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Abstract: Cisplatin is a widely used antineoplastic agent in the treatment of various cancers. 

Peripheral neuropathy is a well-known side effect of cisplatin and has the potential to result in 

limiting and/or reducing the dose, decreasing the quality of life. Unfortunately, the mechanism 

for cisplatin-induced neuropathy has not been completely elucidated. Currently, available 

treatments for neuropathic pain (NP) are mostly symptomatic, insufficient and are often linked 

with several detrimental side effects; thus, effective treatments are needed. Cannabinoids and 

agmatine are endogenous modulators that are implicated in painful states. This review explains 

the cisplatin-induced neuropathy and antinociceptive effects of cannabinoids and agmatine in 

animal models of NP and their putative therapeutic potential in cisplatin-induced neuropathy.
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Introduction
Cisplatin (cis-dichlorodiammineplatinum II) is the first agent of platinum drugs that 

is widely used as a first-line treatment for several solid and blood cancers.1 Platinum 

derivatives exert antitumor activity by reacting with the DNA, and they damage DNA 

by intra- and interstrand crosslinks, which then induce apoptotic cell death in dividing 

cells and cancer cells.2 They hardly cross the blood–brain barrier but have a high affinity 

to the peripheral nervous system.3 Despite its efficacy, cisplatin causes predominantly 

sensory axonal peripheral neuropathy (PN), which limits the dose delivered, reduces 

likelihood of an effective treatment and affects patients’ quality of life.4 The major 

symptoms of this condition are sensory loss, painful paresthesias, weakness, tremors, 

numbness, temperature sensitivity and hyperalgesia in a “stocking and glove” distri-

bution.5 The symptoms may begin after the first dose or at the end of the therapy and 

may appear after weeks to several months even after the discontinuation of therapy, a 

process known as coasting phenomenon.4 Higher cumulative doses and long-lasting 

cisplatin treatment may also lead to chronic and irreversible PN.6 Approximately 60% 

of patients receiving a total cumulative cisplatin dose ranging from 225 to 500 mg/m2 

suffer from peripheral nerve damage,7 and 10% of them experience treatment-emergent 

grade 3/4 neurotoxicity.8,9 The exact mechanism of cisplatin-induced PN has not been 

fully elucidated; however, various underlying mechanisms have been proposed.

Neuropathic pain (NP) is a chronic pain arising as a direct consequence of a lesion 

or disease affecting the somatosensory system in either the periphery or centrally.10 PN 

results from some type of damage to the peripheral nervous system caused by mechani-

cal trauma, metabolic diseases, certain drugs and infections.11 Several mechanisms 

Correspondence: Kevser Erol 
Department of Medical Pharmacology, 
Faculty of Medicine, Eskisehir Osmangazi 
University, Eskisehir 26480, Turkey 
Tel +90 222 239 2979 ext 4560 
Email kerol@ogu.edu.tr

Journal name: Journal of Experimental Pharmacology
Article Designation: REVIEW
Year: 2018
Volume: 10
Running head verso: Donertas et al
Running head recto: Cannabinoids and agmatine against cisplatin neuropthy
DOI: http://dx.doi.org/10.2147/JEP.S162059

Jo
ur

na
l o

f E
xp

er
im

en
ta

l P
ha

rm
ac

ol
og

y 
do

w
nl

oa
de

d 
fr

om
 h

ttp
s:

//w
w

w
.d

ov
ep

re
ss

.c
om

/
F

or
 p

er
so

na
l u

se
 o

nl
y.

http://www.dovepress.com/permissions.php
www.dovepress.com
www.dovepress.com
www.dovepress.com
https://www.facebook.com/DoveMedicalPress/
https://www.linkedin.com/company/dove-medical-press
https://twitter.com/dovepress
https://www.youtube.com/user/dovepress


Journal of Experimental Pharmacology 2018:10submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

