ (B), and protein expression of GLUT-2, PPARg (C and D). LO2 cells were maintained in DMEM 
supplemented with 10% FBS and incubated in a humidified incubator at 37°C in 5% CO2 for 24 h. Then, the cells were further incubated with MEB (100, 200, and 400 μg/mL) 
for another 24 h. Cells were then collected for quantitative real-time RT-PCR and Western blotting. All of the results are presented as the means±SD of three independent 
experiments (n=3). *p<0.05; **p<0.01; ***p<0.001.
Abbreviations: MEB, methanol extracts of blueberry; GLUT-2; glucose transporter type 2; PPARγ, peroxisome proliferator-activated receptor-γ; DMEM, Dulbecco’s 
Modified Eagle’s Medium; FBS, fetal bovine serum; RT-PCR; real time polymerase chain reaction; SD, standard deviation.
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glycoside signals [δ 7.60 (1H, d, J=2.0 Hz, H-2’), 7.55 (1H, 

dd, J=8.4, 2.0 Hz, H-6’), 6.81 (1H, d, J=8.4 Hz, H-5’), 6.28 

(1H, d, J=2.0 Hz, H-8), 6.11 (1H, d, J=2.0 Hz, H-6), 5.28 

(1H, d, J=7.6 Hz, H-1”), 4.33 (1H, d, J=11.5 Hz, H-6”a), 

4.21 (1H, dd, J=11.5, 6.7 Hz, H-6”b), 3.55–3.40 (3H, H-2”, 

3”, 5”), and 3.32 (1H, t, J=9.6 Hz, H-4”)]. One additional 

coumaroyl signal was detected at δ 7.40 (1H, d, J=15.8 Hz, 

H-7’”), 7.30 (2H, d, J=8.2 Hz, H-2’”, 6’”), 6.78 (2H, d, 

J=8.2 Hz, H-3’”, 5’”), and 6.07 (1H, d, J=15.8 Hz, H-8”’). 

The downfield shift of H-6 (δ 4.33 and 4.21) indicated that 

coumaroyl was linked to C-6 of the sugar. Compound 7 was 

identified as helichrysoside (7), which was further confirmed 

by HR-ESI-MS, m/z 611.1097 [M+H]+ (calcd. for C
30

H
27

O
14

, 

611.1401). Compound 8 showed the same aglycone as that of 

5, and the UV spectrum showed λ
max

 values at 266 nm (band 

II) and 312 nm (band I), which is the typical UV spectrum 

of the coumaroyl substituent kaempferol glycoside.36 Thus, 

compound 8 was identified as tiliroside (8). 1H-NMR (500 

MHz, CD
3
OD) δ 7.98 (2H, dd, J=8.8, 2.0 Hz, H-2’,6’), 6.82 

(2H, d, J=8.8, 2.0 Hz, H-3’,5’), 7.40 (1H, d, J=15.9 Hz, 

H-7’”), 7.31 (2H, d, J=8.2 Hz, H-2’”, 6’”), 6.80 (2H, d, J=8.2 

Hz, H-3’”, 5’”), 6.30 (1H, d, J=2.0 Hz, H-8), 6.12 (1H, d, 

J=2.0 Hz, H-6), 6.00 (1H, d, J=15.9 Hz, H-8”’), 5.24 (1H, 

d, J=7.6 Hz, H-1”), 4.30 (1H, brd, J=11.5 Hz, H-6”a), 4.19 

(1H, dd, J=11.5, 6.7 Hz, H-6”b), 3.40–3.48 (3H, H-2”, 3”, 

5”), 3.31 (1H, m, H-4”). 

