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Background: Decision makers in health care increasingly rely on nonrandomized database 

analyses to assess the effectiveness, safety, and value of medical products. Health care data 

scientists use data-adaptive approaches that automatically optimize confounding control to 

study causal treatment effects. This article summarizes relevant experiences and extensions.

Methods: The literature was reviewed on the uses of high-dimensional propensity score (HDPS) 

and related approaches for health care database analyses, including methodological articles 

on their performance and improvement. Articles were grouped into applications, comparative 

performance studies, and statistical simulation experiments.

Results: The HDPS algorithm has been referenced frequently with a variety of clinical applica-

tions and data sources from around the world. The appeal of HDPS for database research rests in 

1) its superior performance in situations of unobserved confounding through proxy adjustment, 

2) its predictable efficiency in extracting confounding information from a given data source, 3) 

its ability to automate estimation of causal treatment effects to the extent achievable in a given 

data source, and 4) its independence of data source and coding system. Extensions of the HDPS 

approach have focused on improving variable selection when exposure is sparse, using free text 

information and time-varying confounding adjustment.

Conclusion: Semiautomated and optimized confounding adjustment in health care database 

analyses has proven successful across a wide range of settings. Machine-learning extensions 

further automate its use in estimating causal treatment effects across a range of data scenarios.

Keywords: high-dimensional data, confounding (epidemiology), health care databases, real-

world data, confounding adjustment, propensity scores, automation, causal conclusions, artificial 

intelligence, machine learning

Introduction
Longitudinal health care databases are readily available and the most frequently used 

data source for studying the effectiveness of medical products in clinical care.1–3 

Along with randomized controlled trials (RCTs), regulatory agencies are increasingly 

integrating such database analyses into their decision making for drug approval and 

monitoring of unintended harm. Much has been done to improve our understanding 

of nonrandomized study designs in health care databases.4,5 They have led to a number 

of studies that influenced how care is provided, including successful reproductions of 

RCTs,6,7 successfully predicted findings from follow-on RCTs,8,9 and changes in clini-

cal practice where experimental studies were not feasible.10,11 However, similar to the 

limited reproducibility of RCTs,12 there are also many examples of misleading results 

from database studies in leading medical journals.13–15 The lack of randomization and 
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poorly designed studies have led decision makers to negative 

generalizations about the entire field of health care database 

research rather than a differentiated view of what is action-

able evidence and what is not.16

Confounding that results from treatment selection based 

on outcome risk is well known to cause bias17–19 and is 

generally most pronounced when studying intended treat-

ment effects, comparing active treatment against untreated 

subjects20 or comparing two different treatment modali-

ties.21 Researchers recognized that the paucity of precision-

measured confounder information in health care databases 

could be counteracted by utilizing those databases’ high-

dimensional covariate space. High-dimensional propensity 

score (HDPS) approaches were the first to utilize such data 

for improved confounding adjustment and quickly gained 

popularity.22,23 Their appeal stems equally from the ability 

to maximize confounding control with the available infor-

mation from a given data source and the scalability through 

automated and optimized confounding adjustment that is 

data source independent.

This article reviews the current uses of HDPS, its perfor-

mance across a variety of applications and data sources, its 

performance in simulation studies, and its current extensions 

using machine-learning techniques and other statistical learn-

ing strategies. The article is focused on analyses of health 

care databases and aims to provide specific and actionable 

advice, while drawing on generalized automated approaches 

to causal inference.

Working with longitudinal health 
care data to study treatment effects
Health care databases are derived from transactional data-

bases that collect clinical and administrative information for 

the purpose of delivering and administering health care.24 

As encounters occur and services are provided, records are 

generated and added to an ever-growing database.3 Each 

addition comes with a service date stamp and is connected 

to the patient via a unique patient ID number, generating lon-

gitudinal patient records of increasing duration (Figure 1A). 

Individual entries may be delayed because bills are submitted 

Dynamic database that
records an ongoing stream
of new health care records in
calendar time for all enrolled
patients:

Stabilized data snapshot
for replicability*

January 1, 2014 January 1, 2015

January 1, 2015 January 1, 2016

January 1, 2016 January 1, 2017

To
da

y

Individual-patient data have
arrived in batches and
from various sources

Hospital stay

May 1, 2016 July 1

COV Follow-up window

WE,O

September 1 November 1 January 1

Dx Rx Rx Rx DxVLab

Study rules are applied and
arranged by event time

Cohort entry date

Health care records are entered as
they arrive, sorted by service date
(some records arrive with admin delays).

Figure 1 From transactional data to study implementation.
Notes: *Stabilization of dynamic data streams is critical if replicability of findings is important. In prospective monitoring systems with repeat analyses, one may want to 
stabilize data every time the source data are refreshed and analyzed.
Abbreviation: COV, covariate assessment window.

www.dovepress.com
www.dovepress.com
www.dovepress.com


Clinical Epidemiology 2018:10 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

773

Automated data-adaptive analytics for big health care data

late or due to administrative lag time, and retroactive changes 

may be made to correct a false entry related to services 

provided months in the past. There is substantial literature 

on the details of data integration, data cleaning, and data 

normalization, which will not be reviewed here.25–27 As a 

first step to implement a study, one identifies and sets aside 

a section of the dynamic data stream that will cover the cal-

endar time window of interest (Figure 1B). This stabilizes 

the data, a prerequisite for making results from a study of 

causal relationships replicable at a later point. In a prospective 

monitoring system, users may choose to freeze a data cut, 

including the most recent data, every time the data refresh. 

We now have an enumerable set of longitudinal patient 

records, each with a start date and an end date in calendar 

time. Encounters and services are recorded with diagnostic 

and procedural information on each patient’s individual 

time line (Figure 1C). The rules and algorithms that define a 

specific study design implementation will be applied to each 

patient’s longitudinal data stream (Figure 1D).

In contrast to primary data collection, many measure-

ments in health care databases (eg, patient baseline charac-

teristics) are measured by reviewing information recorded 

during multiple health care encounters over a period of time. 