20

Donertas et al

are thought to be responsible for NP, some of which consist 

of altered gene expression and changes in ion channels that 

cause ectopic activity in the peripheral nervous system. In 

addition, many gene regulations may also be changed in 

the central nervous system. Neuronal death and excessive 

synaptic interactivity lead to changes in both nociceptive 

and innocuous afferent inputs.11

Cisplatin has been found at higher levels in dorsal root 

ganglia (DRG) than in peripheral nerve or in the central 

nervous system in patients with cisplatin therapy.12,13 The 

severity of PN correlates with platinum levels in these 

cells.6,14 The presence of an abundant fenestrated capillary 

network and absence of an effective blood–brain barrier in 

the DRG15 allow platinum drugs to accumulate in the DRG 

with easy access to sensory neurons, explaining the main 

sensory symptoms in PN.16

Cisplatin could also affect the central nervous system and 

extensively cause cytotoxicity when injected directly into the 

brain.17 Cytoplasmic changes including deep invaginations 

between satellite cells and the neuronal surface and forma-

tions of vacuoli in satellite cells of DRG were also reported 

by cisplatin treatment.18 There are some limited evidence 

that cisplatin affects proinflammatory cytokine expression 

and causes some changes in immune signaling pathways. 

However, the results of these neuroinflammatory responses 

need to be clarified by further investigations.19 Copper trans-

porter 1 and copper-transporting ATPases, expressed on the 

DRG membrane, are responsible for cellular uptake and 

accumulation of cisplatin in sensory neurons and contribute 

to the development of PN.20 After cisplatin enters into the 

cell, it directly binds to DNA and forms interstrand crosslinks 

and intrastrand adducts by changing the tertiary structure of 

DNA.20,21 Then, cell cycle kinetics is disrupted within the 

DRG, and these cells reenter into the cell cycle that results 

with apoptosis.22 The latter mechanism involves oxidative 

stress and mitochondrial dysfunction as a component of 

neuronal apoptosis.23 Cisplatin binds to mitochondrial DNA 

(mtDNA) and nuclear (n) DNA in the DRG.24 mtDNA does 

not have any DNA repair system; thus, platinum adducts 

cannot be removed from mtDNA. This causes perturbations 

in protein synthesis and mitochondrial respiratory chain 

reactions.24 Mitochondrial dysfunction and failure in energy 

metabolism of the cell lead to overproduction of reactive 

oxygen species and induce cellular oxidative stress. More-

over, cisplatin causes mitochondrial release of cytochrome 

c and caspases promoting apoptosis via the mitochondrial 

intrinsic pathway.23 Cisplatin also increases the activity of p53 

and p38 proteins and extracellular signal-regulated kinase 

(ERK) 1/2 signaling pathways.25 In addition, it may increase 

the expression levels of transient receptor potential vanilloid 

1 (TRPV1), transient receptor potential ankyrin 1 (TRPA1) 

and transient receptor potential melastatin 8 (TRPM8) in 

cultured DRG cells.26,27

Many agents have been proposed to manage chemo-

therapy-induced NP such as vitamin E, glutamine, α-lipoic 

acid, glutathione, calcium–magnesium, acetyl cysteine, 

acetyl-l-carnitine, amifostine, diethyldithiocarbamate and 

glutathione. However, none of these agents has been proven 

effective.28 Some agents such as caffeic acid phenethyl 

ester,29 pifithrin-μ,30 APX2009,31 mesenchymal stem cells,32 

Org 2766, glutathione, amifostine and various neurotrophic 

growth factors28 were suggested to prevent or limit the 

cisplatin neurotoxicity, which are still under investigation. 

Therefore, there is still a great need for effective treatments.

In this review, the studies demonstrating the antinoci-

ceptive effects of endogenous modulators cannabinoids and 

agmatine in animal models of NP, as well as the mechanisms 

of action related to such effects, are discussed. We present 

the evidence to support the potential of cannabinoids and 

agmatine as adjuvants/monotherapy for cisplatin-induced PN.

