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Background: Antipsychotic drug (APD) prescription/use in children has increased significantly 

worldwide, despite limited insight into potential long-term effects of treatment on adult brain 

functioning. While initial long-term studies have uncovered alterations to behaviors following 

early APD treatment, further investigations into potential changes to receptor density levels of 

related neurotransmitter (NT) systems are required.

Methods: The current investigation utilized an animal model for early APD treatment with 

aripiprazole, olanzapine, and risperidone in male and female juvenile rats to investigate potential 

long-term changes to the adult serotonin (5-HT) NT system. Levels of 5-HT
1A

, 5-HT
2A

, and 

5-HT
2C

 receptors were measured in the prefrontal cortex (PFC), caudate putamen (CPu), nucleus 

accumbens (NAc), and hippocampus via Western Blot and receptor autoradiography.

Results: In the male cohort, long-term changes to 5-HT
2A

 and 5-HT
2C

 receptors were found 

mostly across hippocampal and cortical brain regions following early aripiprazole and olan-

zapine treatment, while early risperidone treatment changed 5-HT
1A

 receptor levels in the NAc 

and PFC. Lesser effects were uncovered in the female cohort with aripiprazole, olanzapine 

and risperidone to alter 5-HT
1A

 and 5-HT
2A

 receptors in NAc and hippocampal brain regions, 

respectively.

Conclusion: The results of this study suggest that early treatment of various APDs in juvenile 

rats may cause gender and brain regional specific changes in 5-HT
2A

 and 5-HT
2C

 receptors in 

the adult brain.

Keywords: antipsychotic drug, serotonin, risperidone, olanzapine, aripiprazole, development, 

juvenile

Introduction
Antipsychotic drug (APD) prescription and use is rapidly increasing globally, 

despite a lack of knowledge on the safety and efficacy of APD use on the developing 

brain.1–10 Second-generation APDs including aripiprazole, olanzapine, and risperidone 

are currently commonly being prescribed (mostly off-label) for the treatment of a 

variety of childhood disorders from mental illnesses, including depression and child-

onset schizophrenia,5,11,12 to various behavioral disorders, including autism spectrum 

disorder.13–15

While APDs are known to elicit their therapeutic effects predominantly through a 

strong affinity and subsequent antagonistic mechanism of action on both the dopamine 

(DA) D
2
 and serotonin (5-HT) 5-HT

1A
 and 5-HT

2A/2C
 receptors,16–22 both the dopamin-

ergic and serotonergic neurotransmitter (NT) systems have been proven to undergo, 

and be heavily involved in, numerous critical neurodevelopmental processes during 
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the childhood/adolescent period.19,23–29 Specifically, 5-HT is 