Compounds 9−12 showed similar 1H-NMR spectra 

(Table 3) and UV spectra, with λ
max

 values at 327, 298 (shoul-

der), and 242 nm, suggesting that compounds 9−12 were 

caffeoyl-substituted quinic acid derivatives.35 The substituted 

position of caffeoyl was used to identify the oxygenated 

methine protons of the quinic acid core, as detailed in the 

discussion previously.35 Compounds 9 and 10 were identified 

as 5-O-caffeoylquinic acid (9) and 3-O-caffeoylquinic acid 

(10). There was one additional OCH
3 

signal found in the 

spectra of compounds 11 and 12, for which the other proton 

signals were very similar to those of compounds 9 and 10. 

Compounds 11 and 12 were identified as 5-O-caffeoylquinic 

acid methyl ester (11) and 3-O-caffeoylquinic acid methyl 

ester (12). m/z 201.0480 [M+Na]+ (calcd. for C
10

H
10

NaO
3
, 

201.0528). 1H-NMR (500 MHz, CD
3
OD): δ 7.60 (1H, d, 

J=16.1 Hz, H-7), 7.44 (2H, d, J=8.3 Hz, H-2, 6), 6.80 (2H, 

Table 2 1H-NMR (500 MHz, CD3OD) characteristics of flavonol glycosides 1–6 isolated from blueberry extracts

No. H 
proton

1 2 3 4 5 6

dH (J Hz) dH (J Hz) dH (J Hz) dH (J Hz) dH (J Hz) dH (J Hz)

6 6.10 (1H, d, 2.0) 6.10 (1H, d, 2.0) 6.10 (1H, d, 2.0) 6.09 (1H, d, 2.0) 6.10 (1H, d, 2.0) 6.10 (1H, d, 2.1)
8 6.29 (1H, d, 2.0) 6.30 (1H, d, 2.0) 6.29 (1H, d, 2.0) 6.26 (1H, d, 2.0) 6.28 (1H, d, 2.0) 6.27 (1H, d, 2.1)
2′ 7.61 (1H, d, 2.2) 7.74 (1H, d, 2.2) 7.65 (1H, d, 2.1) 7.25 (1H, d, 2.0) 7.97 (1H, d, 8.8) 7.30 (1H, s)

3′ 6.84 (1H, d, 7.8)

5′ 6.76 (1H, d, 8.5) 6.77 (1H, d, 8.5) 6.78 (1H, d, 8.5) 6.82 (1H, d, 8.3) 6.84 (1H, d, 7.8)

6′ 7.48 (1H, dd, 2.2, 8.5) 7.48 (1H, dd, 2.2, 8.5) 7.48 (1H, dd, 2.1, 8.5) 7.20 (1H, dd, 2.0, 8.3) 7.97 (1H, d, 8.8) 7.30 (1H, s)

1′′ 5.15 (1H, d, 7.6) 5.07 (1H, d, 7.6) 5.07 (1H, d, 6.6) 5.27 (1H, d, 1.1) 5.15 (1H, d, 7.6) 5.15 (1H, d, 7.6)
CH3 0.87 (3H, d, 6.1)

Abbreviation: 1H-NMR, 1H-nuclear magnetic resonance.

Table 3 1H-NMR (500 MHz, CD3OD) characteristics of compounds 9–12 from blueberry extracts

No. H 
proton

9 10 11 12

dH (J Hz) dH (J Hz) dH (J Hz) dH (J Hz)

2 1.96–2.17 (2H, m) 1.94–2.14 (2H, m) 1.90–2.12 (2H, m) 1.90–2.13 (2H, m)
3 4.08 (1H, ddd, 1.8,4.9,4.9) 5.23 (1H, brd, 4.1) 4.07 (1H, brs) 5.18 (1H, ddd, 1.8,4.9,4.9)
4 3.65 (1H, dd, 3.1, 8.8) 3.63 (1H, dd, 3.1, 8.5) 4.96 (1H, dd, 3.1, 9.4) 3.63 (1H, dd, 3.1, 7.5)
5 5.25 (1H, ddd, 4.5, 9.4, 9.4) 4.07 (1H, ddd, 3.6, 8.5, 8.5) 5.24 (1H, ddd, 4.5, 9.4, 9.4) 4.05 (1H, ddd, 4.5, 9.0, 9.0)
6 1.96–2.17 (2H, m) 1.94–2.14 (2H, m) 1.90–2.12 (2H, m) 1.90–2.13 (2H, m)
2′ 6.96 (1H, d, 2.1) 6.95 (1H, d, 2.1) 7.09 (1H, d, 1.9) 6.94 (1H, d, 2.0)