In primary data collection, a study subject’s health state is 

usually established when the patient is thoroughly inter-

viewed or examined at a study visit. In health care databases, 

there is no defined interview date with the investigator 

team; studies rely instead on routine visits, and other health 

care encounters to collect information recorded during the 

provision of care. Several key concepts in epidemiological 

study designs that are assigned to specific points in time, eg, 

baseline patient characteristics before the start of exposure, 

are recorded over a period of time and reflect any encounters 

that occurred during that time window. In this article, we 

define a covariate assessment period (CAP) that starts at a 

defined number of days prior to cohort entry and ends at the 

beginning of exposure (Figure 2).28

Principles of high-dimensional proxy 
adjustment
The high-dimensional covariate space of 
longitudinal health care data
Any patient information recorded during the CAP can be 

considered to identify confounding factors. Since the opti-

mal measurement of these factors is not in the investigator’s 

control, a key approach to reduce residual confounding from 

unobserved factors is to measure proxies of the underlying 

confounders (Figure 3). To the extent such proxy measure-

ments are correlated with the underlying confounders, the 

unobserved confounders are measured and then adjusted.29,30 

Examples of well-measured proxies are the use of oxygen 

An interval during which patient covariates are
assessed. The COV should precede the FUW
in order to avoid adjusting for causal 
intermediates. It is sometimes called
baseline period

COVariate 
assessment
window

Exposure:
New drug

first fill

CED

ED

COV

COV

FUW

FUW

WE,O

W
E

W
o

Follow-up
window

Event date

Washout window
for exposure

Washout window
for outcome

The interval during which occurrence
of the outcome of interest in the
study population will be included in
the analysis

The date of an event occurrence

An interval used to define incident exposure. If
there is no record of exposure (and/or
comparator) of interest within this interval, the
next exposure is considered “new” initiation
An interval used to define incident outocmes. If
there is no record of outcomes within this
interval, the next outcome is considered incident

Figure 2 Implementing causal analyses in longitudinal databases: a new-user cohort study.
Notes: CED is on the day of initiation of the study exposure or comparison. The COV includes the date of the first fill in this example. Example: ACE inhibitors vs ARB 
and risk of severe angioedema. Data from Toh et al.116

Abbreviations: CED, cohort entry date.
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canisters (correlated with frail health) and the regular use 

of preventative services (correlated with health-seeking 

behavior) (Figure 3).

Proxies can be efficiently generated by turning codes that 

were recorded during the CAP into variables. In order to keep 

information of varying quality and interpretation separate, 

one wishes to define data dimensions of fairly homogeneous 

interpretation, such as diagnoses vs procedures and inpatient 

diagnoses vs outpatient diagnoses (Figure 4). For each such 

generated variable, additional attributes can be assigned, 

including how frequently the code is recorded within a CAP 

and the time elapsed between the code and the initiation of 

the exposure.31 Specific settings may require adding specific 

data dimensions, eg, staging and biomarker information in 

oncology or functional status measurements in musculo-

skeletal diseases. Together, this results in high-dimensional 

covariate spaces with several thousand covariates, some of 

which are confounders.

The HDPS algorithm
The principles of high-dimensional covariate adjustment in 

database research can be divided into the following three 

steps: 1) automated covariate identification, 2) automated 

covariate prioritization, and 3) causal treatment effect esti-

mation using propensity score (PS) analyses (Figure 5).22,32

Automated covariate identification
Health care databases can be divided into data dimensions, 

each containing a distinct subset of information of varying 

quality and often with specific coding systems, eg, inpatient 

diagnoses (5-digit International Classification of Disease 

[ICD] codes), outpatient procedures (5-digit Current Proce-

dure Terminology [CPT] codes), and outpatient pharmacy 

drug dispensing (generic drug name). The HDPS algorithm 

considers distinct codes in each dimension without needing 

to understand their medical meaning and creates binary 

variables indicating the presence of each code/factor dur-

ing a defined pre-exposure CAP.22 The basic HDPS version 

considered only the 200 most prevalent codes in each data 

dimension and for each code created three binary variables, 

indicating at least one occurrence of the code, sporadic 

occurrences, and many occurrences during the CAP;22 any 

of these parameters may be varied, and in fact, it has been 

argued that the prevalence filter may not be necessary.33 All 

A = exposure; eg, start of a new drug
U

C

A

Y = outcome of interest

C = observable confounder (serves as proxy)

U = unobserved confounder

Y (Outcome)

Unobserved confounder

Very frail health

Sick but not critical

Health-seeking behavior

Fairly healthy senior

Chronically sick

Outcome surveillance
intensity

Observable proxy measurement

Code for hypertension during a hospital stay

Regular check-up visit; regular screening examinations

Receiving the first lipid-lowering medication at age 70 years

Regular visits with specialist, hospitalization; many
prescription drugs

General markers for health care utilization intensity

Use of oxygen canister

Coding examples

ICD-9, ICD-10

CPT-4

ICD-9, CPT-4, #PCP
visits

NDC, ATC, Read

#specialist visits,
NDC, ATC

#visits, #different
drugs

Figure 3 Proxy measures of unobserved confounders as the principal reason for high-dimensional covariate adjustment.
Abbreviations: ATC, Anatomical Therapeutic Classification; CPT, Current Procedure Terminology; ICD, International Classification of Disease; NDC, National Drug 
Code; PCP, primary care physician.
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Figure 4 Data characteristics containing covariate information in longitudinal health care databases.
Notes: *Coding example: ICD. **Coding example: CPT. ***Coding examples: NDC and ATC. ****Coding example: LOINC.
Abbreviations: ATC, Anatomical Therapeutic Classification; CPT, Current Procedure Terminology; ICD, International Classification of Disease; LOINC, Logical 
Observation Identifiers Names and Codes; NDC, National Drug Code.
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Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Clinical Epidemiology 2018:10submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

776

Schneeweiss

variables automatically created from health care databases are 

called “empirical” variables. With, say, five data dimensions, 

including inpatient diagnoses, inpatient procedures, outpa-

tient diagnoses, outpatient procedures, pharmacy dispensing, 

and the HDPS, this would create up to 200×3×5=3000 binary 

variables. There can be more data dimensions, including labo-

ratory test results, biomarker status, and free text, and more 

variables in each dimension, leading to substantially larger 

numbers of candidate variables. The variable-generating algo-

rithm is agnostic to the medical meaning of each code and, 

therefore, can be applied to any structured or unstructured 

data source and coding systems.