Cannabinoids and NP
Cannabinoids represent a wide range of endogenous or 

exogenous compounds that include phytocannabinoids, the 

natural compounds found in plants of the genus Cannabis; 

endogenous cannabinoids and synthetic ligands.33 Cannabis 

has an ancient medicinal history, but the potential value of 

the cannabinoids for medicinal purposes arose from the 

discovery of cannabinoid receptors and their endogenous 

ligands.33–35 Investigations into the chemistry of Cannabis 

began in the mid-19th century, and cannabinol, cannabidiol 

(CBD) and the main active compound delta-9-tetrahydrocan-

nabinol (Δ-9-THC) were isolated, respectively.33,36 Another 

cornerstone in cannabinoid research was the identification of 

cannabinoid receptor system between 1980 and 2000s, and 

then, this system was named as endocannabinoid system.36

There has been an increasing interest in the therapeutic 

potential of cannabinoids for the treatment of many disorders 

and symptoms.35 However, cognitive–behavioral effects and 

widely illicit use of cannabinoids in the world have created 

political and regulatory obstacles, and they were included as 

controlled drugs in the United Nations Single Convention on 

Narcotic Drugs, and their use is illegal in most countries.37

Cannabinoids produce their actions through the activa-

tion of G-protein-coupled cannabinoid receptors, CB1 and 

CB2.32,36 Activation of both CB1 and CB2 receptors inhibits 
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adenylate cyclase activity, and CB1 receptor activation can 

also inhibit type 5-HT3 ion channels; modulate the produc-

tion of nitric oxide (NO); alter conductance of calcium, potas-

sium or sodium channel and activate the Na+/H+ exchanger, 

the pathways that have been implicated in pain transduction 

and perception.32,38,39 CB1 receptors are found mainly in the 

central nervous system, and CB2 receptors are primarily 

localized to cells of the immune system.32 More signifi-

cantly for the purposes of the present review, CB1 receptors 

are those present in sensory neurons (DRG and trigeminal 

ganglia), as well as defense cells such as macrophages, mast 

cells and keratinocytes.40 Few CB2 receptors are located 

in the brain, spinal cord and DRG, but they increase in 

response to peripheral nerve damage. They modulate central 

neuroimmune interactions and interfere with inflammatory 

hyperalgesia.41

Anandamide (N-arachidonoylethanolamine [AEA]) and 

2-arachidonoylglycerol (2-AG) are the main endogenous 

ligands of cannabinoid receptors derived from the mem-

brane-localized phospholipid precursors and are recruited 

during tissue injury to provide a first response to nocicep-

tive signals.34,42 Besides cannabinoid receptors, they have 

been also shown to exert several effects via other targets, 

such as transient receptor potential (TRP) channels; orphan 

G-coupled receptors such as GPR55, GPR92, GPR18 and 

GPR119; T-type calcium channels; glycine receptors and 

GABA
A 

receptor.38

AEA is synthesized from the phosphatidylethanol-

amine, an abundant lipid present in the cell membrane, by 

 N-acyltransferase and phospholipase D, and it is mainly 

degraded by fatty acid amide hydrolase (FAAH).43 2-AG is 

synthesized from diacylglycerol by diacylglycerol lipase and 

is primarily metabolized by monoacylglycerol lipase (MGL).43

Antinociceptive effects of 
cannabinoids in animal models of 
NP
Studies evaluating the presence of hyperalgesia following 