known to play an early significant and concentration-dependent 

trophic role in neural development and neurite growth8,26,30–33 

and then also undergo specific phases of development as a NT 

system (eg, synaptogenesis and regressive elimination).8,31

Subsequently, there is the potential that early insult/use of 

potent APDs at this critical time of neurodevelopment may 

have the ability to cause long-term alterations to the function-

ality of the NT systems, including that of 5-HT, in a manner 

that precedes normal brain functioning.8,27,34,35 With altera-

tions to the 5-HT NT system previously linked to changes 

in both behavioral attributes (including locomotor, anxiety, 

and depressive-like behaviors) and furthermore negatively 

correlated to dopamine NT functioning,36–38 prescription 

and use of APDs during the critical neurodevelopmental 

time period have the potential to lead to long-term deficits 

in brain functioning.10,35,39

Although current clinical investigations have found some 

benefits to childhood/adolescent APD use in the treatment of 

the symptomology of various mental illnesses over a short-

term time period (1–2 months) and a time period of up to 

6 months,40–42 the potential for the use of potent APDs to cause 

long-term alterations to adult brain functioning, especially in 

a clinical setting, is still mostly unknown.19,43,44

Previously completed animal studies investigating the 

effects of juvenile APD use on the developing brain, includ-

ing previous studies completed in our laboratory, have found 

that early treatment of up to 4 weeks can result in various 

significant long-term changes to behavioral attributes39 and 

immediate alterations to NT pathways including the 5-HT 

NT system.45,46 While investigations into the distribution/

density of various NT receptor subtypes, including 5-HT
1A

, 

5-HT
2A

, and 5-HT
2C

 receptors, have found various immediate 

alterations following short-term APD treatment,44,45,47 studies 

investigating the long-term effects of early APD treatment 

have been found to be limited to the DA NT system.19,35,48

The present study was subsequently conducted in order 

to investigate the long-term effects of juvenile APD use 

with aripiprazole, olanzapine, and risperidone on the adult 

5-HT NT system in both male and female rats. Specifically, 

investigations into adult brain levels of 5-HT
1A

, 5-HT
2A

, and 

5-HT
2C

 receptors were investigated in cortical, striatal, and 

hippocampal brain regions via Western Blot and/or receptor 

autoradiography experiments.

Materials and methods
Animals and housing
Timed pregnant Sprague Dawley rats were obtained at gesta-

tion day 16 from the Animal Resource Centre (Perth, WA, 

Australia) and housed in individual cages under environmen-

tally controlled conditions (22°C, light cycle from 7 am to 

7 pm and dark cycle from 7 pm to 7 am). Each was allowed 

ad libitum access to standard laboratory chow diet (3.9 kcal/g: 

10% fat, 74% carbohydrate, and 16% protein) and water. The 

day of birth was considered postnatal day (PD) 0. Pups were 

sexed on PD14, and then, 96 rats (48 males and 48 females) 

were weaned on PD20. Rats were housed in individual rat 

cages with top wire lids, in which they were able to smell 

and see each other through the lids.

Drug treatment groups
After weaning and prior to the commencement of drug treat-

ment, all animals were trained for self-administration by 

feeding them cookie dough (0.3 g) without drugs two times 

per day for PD18–21. Rats were then randomly assigned to 

one of the four experimental groups per gender on PD21 

(n=12/group): 1) aripiprazole (Otsuka, Tokyo, Japan), 2) 

olanzapine (Eli Lilly, Indianapolis, IN, USA), 3) risperidone 

(Apotex, Toronto, ON, Canada), and 4) control (vehicle). 

Drug treatment was carried out in juvenile rats from PD22–50, 

a time period equivalent to the childhood/adolescent phase in 

humans.26 In order to replicate a clinical setting, a staggered 

drug treatment pattern was used, where lower APD dosages 

are slowly increased to a final dosage amount.49 Specifi-

cally, APD doses were initiated on PD22 at 0.2 mg/kg for 

aripiprazole, 0.25 mg/kg three times per day for olanzapine, 

and 0.05 mg/kg three times per day for risperidone and were 

increased in three steps over the first 7 days of the 4-week 

treatment period to achieve a final dose on PD28 of 1 mg/kg 

three times per day for aripiprazole, 1 mg/kg three times per 

day for olanzapine, and 0.3 mg/kg three times per day for ris-

peridone. Drug treatment was administered orally to each drug 

treatment group via mixing cookie dough powder (containing 

cornstarch 37%, sucrose 37%, gelatine 17%, and casein 9%) 

with a small amount of distilled water until even in consis-

tency. All animals were individually observed for the duration 

of each treatment to ensure that they completely consumed the 

cookie dough pellet and thus received a full dosage. Animals 

in the control group also received an equivalent pellet without 

the drug. In consideration of a shorter half-life of APDs in 

rats, and to ensure a consistently high drug concentration in 

replication of the clinical scenario of oral administration once 

per day,50 APDs were administered three times per day (at 7, 2, 

and 10 h) with 8±1 hour intervals. The proposed dosages are 

translated from a clinical setting and within the recommended 

dosage ranges for the psychiatric treatment of pediatric 

patients. Dosage calculations are based on the body surface 

area formula for dosage translation between humans and 

www.dovepress.com
www.dovepress.com
www.dovepress.com


Neuropsychiatric Disease and Treatment 2018:14 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