Automated covariate prioritization
The key to successful confounding adjustment with propensity 

scores is to control for all risk factors of the outcome even if 

they are seemingly unrelated to treatment choice.34–36 The HDPS 

algorithm reduces a large number of candidate covariates by 

prioritizing covariates for inclusion in a propensity score (PS) 

proportional to their association (relative risk [RR]) with the 

study outcome (RR
CD

) and exposure (RR
CE

). Epidemiology 

theory is quite clear on the fact that propensity score models 

should include all baseline predictors of the health outcome 

of interest even if they are only weakly or not at all associated 

with the exposure.34–37 A propensity score model including all 

3000 variables from the above example without any selection 

may not be estimable with standard logistic regression and may 

lead to inefficiencies due to collinearity and bias amplification 

by including instrumental variables.36 Therefore, a heuristic 

technique determines which of the variables are likely the most 

important to include in the propensity score model. A simple yet 

effective covariate prioritization ranking, “bias ranking”, is well 

established. It selects the variables with the greatest potential to 

adjust for confounding using a formula by Bross that depends 

on the observed associations between covariates and outcome 

(RR
CD

) and covariate and exposure (RR
CE

).22,38 The base-case 

assessed these associations in a bivariate way without further 

adjustment and selects the 500 top-ranked variables. Many 

other covariate prioritization strategies are available including 

those not considering the study endpoint.39 After covariates have 

been prioritized and entered into a propensity score model using 

logistic regression, it is strongly recommended to also include 

patient attributes such as age, sex, and race and health service 

utilization variables such as number of visits and number of 

drug prescriptions filled.39,40

Causal treatment effect estimation
Steps 1 and 2 yield long lists of prioritized covariates, 

which can now be used to minimize confounding through 

statistical analyses. Parametric and regularized outcome 

regressions have been recognized to have inadequate con-

founding adjustment when covariates are abundant and 

outcomes are rare.41,42 However, propensity scores have the 

useful ability to reduce a large number of covariates into 

a single score and perform well in such settings.34,43 PS 

matching is popular in most settings because of its analytic 

transparency and excellent performance;44 PS (fine) stratifi-

cation is recommended when outcomes are very rare;45 and 

PS weighting is preferred when dealing with time-varying 

confounding.46–48 Alternatively, causal analyses have been 

conducted with disease risk scoring by regressing covariates 

on the study outcomes and using the resulting predicted 

probability of the outcome for adjustment.49 The concept 

has been expanded to use large numbers of automatically 

generated covariates resulting in a high-dimensional disease 

risk score (HDDRS) but showed less promising results than 

the HDPS approach.50,51

Key advantages of data-adaptive approaches to confound-

ing adjustment in health care databases are therefore their 

data source independence, data-optimized covariate selection, 

and principled causal analyses using PS approaches.

Practical experiences with HDPS 
in a variety of settings and data 
sources
This section provides a nonsystematic sample of published 

applications of HDPS in a variety of settings. Figure 6 illus-

trates the empirically observed effect of increasing confound-

ing adjustment including HDPS on the estimated treatment 

effect in published studies, some of which will be described 

in more detail below. The number of covariates adjusted 

increase from left to right, and the log effect estimate is plot-

ted on the y-axis centered around a null effect (log[RR] =0). 

Each colored line represents the change in effect estimate 

for a specific study as the number of adjusted covariates is 

increased. For readability, we separately present examples 

with decreasing (Figure  6A) and increasing (Figure 6B) 

trends in effect estimates.

Several consistent observations can be made.

1.	 In Area A, while moving from an unadjusted estimate (at 

the very left) to an age, sex, year, race-adjusted estimate, 

and finally a model adjusted for all investigator-identified 

confounders, the changes in effect estimates follow 

a monotonically increasing or decreasing trend with 

increasing covariate adjustment. While this is not proof, 

it is strongly suggestive of increasing improvement in 

confounding adjustment. Note further that some of the 
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lines cross the null, refuting concerns that we are simply 

observing a bias toward the null.

2.	 In Area B, the HDPS algorithm is added to the inves-

tigator-specified fully adjusted model. In all example 

studies, the point estimate is changing further in the 

monotonically increasing/decreasing trend. This is 

strongly suggestive of further confounding adjustment 

of the effect estimates applying the same logic as earlier.

3.	 In Area C, the HDPS algorithm is applied alone without 

the investigator-specified confounding adjustment. HDPS 

includes patient attributes such as age, sex, and race by 

default (Figure 5). It is noteworthy that applying the 

Figure 6 Empirical performance of HDPS in selected health care database studies across a variety of settings.
Notes: (A) Examples with declining trends in effect estimates (1),22 (2),54 (3),55 (4),56 (5),57 and (6,7).117 (B) Examples with increasing trends in effect estimates (8),22 (9),118 
(10),119 (11),59 and (12).120 The number of covariates adjusted increases from left to right, and the log effect estimate is plotted on the y-axis centered around a null effect 
(log[RR] =0). Each colored graph represents the change in effect estimate for a specific study as the number of adjusted covariates (covars) increases.
Abbreviations: ASYR, age, sex, year, race; covars, investigator-specified covariates; HDPS, high-dimensional propensity score; EHR, electronic health records; Coxib, 
cyclooxygenose-2 selective inhibitors; CPRD, Chemical Practise Research Datalink; MI myocardial infarction; FDA, US Food and Drug Administration; TCA, tricyclic 
antidepressants.
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HDPS algorithm alone produced the same effect estimate 

as the investigator-specified adjustment plus the HDPS 

algorithm. This strongly suggests that even without the 

investigator-specifying covariates for adjustment, the 

algorithm alone optimizes confounding adjustment. 

In fact, it seems that in these examples, the algorithm 

performed slightly better than the investigator-derived 

estimates, as the monotonic trend in change  of effect 

estimates continues from Area A to Area C.