5′ 6.68 (1H, d, 8.2) 6.68 (1H, d, 8.2) 6.70 (1H, d, 7.9) 6.68 (1H, d, 8.2)

6′ 6.86 (1H, dd, 2.1, 8.2) 6.86 (1H, dd, 2.1, 8.2) 6.96 (1H, dd, 1.9, 7.9) 6.85 (1H, dd, 2.0, 8.2)

7′ 7.48 (1H, d, 15.9) 7.47 (1H, d, 15.9) 7.52(1H, d, 15.9) 7.42 (1H, d, 15.9)

8′ 6.19 (1H, d, 15.9) 6.18 (1H, d, 15.9) 6.25(1H, d, 15.9) 6.13 (1H, d, 15.9)
OCH3 3.88 (3H, s) 3.80 (3H, s)

Abbreviation: 1H-NMR, 1H-nuclear magnetic resonance.
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d, J=8.3 Hz, H-3, 5), 6.30 (1H, d, J=16.1 Hz, H-8), 3.75 (3H, 

s, OCH
3
). Compound 13 was identified as methyl cinnamate. 

The UV spectrum of compound 14 showed λ
max

 at 325, 

297, 240 nm, (+) HR-ESIMS, m/z 217.0453 [M+Na]+ (calcd 

for C
10

H
10

NaO
4
, 217.0477). 1H-NMR (500 MHz, CD

3
OD): 

δ 7.57 (1H, d, J=15.9 Hz, H-7), 7.04 (1H, d, J=1.8 Hz, H-2), 

6.94 (1H, dd, J=8.2, 1.8 Hz, H-6), 6.79 (1H, d, J=8.2 Hz, H-5), 

6.28 (1H, J=15.9 Hz, H-8), 3.79 (3H, s, OCH
3
). Compound 

14 was identified as methyl caffeate.