1571

Juvenile APD affects 5-HT receptors in adult rats

rats in the US Food and Drug Administration guideline for 

clinical trials.42,49,51,52 The relevant human equivalent dose 

(HED) is therefore calculated by the following formula: ani-

mal dose (mg/kg) × animal Km (6)/human child Km (25) × 

body weight (Km factor, body weight (kg) divided by body 

surface area (m2), is used to convert the mg/kg dose to a mg/

m2 dose). Therefore, for an adolescent with an average weight 

of 40 kg, the utilized dosages for aripiprazole (1 mg/kg in rats) 

and olanzapine (1 mg/kg in rats) equals to a clinical dosage 

of 9.6 mg, while risperidone (0.3 mg/kg) equals to a clinical 

dosage of 2.88 mg, all within a clinically relevant range for 

adolescent patients. Previous reports have demonstrated that 

at this dosage amount, aripiprazole drug treatment reaches 

.90% DA D
2
 receptor occupancy rates in the rat brain,53 while 

olanzapine and risperidone reach 65%–80% DA D
2
 receptor 

occupancy rates.54,55 These dosage amounts have also been 

shown to be physiologically and behaviorally effective in our 

laboratory, with similar dosages seen to induce weight gain 

and changes in hypothalamic neuropeptide Y expression in 

adolescent rats,56 while immediate alterations to both DA 

receptor and 5-HT receptor binding have been reported in 

juvenile rats.45 All experimental procedures were approved 

by the Animal Ethics Committee, University of Wollongong, 

Wollongong, NSW, Australia (AE 12/20) and complied with 

Australian Code of Practice for the Care and Use of Animals 

for Scientific Purpose (2004).

Histological procedures
After a maturation period where all animals were monitored 

regularly and allowed to mature (PD51–105), all rats were sac-

rificed on PD106 via carbon dioxide asphyxiation. Euthanasia 

was completed between 9 am and 11.30 am to minimize the 

potential circadian-induced variation of protein expression. 

Brain tissue was removed immediately following euthanasia, 

frozen in liquid nitrogen, and stored at −80°C until analysis. 

Six brains from each drug treatment group (n=12) were then 

randomly assigned for Western Blot analyses, and the remain-

ing six brains from each treatment group were then used for 

receptor autoradiography experiments. Brain regions involved 

in both serotonergic signaling and the therapeutic actions of 

APDs, including the prefrontal cortex (PFC), caudate putamen 

(CPu), nucleus accumbens (NAc), and hippocampus, were 

dissected in order to detect 5-HT receptor levels.

Microdissection (Western Blot analyses)
Tissue from aforementioned brain regions to be used for 

Western Blot analysis was collected using microdissection 

puncture techniques, following a standard procedure in 

our laboratory.57–60 Briefly, 500 µm thick sections were cut 

at −14°C using a cryostat (Leica CM1850; Leica Microsys-

tems, Wetzler, Germany) and collected bilaterally using a 

microdissection puncher on glass slides.

Receptor autoradiography
Tissue from brains selected for receptor autoradiography 

were collected via coronally dissected sections at −18°C into 

14 µm using a cryostat (Leica CM1850). Once dissected, sec-

tions were thaw-mounted onto poly-l-lysine (Sigma-Aldrich 

Co., St Louis, MO, USA)-coated glass slides and stored 

at −20°C. A set of sections from each animal were stained 

with the 0.5% cresyl violet solution (Nissl staining) and 

used to confirm the identification of anatomical structures.

Western Blot analyses
Tissues obtained from individual rats were homogenized in 

ice-cold homogenizing buffer (9.8 mL of NP-40 cell lysis 

buffer; Thermo Fisher Scientific, Waltham, MA, USA; 

100  µL of β-glycerophosphate; 50  mM; Thermo Fisher 

Scientific; 33.3  µL of phenylmethane sulfonyl fluoride; 

0.3 M; Sigma-Aldrich Co.; and 100 µL of Protease Inhibitor 

Cocktail; Sigma-Aldrich Co.). All samples were then cen-

trifuged, with the supernatant solution collected and stored 

at −80°C until required.