Selected applications with structured 
health care data: medical product 
effectiveness
Five effectiveness studies were published on the lower gastro-

intestinal (GI) toxicity of cox-2-selective inhibition (coxibs) 

compared with nonselective non-steroidal anti inflammatory 

drugs (NSAIDs), all of which used HDPS. RCTs point to a 

relative risk reduction of between 10 and 25%.52,53 Confound-

ing arises because coxibs were heavily marketed for their 

GI-protective effects as compared to nonselective NSAIDs 

leading to their preferred use in patients of high risk for GI 

toxicity including upper gastric bleed (UGB). Some subtler 

GI risk factors are difficult to observe in many data sources, 

which raises concerns of unobserved confounding and 

makes this a useful testing scenario for HDPS. These studies 

used various data sources within and outside the USA. Our 

examples focus on point estimates.

•	 Garbe et al54 worked with German claims data. They 

found estimates with increasing adjustment from 1.21 

(unadjusted), 1.00 (plus age, sex, year), and 0.84 (plus 

investigator-identified). An HDPS-only model yielded 

0.67, the most plausible estimate.

•	 Le et al55 worked with US commercial claims data. They 

found estimates with increasing adjustment from 1.05 

(unadjusted), 0.98 (plus age, sex), 0.95 (plus investigator-

identified), and 0.94 (plus HDPS). The HDPS-only model 

produced 0.92, the most plausible estimate among those 

computed. However, the observed effect is still removed 

from the expected effect size observed in RCTs suggest-

ing that the data may not have been sufficiently rich to 

minimize confounding.

•	 Schneeweiss et al22 used US Medicare claims data. They 

found estimates with increasing adjustment from 1.09 

(unadjusted), 1.01 (plus age, sex, year, race), 0.94 (plus 

investigator-identified), and 0.88 (plus HDPS). An HDPS-

only model yielded 0.87, similar to the combined clinical 

and HDPS estimate.

•	 Hallas and Pottegard worked with Danish registry data.56 

They found estimates with increasing adjustment from 

1.76 (unadjusted), 1.12 (plus age, sex), 0.99 (plus investi-

gator-identified), and 0.88 (plus HDPS). The HDPS-only 

model yielded 0.96. This study did not adjust for health 

care utilization markers such as the numbers of visits, 

which could have improved the estimation.

•	 Toh et al57 used UK electronic health records from pri-

mary care physicians. They found estimates with increas-

ing adjustment from 1.50 (unadjusted), 0.98 (plus age, 

sex, year), 0.81 (plus investigator-identified), and 0.78 

(plus HDPS). An HDPS-only model resulted in 0.81, 

similar to the investigator-identified estimate. Interest-

ingly, the investigator also included a model that included 

age, sex, year, and health services utilization (number of 

visits and number of drugs), which on its own changed the 

RR to 0.84 without including any investigator-identified 

covariates, demonstrating the importance of adjusting 

markers of health service utilization intensity.

These studies have in common that HDPS – in all situations 

and across different data sources – either improved the effect 

estimation by further extending the observed trend in estimate 

change or at least is on par with the investigator-specified 

adjustment model (Figure 6A). This illustrates the versatility 

of HDPS, independent of the data source or coding system.58 

These studies further underscore the value of routinely combin-

ing HDPS not only with obvious patient attributes (age, sex, 

race, and so on) but also markers of health services’ utilization 

intensity as a general marker of disease severity but also a 

proxy for medical surveillance and data completeness.

The Sentinel Program of the US food and Drug Adminis-

tration routinely uses HDPS adjustment in its preprogrammed 

PS analysis ARIA module.59 In a recent validation of this 

program, Sentinel Investigators attempted to reproduce the 

52% risk increase (RR =1.52; 1.21–1.92) in hypoglycemic 

events among users of the oral antidiabetic drugs glyburide 

versus glipizide as observed in randomized trials.60 They 

observed a 26% risk increase in an unadjusted analysis 

(1.16–1.38). Adjustment for investigator-specified covari-

ates increased the relative risk to 1.41 (1.27–1.56), which 

came slightly closer to the RCT finding when HDPS was 

added (1.49; 1.34–1.65). The same finding was reached when 

HDPS was used alone as an automated procedure (1.50; 

1.36–1.66). Zhou et al59 also report that HDPS identified 

pregnancy and gestational diabetes as important treatment 

predictors and potential confounders. These covariates were 

not specified by a highly experienced team of investiga-

tors, highlighting the value of data-adaptive approaches to 
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optimize confounding adjustment without omitting empiri-

cally identifiable confounders. Such unintentional omissions 

are likely not infrequent and may be even more prevalent 

among less-experienced research teams.

Selected applications with structured 
health care data: health services research
Enders et al61 investigated the quality of care in outpatient 

versus in-hospital percutaneous coronary interventions (PCI) 

regarding the risk of death using German commercial claims 

data. Confounding arose in this study, as healthier patients 

would be selected for outpatient PCI and higher risk patients 

would receive PCI in a hospital. An investigator-specified PS 

model including 39 covariates showed a 50% lower rate of 

death among patients undergoing outpatient PCI. The HDPS 

algorithm limited to 1000 covariates qualitatively changed the 

effect to a 20% increase in the risk of death when receiving 

PCI in an outpatient setting. This is an impressive illustra-

tion of massive residual confounding and HDPS’s ability to 

overcome it.

Using US Medicare claims data, Polinski et al62 investi-

gated whether the coverage gap in Medicare Part D medica-

tion insurance plans would lead to adverse health effects in 

elderly patients. After patients had spent a certain amount 

on prescription drugs they reached the coverage gap, during 

which they were responsible for 100% of payment. Con-

founding arose in this study, as patients with poor health or 

low economic status were eligible for insurance subsidies 

and experienced no or a much reduced coverage gap. The 

same patients may also be a higher risk for poor health out-

comes. Polinski contrasted confounding adjustment via 34 

investigator-selected variables in a PS model versus an HDPS 

algorithm limited to 400 covariates. The effect of the coverage 

gap on the occurrence of heart failure hospitalization changed 

from a spurious 24% reduction in an unadjusted analysis to 

a null effect after adjustment. Both the investigator-specified 

and the automated HDPS adjustment provided similar results.