blockade of CB1 receptors provided early physiological sup-

port for the hypothesis that endocannabinoids suppress pain.39 

Since then many studies have been performed to investigate 

the antinociceptive effects of cannabinoids and their modula-

tion in acute, inflammatory and NP models. The discovery of 

endocannabinoid system, as one of the neuromodulatory sys-

tem involved in the pathophysiology of NP, raised the inter-

est for the development of new therapeutic strategies.32,44,45 

Endocannabinoid system is expressed highly in neurons and 

immune cells that are crucial for the  development of NP,46–48 

and there is also evidence available stating that endocan-

nabinoid levels are altered in several regions of ascending 

and descending pain pathways in NP states.49 Furthermore, 

endocannabinoids have been shown to interact with other 

receptor systems, including GABA, serotonin, adrenergic 

and opioid receptors, which are involved in the antinocicep-

tive effects of common NP medications.32,38,45,50 Based on 

the existing data, new pharmacological agents have been 

investigated in various animal models of NP through the 

manipulation of cannabinoid receptors and transporters or 

blocking enzymes involved in the endocannabinoid degrada-

tion (Table 1).32,38,44,45

Cannabinoid receptor agonists have shown antinocicep-

tive properties in a variety of NP models. They have been 

shown to alleviate hyperalgesia in peripheral nerve injury-

induced,51–60 chemotherapy-induced,61–68 diabetes-induced69–74 

and antiretroviral-induced75 neuropathy models. The anti-

hyperalgesic effect of cannabinoids was suggested to be 

Table 1 Substances modulating the endocannabinoid system in NP

Group of substances Samples

Endocannabinoids AEA (Anandamide), N-oleoylethanolamide, N-palmitoylethanolamide, N-arachidonoyl dopamine, 
2-arachydonoylglycerol 

Phytocannabinoids and  
synthetic analogs

9-THC, CBD, β-caryophyllene, Cannador, cannabis, eCBD, nabilone, nabisol, Nabiximols, Marinol (dronabinol), 
CB13, levonantradol, nabilone

CB1 agonists ACEA, HU-210, Met-F-AEA
CB2 agonists A-796260, A-836339, AM1241, AM1710, AM1714, Compound 27, GW405833, JWH015, JWH133, LY2828360, 

MDA7, MDA19
CB1/CB2 agonists BAY59-3074, CP55,940, CT-3, HU-210, O-1602, WIN55,212-2
CB1 antagonists AM251, SR141716
CB2 antagonists AM630, SR144528
Uptake inhibitors AM404, LY2183240, VDM11
FAAH inhibitors AA-5-HT, ASP8477, PF-3845, ST4070, OL-135, URB597, URB937
MGL inhibitors JZL184, KML29, MJN110, URB602
FAAH/MGL inhibitors JZL195, SA-57

Abbreviations: AEA, N-arachidonoylethanolamine; CB, cannabinoid; CBD, cannabidiol; FAAH, fatty-acid amide hydrolase; MGL, monoacylglycerol lipase; NP, neuropathic 
pain; THC, tetrahydrocannabinol.
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mediated through cannabinoid receptors,51,53,68,75–77 interacting 