DC™ Protein Assays (#500-0114; Bio-Rad Laboratories 

Inc., Hercules, CA, USA) were completed at A
750 nm

 to spectro-

photometrically quantify total protein concentrations. A range 

of sample protein concentrations were pretested in each region 

(2, 2.5, 4, 5, 6, 7.5, 8, and 10 µg). A total of 10 µg of protein 

was selected for PFC, CPu, and NAc regions, while 8  µg 

of protein was selected for the hippocampus as it best fitted 

the linear range of signal detection for all tested antibodies. 

Homogenized brain samples containing the aforementioned 

microgram concentration of protein were then first heated at 

95°C in the loading buffer (950 µL of Laemmli buffer; Bio-Rad 

Laboratories Inc.; and 50 µL of β-mercaptoethanol; Sigma-

Aldrich Co.) for 5 minutes to denature the protein, then placed 

on ice, and centrifuged for 2 minutes at 4°C. The samples were 

then loaded into 4%–20% Criterion™ TGX™ Precast Gels 

(Bio-Rad Laboratories Inc.) and underwent electrophoresis 

in sodium dodecyl sulfate polyacrylamide gel electrophoresis 

(SDS PAGE) running buffer (100 mL of 10× SDS-PAGE run-

ning buffer; Bio-Rad Laboratories Inc.; and 900 mL of distilled 

water) at 140 V for 70 minutes. Proteins on the gels were then 

transferred electrophoretically using the Bio-Rad Midi Format 

1-D Electrophoresis Systems onto a polyvinylidene difluoride 

(PVDF) membrane (Bio-Rad Laboratories Inc.) in ice-cold 

transfer buffer (150 mL of 10× tris/glycine buffer; Bio-Rad 

Laboratories Inc.; 300 mL of cold methanol, and 1,050 mL 

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Neuropsychiatric Disease and Treatment 2018:14submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

1572

De Santis et al

of distilled water) at 100 V for 1 hour. In order to detect the 

proteins of interest, PVDF membranes were incubated in 

tris-buffered saline–Tween (TBST) (Sigma-Aldrich Co.) solu-

tion containing 5% Blotting-Grade Blocker (nonfat dry milk 

powder) (Bio-Rad Laboratories Inc.) for 1 hour at room tem-

perature (RT). Membranes were then incubated overnight with 

the primary antibody, including 5-HT
1A

 (1:2,000; #ab85615; 

Abcam, Cambridge, UK), 5-HT
2A

 (1:1,000; #sc-50397; Santa 

Cruz Biotechnology Inc., Dallas, TX, USA), and 5-HT
2C

 

(1:1,000; #sc-15081; Santa Cruz Biotechnology Inc.), diluted 

in TBST buffer containing either 1% bovine serum albumin 

(BSA) (5-HT
1A

) or 1% nonfat dry milk powder (5-HT
2A

 and 

5-HT
2C

). Membranes were either washed three times with 

TBST for 5 minutes (5-HT
1A

 and 5-HT
2A

) and then incubated 

with horseradish peroxidase (HRP)-conjugated goat antirabbit 

secondary antibody for 1 hour at RT (5-HT
1A

 – 1:5,000 and 

5-HT
2A

 – 1:3,000; EMD Millipore, Billerica, MA, USA) or 

washed three times for 20 minutes (5-HT
2C

) and then incubated 

with HRP-conjugated donkey antigoat secondary antibody 

for 45 minutes at RT (5-HT
2C

 – 1:2,000; Abcam). Second-

ary antibodies were diluted in TBST buffer containing either 

1% BSA (5-HT
1A

) or 1% nonfat dry milk powder (5-HT
2C

 

and 5-HT
2A

). Three TBST washes then followed secondary 

antibody incubation, and proteins of interest were visualized 

using the Classico Western horseradish peroxidase (HRP) sub-

strates (EMD Millipore) and Amersham Hyperfilm ECL (GE 

Healthcare Life Sciences, Wauwatosa, WI, USA). Membranes 

were then re-probed with mouse antiactin polyclonal antibody 

(1:10,000, #MAB1501; EMD Millipore) and HRP-conjugated 

rabbit antimouse secondary antibody (1:3,000, #7076; Cell 

Signaling Technology, Danvers, MA, USA).