Selected applications with unstructured 
health care data
Using free text information for improved confounding con-

trol is promising in principle, because it supplements claims 

type information with more subtle considerations of disease 

and treatment that are not captured in highly structured data 

fields. Today, the analysis of free text information involves 

natural language processing (NLP) to characterize medical 

constructs. NLP requires the establishment of a gold stan-

dard, often via medical records’ review by medical experts, 

against which machine-learning algorithms can develop 

prediction rules. Such supervised learning is expensive and 

time consuming and therefore not meaningfully scalable for 

confounding adjustment.

HDPS is well suited to automate covariate adjustment of 

free text information. Rassen et al63 separated free text infor-

mation into individual word stems and clustered them into 

phrases of 1, 2, or 3 consecutive word stems (N-grams). The 

N-grams served as binary markers (N-gram present or not) 

that were considered by the HDPS algorithm. Out of thousands 

of N-grams, the top 500 were selected by HDPS and used for 

covariate adjustment. An unadjusted effect estimate of the 

incidence of cardiovascular (CV) outcomes comparing high-

intensity statin therapy vs low-intensity statin therapy in patients 

with hyperlipidemia showed a spurious doubling in risk (RR 

=2.19; 1.71–2.80), which was reduced to 1.21 by adjusting for 

investigator-specified variables, and was further reduced to 0.96 

with the automated N-gram approach (Figure 7).63

This content-agnostic and therefore eminently scalable 

approach to adjusting for free-text information serves as a 

proof of concept to be followed by more in-depth investiga-

tions. NLP or mapping free text to established ontologies such 

as SNOMED and sentiment analysis become unnecessary 

intermediate steps with unclear benefits.

Selected applications with adjustment for 
time-varying confounding
A natural application of HDPS is in the setting of time-vary-

ing exposures with time-varying confounding via marginal 

structural models.64 Since propensity score estimation and 

weighting, eg, matching weighting and inverse probability of 

treatment weighting,47 are central to studies of time-varying 

exposures, conventional PS estimation is simply replaced by 

HDPS in hopes of better predicting treatment choice.

A cohort study of adults with type-2 diabetes mellitus 

(T2DM) was conducted to evaluate the impact of progressively 

more aggressive glucose-lowering strategies.65 To account for 

time-dependent confounding and informative selection bias, a 

marginal structural model66 was fitted using PS weighting for 

the purpose of contrasting cumulative risks under four treat-

ment escalation strategies at Hb
A1c

 levels 7, 7.5, 8, or 8.5%.65

While the HDPS algorithm fit into the marginal structural 

model design, it did not show substantial improvement in 

the specific study setup. This is because the variable space 

allowed for HDPS was limited to the investigator-identified 

covariates, which did not allow HDPS to automatically 

identify relevant covariates that an investigator might not 

have considered.65
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The opportunities of data-adaptive methods are sum-

marized in Box 1.

Simulation studies of HDPS 
performance in health care 
database analyses
Several simulation studies sought to examine HDPS’ ability 

to better adjust for unobserved confounding via proxy-adjust-

ment. Since fully synthetic simulation studies fail to mimic 

the complexity of highly interrelated longitudinal health care 

databases, which is the primary motivator for successful 

proxy adjustment, plasmode simulation was developed.67 

Based on an empirical health care dataset, a patient cohort 

with the exposures of interest is identified and an outcome 

function with known effect size and randomness is introduced 

to the cohort.67 This approach preserves the complexity of 

the data structure and information content while inserting a 

known causal effect.

Rassen et al39 studied how well HDPS performs when 

study sizes are smaller and fewer or no outcomes have been 

observed, which may apply to settings of prospective stud-

ies of newly marketed medical products. This showed that 

the effect estimation using HDPS-decile adjustment was 

becoming increasingly volatile when very few patients were 

exposed (see section on sparse data). In such situations the 

0.74

2.19

2.05

1.40

1.14

1.00

0.92

1.10

1.08

1.10

1.05

1.15

1.16

1.08

1.16

1.15

0.74

0.73

0.73

0.73

0.74

0.73

0.73

0.73

0.73

0.73

0.72

0.72

0.60 0.80
C-statistic RR Adjusted by propensity

score deciles

1.00 1.00 2.00

Model
Words in 
N-gram Stemmed

Stemmed1

1

1

2

3

4

5

6

7

Stemmed 0.54

Stemmed

Stemmed

Unstemmed

Unstemmed

Stemmed

Unstemmed

Stemmed

Stemmed

Unstemmed

Unstemmed

Unstemmed

Stemmed

Unstemmed

Crude

Age/sex adjusted

Age/sex + N-gram
adjusted
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Abbreviations: HDPS, high-dimensional propensity score; RR, relative risk.
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simulation study suggested it might be more valid on aver-

age to only consider the covariate-outcome association for 

covariate prioritization.

Wyss et al,68 in a most comprehensive plasmode simula-

tion based on three empirical cohort studies, focused on fully 

automated confounding control and confirmed the superior 

performance of HDPS in a series of settings. Across three 

settings times six simulation scenarios, depending on the 

frequency of exposure and outcome, HDPS with 100 bias-

prioritized covariates22,38 showed an average 90–95% bias 

reduction without any investigator-specified covariates and 

never less than 70% bias reduction.68

Franklin et al42 compared the performance of HDPS in 

a plasmode simulation to that in an outcome model using 

regularized regression including Lasso and ridge regression, 

adjusting for a prioritized pool of 500 candidate covariates. 

Both Lasso and ridge regression outcome models underper-

formed compared with HDPS. However, when Lasso was 

used to prioritize covariates regarding their association with 

the outcome, which were then entered into the PS model, this 

resulted in an improved performance following the principles 

of confounder selection.34,35,69

Guertin et al70 published an empirical study but included 

a sensitivity analysis simulating unobserved confounding. 

In a study comparing low-intensity versus high-intensity 

lipid-lowering therapy with statins, they were concerned 

that sicker patients with more advanced arteriosclerosis or 

higher serum lipid levels were more likely to initiate high-

intensity treatment. Residual confounding can be caused by 

unobserved risk factors such as family history, actual lipid 

levels, and unobserved diagnostic information after omit-

ting outpatient claims. They compared balance in covariates 

in two Quebec health care claims databases, one with full 

information and one with strongly restricted data dimensions. 