with spinal mGlu5 receptors,78 5-HT1A receptors,79 posterior 

inhibition of p38 MAPK/NF-κB activation and cytokine 

release,68 GPR55 activation75 and stimulating endogenous 

norepinephrine release.80

Inflammation has also been shown to be involved in the 

development of NP,81 and cannabinoid agonists may abolish 

the increased levels of mediators known to be involved in NP, 

such as prostaglandin E2 (PGE2), NO and the neuronal NO 

synthase.54 All these mediators may lead to attenuate the early 

production of spinal proinflammatory cytokines interleukin 

(IL)-1β, IL-6 and tumor necrosis factor (TNF)-α.62 SR141716 

(rimonabant), an antagonist/inverse agonist of CB1 recep-

tor, has also exerted antihyperalgesic activity in the chronic 

constriction injury model by reducing the levels of TNF-α, 

PGE2, lipoperoxide and NO45 in diabetic neuropathy.82,83

Cannabinoid receptor agonists have been suggested to have 

good analgesic efficacy in animal models of NP, but their use 

is limited by motor and psychotropic side effects. It has been 

proposed that these side effects might be overcome by using 

agents that indirectly activate the endocannabinoid system.84,85 

Substances inhibiting the reuptake of endocannabinoids86–88 

or inhibiting the FAAH and MGL, degradation enzymes of 

the two major endocannabinoids – anandamide or 2-AG, 

respectively, have found to be effective in the attenuation 

of neuropathy.84,89–95 On the other hand, selective FAAH and 

MGL inhibitors were suggested to have a better therapeutic 

window than cannabinoid agonists, but they exerted lesser 

efficacy in these pain models. For instance, the FAAH inhibitor 

PF04457845 has not progressed through human chronic pain 

studies because of poor efficacy.96 However, dual inhibitor of 

FAAH and MGL or a combination of FAAH inhibitor with 

a low dose of the MAGL inhibitor had greater anti-allodynic 

efficacy than selective FAAH or MGL inhibitors plus a greater 

therapeutic window than a cannabinoid receptor agonist.84,85,94

The abovementioned data indicate that endocannabinoids 

modulate pain under physiological conditions, and the high 

amount of preclinical evidence reports the antinociceptive 

effects of cannabinoids in NP. All these observations have 

led clinicians to start clinical trials using cannabinoids for 

the treatment of chronic pain.38,97 For instance, Sativex 

(nabiximols) is prescribed for the symptomatic relief of NP 

in adults with multiple sclerosis and as an adjunctive anal-

gesic treatment for adult patients with advanced cancer,98 

and nabiximols has been approved as a botanical drug in 

the UK in 2010 as a mouth spray to alleviate NP, spastic-

ity, overactive bladder and other symptoms associated with 

multiple sclerosis.99,100

Antinociceptive effects of 
cannabinoids in cisplatin-induced 
NP
Considering their antinociceptive effects in NP, cannabinoids 

are also evaluated in the animal model of cisplatin-induced 

neuropathy. Cisplatin has been shown to alter endocannabi-

noid tone,95 and inhibition of endocannabinoid hydrolysis by 

FAAH and MGL inhibitors95 or administration of cannabinoid 

agonists produced antinociceptive effects.63,70 AM1710, a can-

nabilactone CB2 selective agonist, produced CB2-mediated 

suppressions of mechanical and cold allodynia induced by cis-

platin.101 Administration of the FAAH inhibitor URB597 into 

the receptive field of sensitized C-fiber nociceptors decreased 

spontaneous activity, increased mechanical response thresh-

olds and decreased evoked responses to mechanical stimuli, 

which were mediated primarily by CB1 receptors.102 CBD 

and Δ-9-THC attenuated cisplatin-induced tactile allodynia, 

but they could not prevent cisplatin-induced neuropathy when 

administered prophylactically.66 Co-administration of JZL184, 

an inhibitor of endocannabinoid 2-arachidonoyl-sn-glycerol, 

with cisplatin blocked mechanical hyperalgesia, which might 

result from downstream activation of CB1 receptors.103 In 

our studies, concurrent,104,105 but not acute,106 administration 

of anandamide or agmatine attenuated neuropathy. Cisplatin 

also had concentration-dependent neurotoxic effects on DRG 

in vitro, and a high concentration of anandamide attenuated 

cisplatin neurotoxicity.106

Agmatine: history and 
pharmacological importance
Agmatine, 4-aminobutyl guanidine, is an endogenous amine 

that was first discovered and purified from herring sperm 

~100 years ago by Kossel.107 It is widely distributed in many 

tissues including brain, stomach, intestine and aorta.108 Agma-

tine is synthesized following decarboxylation of l-arginine 

by arginine decarboxylase.109 Agmatine was thought to have 

an important role in arginine and polyamine metabolism, 

and at first was only attributed to bacteria110,111 and plants.112 

However, in 1994, agmatine was purified from bovine brain 

as a clonidine-displacing substance and called endogenous 

ligand for the imidazoline receptors.113 It is expressed in the 

central nervous system and meets most of the criteria of a 

neurotransmitter/neuromodulator.111 Agmatine antagonizes 

N-methyl-d-aspartic acid (NMDA) receptors, inhibits com-

petitively all isoforms of nitric oxide synthase (NOS)110 and 

binds to α
2
-adrenoceptors, imidazoline receptors as well as 

5-HT
3
 and nicotinic acetylcholine receptors with  moderate 
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affinity.109,111,113 It has several biological functions such 