Immunoreactive signals were quantified using the GS-800 

image densitometry and Quantity One software (Bio-Rad 

Laboratories Inc.), and the values were corrected based 

on their corresponding actin levels. For 5-HT
1A

, the band 

at ~62 kDa was detected and quantified,61 while for 5-HT
2A

, 

the band at ~55 kDa was detected and quantified.62,63 Fur-

thermore, for 5-HT
2C

, a band at ~55 kDa was detected and 

quantified.64 The β-actin protein was quantified at 46 kDa. 

Western Blot gels were arranged by gender, in which each 

gel contained 24 samples (six rats/group × four treatments 

[ie, three APDs and one vehicle] × one gender). In order to 

control for variability, all samples were run in duplicate at 

second gels at the same sample arrangement and the values 

of each drug treatment group and control corrected based 

on their corresponding actin levels. Samples from male 

and female rats were run in different gels. All results were 

normalized by taking the value of the vehicle group of each 

gender as 100% to obtain a comparative value.

Receptor autoradiography 
and quantification
Experimental procedures for 5-HT

2A
 binding autoradiography 

were based on those completed and reported previously.45,65–67 

5-HT
1A

 and 5-HT
2C

 binding autoradiography was also 

completed; however, binding results were too low and thus 

discounted from further analysis.

5-HT2A receptor binding procedures
Brain sections for 5-HT

2A
 receptor binding were thawed at 

RT and then preincubated in 170 mM tris buffer (pH 7.4) 

for 15 minutes. Slides with sections were then incubated for 

2 hours with 2 nM [3H]Ketanserin (specific activity: 47.3 Ci/

mmol; PerkinElmer Inc., Waltham, MA, USA) in 170 mM 

tris buffer at RT to determine total binding. Nonspecific 

binding was determined with the addition of 2 µM Spiperone 

(Sigma-Aldrich Co.) to subsequent sections. Following 

incubation, sections were washed four times for 2 minutes 

in ice-cold buffer, dipped in ice-cold distilled water, and 

then air dried.66,67

Quantification
Following the completion of receptor binding experiments, 

all slides were exposed to Amersham Hyperfilm ECL for 

2–3  months, along with autoradiographic standards ([3H]

microscales from Amersham), in X-ray film cassettes. Quan-

titative analysis of binding images was conducted following 

the relevant exposure time, using the Multi-Analyst image 

analysis system (Bio-Rad Laboratories Inc.), connected to a 

GS-800 Imaging Densitometer (Bio-Rad Laboratories Inc.). 

Optical density measurement was then converted into femto-

moles of [3H] ligand per milligram of tissue equivalent (TE) 

by comparing to the standard. Specific binding was calculated 

by subtracting nonspecific binding from total binding. A set 

of sections from each animal were stained with the 0.5% 

cresyl violet solution (Nissl staining), for the purpose of 

confirmation of anatomical structures. Specific brain regions 

in this project were identified by reference to the Nissl-stained 

sections, along with a standard rat brain atlas.68

Statistical analysis
Statistical analysis of collected data was completed with 

the use of SPSS software (Windows Version 19.0; IBM 

Corporation, Armonk, NY, USA). Distribution of data 

was examined through the Kolmogorov–Smirnov test. All 

normally distributed data were also analyzed by two-way 

analysis of variance (ANOVA) (gender × treatment). Male 

and female data sets were then also analyzed separately by 

one-way ANOVA, followed by post hoc Dunnett’s tests for 
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multiple comparisons between the treatment groups. Data 

that were not distributed normally were analyzed via the non-

parametric Mann–Whitney U test. All data were analyzed per 

investigated brain region. The data were expressed as mean ± 

standard error of the mean (SEM). Statistical significance 

was accepted when P,0.05.