They found that despite artificially reducing the amount of 

covariate information by 86%, the HDPS algorithm would 

still correctly identify and balance important confounders 

not directly observable.

Machine-learning extensions to 
optimize automated covariate 
selection
Within the framework of HDPS, there have been several 

machine-learning extensions that can help further optimize 

and automate the critical covariate prioritization.

Principles of covariate selection in PS 
models
Rosenbaum and Rubin71 and Rubin72 recommend that covari-

ates for a PS model should be selected based on whether the 

variables balance confounding factors between exposure 

groups. This assumes that investigators know and measure 

all true confounders, an assumption that is unrealistic in 

most secondary analyses of health care databases. The FDA 

Sentinel analysis by Zhou et al59 is such an example of an 

important confounder that was not identified by the inves-

tigator team yet was measurable in the data. It has been 

established that all independent risk factors for the study 

outcome need to be adjusted even if they are seemingly 

not or only weakly associated with the exposure.34,35,69 An 

automated algorithm thus should select covariates based on 

empirically observed outcome associations as long as variable 

selection is not influenced by the magnitude of the treatment 

effect estimate.22,34

Optimized automated covariate 
prioritization
Because of the importance of the confounder–outcome 

relationship for covariate selection, it is not surprising that 

machine-learning approaches to optimize only the treatment 

model, including regularized regression, classification and 

Box 1 Opportunities of data-adaptive HDPS approaches for causal treatment-effect estimation using health care databases

1.	Data-adaptive HDPS approaches have consistently shown equal or superior performance to traditional investigator-specified approaches to 
confounding adjustment in situations of unobserved confounding.

2.	Data-adaptive HDPS approaches have predictable efficiency in extracting a maximum of confounding information from a given health care 
database.

3.	Data-adaptive HDPS approaches can automate estimation of causal treatment effects without compromising confounding control given the data 
source. The resulting scalability may be of great value when screening large numbers of associations or frequently repeating analyses over time.

4.	Data-adaptive HDPS approaches have demonstrated that they can be applied to any longitudinal health care data sources, including claims, 
structured and unstructured EHR, and registries independent of the locally used ontologies or coding systems.

5.	Software is available to implement various versions of the HDPS procedure in R, SAS, or Java.

Abbreviations: HDPS, high-dimensional propensity score; EHR electronic health records.
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regression trees (CART), multivariate adaptive regression 

spline (MARS), and random forest, while being mechani-

cally useful, did not improve causal inference.73–76 In fact, 

intensive modeling of only the exposure without considering 

the relationship with the study outcome may increase the 

chance of including features that act as instrumental vari-

ables and exacerbate residual confounding bias.36,77 Although 

regularized outcome regression such as Lasso can model the 

outcome association of many covariates simultaneously even 

if outcomes are sparse, they are inadequate in its confound-

ing adjustment when studying causal treatment effects, as 

they shrink or eliminate regression coefficients, reducing the 

amount of information on the confounder–outcome associa-

tion, ultimately leading to biased effect estimates.42

Therefore, the focus logically shifted toward empiri-

cally identifying potential predictors of the study endpoint 

but, instead of adjusting them in an overfitted outcome 

model, prioritizing them in the PS model.78 A reanalysis of 

five cohort studies evaluated a range of machine-learning 

algorithms to empirically identify and prioritize outcome 

predictors, including Lasso, ridge regression, logistic regres-

sion, Bayesian logistic regression, random forests, elastic 

net, and principal component analysis. It showed that a 

Lasso-based selection of outcome predictor into the PS 

model may be a flexible and robust hybrid strategy, which in 

claims data on average performs just slightly better than the 

originally proposed easy-to-understand Bross formula.78 A 

slight advantage of covariate prioritization that is informed 

by outcome regression as hybrid strategy was confirmed in 

further simulation studies.42,79,80 The full potential of such 

informally “doubly robust” hybrid strategies may be realized 

when information-rich databases are used that can predict 

outcomes better than claims data.

Automatically optimized number of 
covariates
Several studies had suggested that there may be an optimum 

number of empirically identified and prioritized covariates 

that should be included in the PS for causal analyses.39,81 

It was the hope that with increasing covariate adjustment 

in prioritized sequence, the exposure–outcome effect esti-

mate would stabilize and approximate the value of the best 

adjusted effect estimate given the information inherent in a 

database. However, this does not seem to hold when exposure 

is infrequent and outcomes rare.81 Other strategies need to 

be applied to identify the optimum confounder adjustment.

When the optimum number of covariates for adjustment 

is not known, analysts can run several HDPS models with 

various numbers of prioritized covariates. Super Learner, 

an ensemble method for prediction modeling,82 can obtain 

optimal predictions. These predictions will be similar to those 

from the regression with the optimum number of important 

variables, in terms of minimizing a cross-validated loss of 

function for predicting treatment assignment. Extensive 

plasmode simulations based on three empirical cohort studies 

showed that the combination of Super Learner with HDPS 

as a fully automated strategy avoided inadvertent overfitting 

and outperformed in a range of scenarios.68

After covariate prioritization, one can combine Super 

Learner with the HDPS to simplify propensity score estima-

tion in high-dimensional covariate settings.

Collaborative targeted maximum likelihood estimation 

(CTMLE), pioneered by van der Laan, is a similar approach 

to automating and optimizing causal analyses with nonran-

domized data. It includes an exposure model (PS model) and 

an outcome model, both automatically optimized via Super 

Learner, combined with a doubly robust effect estimation that 

is focused (targeted) on the effect of interest, thus optimizing 

statistical efficiency. CTMLE is a generalized framework for 

causal inference, while HDPS is optimized for health care 

databases with the majority of variables being binary or cat-

egorical. Because HDPS is not dependent on estimating an 

outcome model for covariate adjusted-effect estimation but 

only for covariate prioritization, it is more robust in settings 

of rare outcomes and many covariates.68,83

Sparse data: treatment effects of 
newly marketed products and highly 
targeted treatments
Even with the largest data sources, there are situations in 

which exposures are infrequent. Examples are highly tar-

geted treatments often preselected by specific biomarkers 

or treatments for orphan diseases and the study of newly 

approved medications when few patients have been exposed 

shortly after they reach the market.84 These are treatments 

and conditions of high relevance and challenge any method 

of treatment-effect estimation including HDPS.