as cognitive, anxiolytic, antidepressant, antiproliferative 

properties against tumor cells and neuroprotective proper-

ties.114–116 Agmatine also modulates morphine dependence 

and tolerance.117

Antinociceptive effects of agmatine 
in animal models of NP
Agmatine has produced antihyperalgesic and antiallodynic 

effects in animal models of chronic neuropathic and inflam-

matory pain. Intrathecal injection of agmatine increased 

dose-dependently morphine analgesia and potentiated 

acutely delta opioid receptor-mediated analgesia.118 Its 

peripheral administration was shown to enhance the anti-

nociceptive effect of co-administered morphine through 

α
2
-adrenoceptor-mediated mechanism.119 Agmatine antago-

nized some hyperalgesic states;119,120 reversed inflammation-, 

spinal cord injury- and nerve injury-induced pain121 and 

attenuated the streptozotocin-induced122 and sciatic nerve 

ligation-induced NP.123

In diabetic neuropathy, l-arginine supplementation has 

been shown to prevent the development of mechanical hyper-

algesia and tactile and thermal allodynia with concomitant 

reduction of NO.124 It was also shown that spinal agmatine 

produced antiallodynic and antihyperalgesic effects in dia-

betic neuropathy involving the imidazoline receptors.125 In 

diabetes mellitus (DM), oxidative and also nitrosative stress 

induced by persistent hyperglycemia is considered as one of 

the pivotal contributors in DM-associated neural dysfunc-

tion.126 Elevated oxidative stress leads to vascular dysfunction 

with ensuing endoneurial hypoxia, which causes impaired 

motor and sensory nerve functions.127 In addition, l-arginine 

deficiency was also reported in streptozotocin-induced dia-

betes in rats.128 NO, agmatine and glutamate share common 

NMDA receptor-mediated effects in the central nervous 

system. These underlying mechanisms may be responsible for 

the antinociceptive effects of agmatine in diabetic neuropathy.

Traumatic nerve injury also induces chronic pain and may 

trigger common, secondary pathological cascades, including 

activation of NMDA receptor,129 AMPA/kainate receptors130 

and NOS.131 NMDA receptor activation increases intracellular 

Ca+2, which activates NOS to produce NO from l-arginine. 