Results
Long-term effects of adolescent APD 
treatment on 5-HT1A receptor levels
A significant effect of treatment on 5-HT

1A
 receptor protein 

expression was found in the PFC (F
3,45

=4.973, P,0.01) 

and NAc (F
3,44

=3.791, P,0.02), while a significant effect 

of gender was also observed in the NAc (F
1,44

=13.584, 

P,0.01). Furthermore, a significant interaction between the 

two factors was found in the CPu (F
3,46

=2.860, P=0.050) and 

a trend toward a significant interaction was found in the NAc 

(F
3,44

=2.559, P=0.070). Post hoc analysis uncovered that 

early risperidone treatment decreased 5-HT
1A

 expression in 

the PFC (−23.8%, P,0.02) when compared with the con-

trol (Figures 1A′ and A″ and S1). In the male cohort, early 

APD treatment had a significant effect on the expression of 

5-HT
1A

 receptors in the NAc (F
3,22

=5.091, P,0.01) of adult 

rats. Further analysis revealed that early risperidone treatment 

trended to significantly decrease 5-HT
1A

 receptor expression 

in the NAc (−7.0%, P=0.081) (Figures 1 and S1). Analysis 

of the female cohort found trends toward significant effects 

of early APD treatment in both CPu (F
3,22

=2.853, P=0.065) 

and NAc (F
3,20

=2.695, P=0.079). Post hoc analysis revealed 

that early aripiprazole treatment decreased 5-HT
1A

 receptor 

expression in the NAc (−16.6%, P=0.054) when compared 

with the control group. No significant alterations were uncov-

ered in the CPu (Figures 1B′ and B″ and S1) or hippocampus 

(Figures 1D′ and D″ and S1) of treated animals in comparison 

to the control, across either gender.

Long-term effects of adolescent APD 
treatment on 5-HT2A receptor levels
Two-way ANOVA tests (gender × treatment) revealed a sig-

nificant effect of treatment on 5-HT
2A

 receptor protein expres-

sion levels in the hippocampus (F
3,45

=4.913, P,0.01), while 

a significant effect of gender was found in the hippocampus 

(F
1,45

=17.745, P,0.001) and CPu (F
1,46

=4.541, P,0.05). 

Additionally, a significant interaction between the factors 

was uncovered in the hippocampus (F
3,45

=3.340, P,0.05) 

and PFC (F
3,46

=3.972, P,0.02). Analysis of the male cohort 

via one-way ANOVA (treatment) uncovered a significant 

effect of early APD treatment on 5-HT
2A

 receptor expres-

sion in the NAc (F
3,22

=3.378, P,0.05), and hippocampus 

(F
3,22

=4.054, P,0.05). Furthermore, a trend to significant 

effect was also discovered in the PFC (F
3,22

=3.035, P=0.054). 

Post hoc analysis discovered that aripiprazole treatment 

was found to decrease 5-HT
2A

 receptor levels in the PFC 

(−78.0%, P=0.081) upon comparison to the control group. 

In the female cohort, one-way ANOVA found a significant 

effect of early APD treatment on 5-HT
2A

 expression in the 

PFC (F
3,22

=3.233, P,0.05) (Figures 2A′ and A″ and S2) 

and hippocampus (F
3,21

=4.738, P,0.02) (Figures 2D′ and 

D″ and S2). Further analysis via post hoc tests discovered 

decreases to 5-HT
2A

 receptor expression in the hippocampus 

following early olanzapine (−62.4%, P,0.01) treatment. No 

significant changes in the expression of 5-HT
2A

 receptors 

were uncovered in the CPu (Figures 2B′ and B″ and S2) or 

NAc (Figures 2C′ and C″ and S2) of APD animals in compari-

son to the control, across both male and female cohorts.