Being aware of this challenge, an empirically based simu-

lation study showed that, given ~<25 exposed patients who 

have an outcome event, the estimation of effect using HDPS 

decile adjustment was volatile.39 The work by Patorno et al81 

identified equally strong variability of effect estimates after 

PS matching with increasing HDPS covariate counts. Adjust-

ing for a continuous PS variable or PS deciles seemed to 

perform better than matching. In the setting of very few out-

comes, including or excluding single events due to successful 

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Clinical Epidemiology 2018:10 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

783

Automated data-adaptive analytics for big health care data

or failed matching can substantially change the magnitude 

of effects. A simulation study confirmed that in situations 

of very few outcomes, PS adjustment or PS weighting may 

perform better than matching.85 More analyses clarified that 

specifically when the exposure is infrequent, HDPS may lead 

to overfitting more residual bias but not when the exposure 

is frequent and only the outcome is rare.68 Fine stratifica-

tion by PS is another robust approach for PS analyses when 

exposure is infrequent.45 While this issue is not specific to 

HDPS, knowing that stratified or weighting approaches may 

be more robust in such settings will guide automated strate-

gies. The situation of infrequent exposure and rare outcomes 

may favor disease risk score (DRS) approaches and the use 

of HDDRS with covariate prioritization incorporating risk 

prediction information from historical data.50,86

“Over-adjustment” and the 
importance of causal study designs
It is a misconception that data-adaptive algorithms that adjust 

hundreds of covariates will lead to over-adjustment. An over-

adjustment stemming from the adjustment of causal interme-

diates, reverse causation, or immortal person-time are general 

study design concerns that are addressable with principled 

study designs to support causal inference and, if present, can 

cause bias often larger in magnitude than confounding.87,88 

A common concern, adjusting for too many pre-exposure 

covariates, will lead to collinearity and statistical inefficiency 

in the estimation but does not constitute over-adjustment and 

effect estimates remain consistent.71

There are two complex covariate structures worth men-

tioning, as they have been seen as complicating automated 

covariate adjustment.88 M-bias occurs from conditioning on 

an apparent confounder (C), which is actually a collider in 

the language of directed acyclic graphs.89 The study of the 

risk of antidepressants in relation to lung cancer assumed 

that U1 is a depression status (affecting antidepressant use 

but not lung cancer) and U2 is a smoking history (affecting 

lung cancer but not antidepressant use). By conditioning 

on cardiovascular disease (C), an association is induced 

between antidepressants and lung cancer via the M-shaped 

pathway via depression, cardiovascular disease, and smok-

ing.89 Simulation studies have shown that even in extreme 

scenarios, any resulting bias was minor.90 In the majority of 

empirical settings, the reduction in bias from adjusting for 

the confounding will outweigh any increase in bias due to 

conditioning on a collider.91

Z-bias refers to the bias caused by adjusting for an instru-

mental variable in studies that are subject to meaningful 

unmeasured confounding.36,92 An instrument is a variable that 

is associated only with the exposure and not with outcome 

other than through the exposure.93,94 In a study of the effect of 

statins versus glaucoma drugs on the incidence of myocardial 

infarction, a variable such as prior glaucoma diagnosis will be 

strongly predictive of whether a patient receives a glaucoma 

drug but will have little effect on the outcome.

A simulation study found that Z-bias, while measure-

able, was of substantial magnitude only in cases of very 

strong unmeasured confounding, and even in these cases, 

the strongest Z-bias that could be observed was <5% of the 

total study bias. When in doubt about whether a covariate 

is a confounder or an instrument, adjusting for the covariate 

will generally reduce net bias.36 More complex automated 

methodologies are available, but their added value in high-

dimensional data settings has come into question.95,96

Potential misconceptions about data-adaptive methods 

are summarized in Box 2.

Box 2 Misconceptions about data-adaptive methods for confounding control

“HDPS will guarantee perfect confounding adjustment like an RCT.” – While HDPS extracts the maximum confounding information available in 
a database via proxy analytics, a given data source may inherently miss data dimensions that are required to reduce residual confounding to an 
acceptable level.
“Data-adaptive methods do not allow the investigator to pre-specify a statistical analysis plan.” – It is the nature of data-adaptive methods to 
automatically learn from the data to maximize confounding control. In that sense, the final selection of covariates cannot be enumerated a priori. 
However, given a defined dataset, the heuristic and specific parameter settings of an HDPS algorithm can be prespecified and remain unchanged 
during the primary analysis. All selected covariates should be listed with the results.
“Data-adaptive algorithms that adjust hundreds of covariates will lead to over-adjustment” – An “over-adjustment” stemming from the adjustment 
of causal intermediates, reverse causation, or immortal person time is a general study-design concern that is addressable with active comparator 
new-user cohort design or variation thereof. Adjusting for too many pre-exposure covariates will lead to collinearity and statistical inefficiency in 
the estimation, but effect size estimation remains consistent.
“Data-adaptive algorithms falsely adjusting for instrumental variables increase bias” – This is correct but rare and affects any analytic strategy. It has 
been shown in simulation studies that HDPS is equally robust against such bias augmentation and M-bias compared to other strategies.

Abbreviations: HDPS, high-dimensional propensity score; RCTs, randomized controlled trials.
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Pathway to automating causal 
treatment effect estimation in 
health care databases
The most frequent application of analytics in a learning health 

care system is that of comparing the effectiveness of two 

interventions, two clinical strategies, or two medical prod-

ucts.97 For most applications, it would be a valuable simplifi-

cation if a user would just specify the exposures, outcome(s), 

and target population and let an automated data-adaptive 

algorithm such as HDPS process the causal analytics. If one is 

willing to make some constraining assumptions, the process 

of designing and analyzing database studies for causal treat-

ment effect becomes a linear process with defined choices 

that is increasingly automatable (Figure 8).28 For example, for 

a range of applications, one may generally prefer a new-user 

cohort study design in database studies without addition of 

data collection, dismissing sampling strategy (case–control, 

case–cohort); one may focus on baseline covariates and not 

consider treatment changes and time-varying confounding; 

one may always want to compute ratio as well as difference 

effect measures including 95% confidence intervals and 

implement a fixed follow-up (risk model) as well as an as-

treated follow-up (rate model) analysis.