Discussion
Most experimental and clinical studies have strongly sug-

gested that blueberry is a source of bioactive compounds 

for the treatment of obesity and type II diabetes.37 However, 

the mechanisms have not been illuminated in detail. A D101 

macroporous resin column was used to separate MEB, and the 

effect of the resulting fractions on PPRE and NF-κB activity 

were detected. Inflammation contributes to the pathogenesis 

of type II diabetes, and anti-inflammation strategies for the 

treatment of this disease simultaneously lower blood glucose 

levels and potentially reduce the severity and prevalence of 

the associated complications.38 Previous research has shown 

that blueberry polyphenol extract effectively inhibits the LPS-

induced inflammatory response and decreases the activity of 

NF-κB,39 lowering proinflammatory mediators, including 

nitric oxide (NO), tumor necrosis factor-alpha (TNF-α), and 

interleukin-1 beta (IL-1β), and down-regulating NO synthase 

(iNOS) and cyclooxygenase 2 (COX2). Inconsistent with the 

results of previous reporting, MEB markedly repressed the 

NF-κB-driven luciferase gene. MEB were separated into two 

groups, quinic acid derivatives (Fr.1) and flavonoid glycosides 

(Fr.2). Interestingly, neither of the separated MEB fractions 

demonstrated inhibitory effects on NF-κB activity. This phe-

nomenon supported the notion that quinic acid derivatives 

and flavonoids result in a synergistic effect in the repression 

of NF-κB activity. Hyperglycemia induces inflammatory 

responses, producing free radicals that can lead to type II 

diabetes.40 Polyphenols exert their protective effects against 

diabetes mellitus by suppressing inflammatory responses.41,42 

It is supposed that the hypoglycemic effects of MEB are 

mediated, at least in part, by the inhibition of NF-κB activ-

ity. Activation of PPARs in the treatment of type II diabetes 

mellitus (T2DM) has proven effective in improving insulin 

sensitivity, hyperglycemia, and lipid metabolism.43 

PPARs are important in controlling the expression 

of genes involved in the regulation of glucose, lipid, and 

cholesterol metabolism; cell growth; and cell differentia-

tion by binding to specific PPREs at the enhancer sites of 

target genes.44 Activation of PPARs contributed to anti- 

inflammatory effects in several cell types, including liver 

cells.12 The anti-inflammatory properties of PPARs are often 

associated with the repression of transcriptional pathways 

involved in inflammatory responses, such as modulation 

of NF-κB signaling. Currently, MEB have been shown to 

stimulate PPRE activity and induce up-regulation of PPARγ 

mRNA expression. This suggested that the repression of 

NF-κB activity by MEB is closely related to the simultane-

ous PPRE activity. This result is further supported by the 

observation that quinic acid derivatives and flavonoids have 

no effect on PPRE activity. However, the existing result could 

not rule out the contribution of PPARα and PPARβ to PPRE 

activity. The potential mechanism of PPRE activity mediation 

by MEB requires further study.

Recently, GLUT-2 has drawn attention as a molecule that 

might be involved in the pathogenesis of diabetes mellitus. 

Improvement of insulin signaling in HepG2 is involved in 

enhancing the GLUT-2 expression.45 GLUT-2 is a glucose 

transporter that is mainly present in the plasma membrane 

of pancreatic β-cells. GLUT-2 has been shown to have 

blood glucose regulation functions through the control of 

insulin secretion,46 and it was reported that GLUT-2 mRNA 

and protein expression were reduced by hyperinsulinemia 

and increased by hyperglycemia in the liver of diabetic rats.47 

Rutin, a flavonoid isolated from Toona sinensis Roem, has 

the ability to enhance insulin-dependent receptor kinase 

(IRK) activity and glucose transporter 4 (GLUT4) transloca-

tion in differentiated myotubes.48 Chlorogenic acid (CGA), 

a common dietary polyphenol with numerous biologically 

activities, reversed the downregulation of GLUT-2 induced by 

a HFD (high-fat diet).49 Consistently, the present study dem-

onstrated that MEB stimulated GLUT-2 mRNA expression 

in liver cells. Polyphenol-rich Chrysanthemum morifolium 

extract (CME) also showed the ability to reverse the decline 

of PPARα/γ and GLUT-2 induced by alloxan. Chemical 

constituents analysis showed that chlorogenic acid, dicaf-

feoylquinic acid, and apigenin were the major polyphenols 

of CME, and those polyphenols might exert a synergic 

hypoglycemic effect via PPARα/γ-mediated mechanisms.50 

Pongamia glabra (PBME) and Ficus glomerata (FBME) 

produced a synergistic hypoglycemic effect with combined 

therapy at low doses. The primary constituents in the two 

plants were flavonoids, furanoflavonoids, sterols, saponins, 

glycosides, glaunol, tannins, and other polyphenol com-

pounds.51 Through inhibition of oxidative stress, polyphenols 

protect against the effects of chronic diseases mediated by 

inflammatory responses.52
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Taken together, blueberry extract may exert hypoglycemic 

properties through the synergistic effects of caffeoylquinic 

acid derivatives and quercetin glycosides, and the hypo-

glycemic effect is involved in an increase of GLUT-2 and 

PPARγ expression and inhibition of the relevant inflammatory 

pathways. Although further efforts are needed to define the 

hypoglycemic mechanisms of blueberry extract in diabetic 

animal model, a diet rich in blueberry extract may be a 

potential chemopreventive tool useful for the management 

of diabetes.
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