NMDA receptors are known to have an important role in 

chronic pain processing from peripheral nerve injury. In 

sciatic nerve ligation-induced NP model, agmatine attenu-

ated NP,118,122 which may involve the reduction of NO levels 

and noradrenergic activity in the brain.118 These beneficial 

effects of agmatine may partly result from the participation 

of  noradrenergic neurons in the locus coeruleus involved in 

the development and/or maintenance of allodynia and hyper-

algesia in the setting of peripheral nerve injury.132 Agmatine 

can bind to α
2
 and imidazoline (1) receptors. An imbalance of 

supraspinal inhibition and facilitation was suggested to play a 

role in neuropathic hypersensitivity.132 The locus coeruleus was 

reported to contribute to bidirectional modulation of pain.133 

It was shown that noradrenergic locus coeruleus lesions 

inhibited the development of allodynia and hyperalgesia and 

noradrenergic reuptake inhibitors decreased NP.134 Although 

the locus coeruleus seems as a pain inhibitory structure,133,135 

there are some results indicating that it could participate in 

the facilitation of NP. The coeruleospinal noradrenergic fibers 

were suggested to be involved in descending inhibition of spi-

nal pain transmission.136 Agmatine was demonstrated to reduce 

norepinephrine and 3-methoxy-4-hydroxyphenylethylene 

glycol (MHPG) levels in the brainstem and lead to increased 

pain threshold in NP.123 The decreased central noradrenergic 

activity by agmatine via presynaptic α
2
-adrenoceptor activa-

tion was suggested to involve in the relief of NP.123 Addition-

ally, it was also reported that α
2
-adrenoceptor activation leads 

to release of acetylcholine and mechanical hyperalgesia is 

inhibited via muscarinic receptors at spinal levels.137

The antihyperalgesic effect of agmatine probably involves 

spinal imidazoline (1) receptors. It was reported that an 

imidazoline (1) receptor antagonist could reduce the antial-

lodynic and antihyperalgesic activities of agmatine in diabetic 

NP.125 In addition, agmatine has also an antiallodynic effect 

in both animal models of NP with spinal nerve ligation and 

diabetes.122

In regard to all underlying mechanisms of NP, agmatine 

can partly overcome different kinds of neuropathies consid-

ering its NMDA receptor antagonist, NOS inhibitory and 

anti-inflammatory activities.121 Neuronal injury and chronic 

pain can trigger several pathological cascades including 

stimulations of NMDA receptors and NOS.129 Agmatine was 

shown to inhibit NMDA receptors, NMDA-mediated Ca2 cur-

rents and also all isoforms of NOS, most potently inducible 

forms.110,138 Recently, we also demonstrated that agmatine 

could prevent cisplatin-induced mechanical allodynia and 

degeneration of DRG cells and sciatic nerves. Our results 

showed that l-NAME did not significantly potentiate the 

antiallodynic and neuroprotective effects of agmatine.139 It 

was demonstrated that NOS inhibitors and NMDA receptor 

antagonists could increase the release of 5-HT by activating 

tryptophan hydroxylase.140 It can be thought that the increase 

in serotonin could contribute the antinociceptive activity of 

agmatine.
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Since microglial and astrocytic cells release neurotrophic 

factors that have proinflammatory and neuroprotective 

effects, it was also suggested that macrophages, activated 

microglia and infiltrated monocytes have a major role in 

neuroinflammation.141

It was suggested that agmatine might increase the anti-

inflammatory M2 macrophage properties without enhancing 

cell numbers.142 This can also contribute to its activity against 

neuropathies, considering the proinflammatory M1 and anti-

inflammatory M2 macrophages-induced promotion of axonal 

regeneration after neuronal injury.141,143

Furthermore, agmatine is widely distributed in several 

brain regions including hippocampus and co-localized with 

sigma receptors.108 Sigma receptors were also found in sci-

atic nerves,144 and especially, sigma 1 receptors had a role 

to modulate NP.145 Additionally, there are some reports to 

suggest the elevation of hippocampal TNF-α levels in NP.146 

The agonists of sigma 1 and sigma 2 receptors were found to 

stimulate the production of TNF-α, and agmatine decreased 

the levels of TNF-α, suggesting to block these receptors in 

NP-induced rats.147

Therefore, the antinociception caused by agmatine may 

involve opioidergic, serotonergic, α
2
-adrenergic, imid-

azoline148 and opioidergic sigma receptors,147 which were 

recently reported to play an important role in antinociceptive 

activity of agmatine in NP.143 These predictions need further 

investigations.

Conclusion
NP arises through multiple and complex mechanisms. The 

use of animal models helped to understand the pathophysio-

logical mechanisms and to better define the treatment targets. 

Many scientific investigations on the effects of cannabinoids 

and agmatine on NP are now available considering endocan-

nabinoid system’s involvement in NP and agmatine’s multiple 

targets, which are also implicated in NP, and give rise to new 

therapeutic opportunities. Cannabinoid ligands could open 

future perspectives for NP management, but their potential 

harms should be outweighed. At this point, substances that 

indirectly activate the endocannabinoid system with inhibi-

tion of the reuptake of endocannabinoids or degradation 

enzymes might be promising with less side effects. Further-

more, experimental studies indicate that agmatine gives great 

promise for the development of an improved treatment of this 

common disease. At the same time, agmatine has been shown 

to have a good safety profile with no effect on behavior, 

locomotion, or cardiovascular functions in naive animals.149
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