The use of HDPS is now an accepted tool among data-

base researchers.23 Some database studies even show results 

only after HDPS adjustment, a logical consequence of the 

consistent performance advantages of HDPS in database 

studies.98–100 The next rational step is to use data-adaptive 

approaches as a fully automated confounding adjustment 

approach rather than as a secondary analysis confirming or 

improving traditional approaches.

The scalability of automated covariate adjustment has 

been demonstrated: independent of coding system and 

regional differences in data structures, the HDPS algorithm 

performed as well or better than investigator-defined meth-

ods. With new advances in hybrid doubly robust approaches, 

super-learner enhancements and fine stratification of HDPS 

perform well in tricky situations of few exposed patients and 

rare outcomes. By embedding such adjustments in standard 

causal study designs, including new-user active comparator 

cohorts and marginal structural models, other biases – often 

more extreme than confounding – can be reduced as well.28 

Automation, however, would need to be accompanied by 

quality metrics of the likely success of confounding control, 

something that requires further research in order to become 

sufficiently confidence building.101,102

Multidatabase studies
Automated and optimized confounding adjustment 

approaches play an important role in multidatabase systems 

that are queried in rapid cycles to monitor the effective-

ness or safety of medical products and interventions. Given 

variations among databases in terms of information content, 

terminology, and coding practices, a strategy that allows 

maximizing confounding control in a given data source 

independent of the coding system will provide the most valid 

results rapidly. Alternative strategies, such as data standard-

ization and distributed regression analyses, work with the 

minimum common denominator of information but fail to 

embrace the reality of substantial variations in information 

content between data sources.103 In extreme situations, more 

confounding control in some data sources than others, say 

those with claims data linked to free text medical notes ver-

sus those with claims only, may lead to point estimates with 

reduced bias. Such heterogeneity must bring up questions as 

to whether it makes sense to use all databases in a network for 

a given analysis or rather only those with richer information.

Considering these advantages, large regulatory drug 

safety monitoring programs have adopted HDPS. FDA’s 

drug safety surveillance program, the Sentinel Program, has 

integrated HDPS into its routine propensity score matching 

program as a standard analysis for data source-optimized 

confounding adjustment.104,105 The PS modular program 

was independently compared against investigator-specified 

analyses and RCT findings.59,106 The Canadian counterpart, 

the CNODES program, uses HDPS as well.107,108

User choice*

Exposure

Comparator
Population Outcome Effect

measure
Follow-up
model

Covariate
adjustment

Effectiveness
reporting

Automatable** Automated

Figure 8 Toward automating causal treatment effect estimation.
Notes: *These items are highly structured, and modern Real World Data software facilitates this critical interface between intended research questions and study 
implementation. **There is a limited number of context-specific choices. Reasonable defaults can be provided, and RWD software will allow users to override.
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In multidatabase studies, we frequently find situations of 

several very large databases and multiple fairly small centers, 

yielding small numbers of exposed patients particularly when 

studying newly marketed medications. An HDPS model 

with >100 covariates may not fit in such settings,59 and the 

machine-learning extensions, particularly Super Learner, 

would be applied. In contrast, not including small sites did 

not change the findings in the Sentinel Program, since they 

did not contribute much information in the first place.59

Large-scale screening of drug repurposing
Medications are marketed for specific indications defined 

by a condition treated and outcome(s) improved. In routine 

care, medications are not infrequently used outside of narrow 

indications to treat conditions of similar pathophysiology and/

or different outcomes. Repurposing already marketed drugs 

is appealing because they have already passed substantial 

testing in humans and are considered sufficiently safe for use, 

and therefore, the uncertainty of having a secondary indica-

tion approved is much reduced. Large health care databases 

have been considered many times to discover unexpected 

beneficial drug effects.

Rather than scanning the entire potential drug–outcome 

space with all its combinations, more promising approaches 

rely on network proximity quantifying the interplay between 

disease genes, proteins, and drug targets on the human inter-

actome to reveal hundreds of new potential drug–outcome 

associations.109,110 Health care database analyses can then vali-

date or refute high-potential drug–outcome associations,111 

but even reducing many thousands of associations to only a 

few hundred will require a scalable approach to confounding 

adjustment as it is impractical to have investigator-defined 

covariate selection for each study.112 Data-adaptive methods 

for optimized confounding adjustment will have an important 

role in ongoing repurposing programs.

Transparency, reporting, and diagnostics
By definition, data-adaptive strategies intended to control 

confounding cannot predefine the exact covariates or even 

the number of covariates that will go into the final analy-

sis. However, what can be prespecified and incorporated 

into study registration databases is the specific analytic 

strategy and parameter settings of the automated approach 

for covariate identification, prioritization, and type of 

causal analysis. After the analysis has been completed, the 

algorithm can produce the exact list of covariates that were 

actually included in the PS model.113 In addition, graphs 

that show the relationship between the sequential addition 

of prioritized covariates and the corresponding changes 

in the treatment effect estimate are of great diagnostic 

value.39,54,81 We generally need more robust diagnostics on 

the completeness of confounding control. While complete 

knowledge on confounding may always be elusive, develop-

ments in balance metrics of observed characteristics and 

systems that test balance in patient subgroups that have 

confounders defined that are unobservable in the main study 

are promising.101,102,114,115

Conclusion
Data-adaptive approaches to automated and optimized covari-

ate adjustment for estimating causal treatment effects in health 

care databases, such as the HDPS algorithm, are remarkably 

effective and often superior in terms of bias reduction across 

a range of research questions and versatile in a variety of data 

sources and coding systems. The properties of HDPS are well 

understood based on empirical studies and statistical simula-

tion experiments. Building on the principles of HDPS, we are 

approaching fully automated covariate adjustment procedures 

scalable across health care databases that reduce bias to the 

degree possible by a given data source. This has important 

implications for the evaluation of causal treatment effects in 

one-off analyses, for safety-signal generation, for large-scale 

screening for the effectiveness of secondary indication or 

repurposing, or multi database networks.
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