Examples of [3H]Ketanserin binding to 5-HT
2A

 are pre-

sented in Figure 3. Detected levels of 5-HT
2A

 in the CPu of 

females and males, however, were discounted, as expression 

was too low for accurate quantification. Analysis via two-way 

ANOVA (gender × treatment) found a significant effect of 

early APD treatment on the expression of 5-HT
2A

 receptors 

in the hippocampus (F
3,41

=2.106, P,0.01), along with a 

significant interaction between the two factors (F
3,41

=1.228, 

P,0.05). A trend to significant effect of treatment was also 

uncovered in the PFC of rats (F
3,43

=4.004, P=0.079). Post hoc 

analysis revealed that early treatment with both aripiprazole 

(−49.0%, P,0.02) and risperidone (−51.1%, P,0.01) sig-

nificantly decreased 5-HT
2A

 expression in the hippocampus 

in comparison to the control. When subsequently divided by 

gender, analysis of the male cohort demonstrated a significant 

effect of early APD treatment on 5-HT
2A

 receptor expres-

sion in the PFC (F
3,21

=4.010, P,0.05) and hippocampus 

(F
3,21

=6.274, P,0.01). Further analysis via post hoc revealed 

that early treatment with aripiprazole decreased 5-HT
2A

 

binding in the PFC (−44.3%, P=0.064) and hippocampus 

(−48.8%, P,0.05). Similar decreases were also observed fol-

lowing risperidone treatment in the PFC (−60.2%, P,0.02) 

and hippocampus (−69.5%, P,0.01) and olanzapine treat-

ment in the hippocampus (−44.7%, P=0.063). No significant 

effects were found in the female cohort between the APD 

treatment group and control.

Long-term effects of adolescent APD 
treatment on 5-HT2C receptor levels
Analysis of 5-HT

2C
 expression via two-way ANOVA 

(gender × treatment) uncovered a significant effect of treat-

ment on 5-HT
2C

 receptor protein expression in the PFC 

(F
3,44

=4.286, P,0.02) and hippocampus (F
3,45

=10.791, 
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Figure 1 Effects of three APDs on 5-HT1A expression levels in the PFC (A′, A″), CPu (B′, B″), NAc (C′, C″), and Hipp (D′, D″) of female and male rats.
Notes: Sprague Dawley rats were treated chronically with aripiprazole (1.0 mg/kg, tid), olanzapine (1.0 mg/kg, tid), risperidone (0.3 mg/kg, tid), or control (vehicle). The 
number of samples per gender per group is 6. Data were expressed as mean ± SEM. *P,0.05 vs control. The representative bands of Western Blot are shown.
Abbreviations: APDs, antipsychotic drugs; CPu, caudate putamen; Hipp, hippocampus; 5-HT, serotonin; NAc, nucleus accumbens; PFC, prefrontal cortex; SEM, standard 
error of the mean; tid, three times daily.
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Figure 2 Effects of three APDs on 5-HT2A expression levels in the PFC (A′, A″), CPu (B′, B″), NAc (C′, C″), and Hipp (D′, D″) of female and male rats.
Notes: Sprague-Dawley rats were treated chronically with aripiprazole (1.0  mg/kg, tid), olanzapine (1.0  mg/kg, tid), risperidone (0.3  mg/kg, tid), or control (vehicle). 
The number of samples per gender per group is 6. Data expressed as mean ± SEM. **P,0.01 vs control. The representative bands of Western Blot are shown.
Abbreviations: APDs, antipsychotic drugs; CPu, caudate putamen; Hipp, hippocampus; NAc, nucleus accumbens; 5-HT, serotonin; PFC, prefrontal cortex; SEM, standard 
error of the mean; tid, three times daily.
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P,0.001) of rats. Additionally, a significant effect of gender 

was found in the hippocampus (F
1,45

=16.265, P,0.001), 

while a significant interaction between the factors was also 

found in the hippocampus (F
3,45

=7.511, P,0.001). Post hoc 

analysis uncovered that early treatment with both aripipra-

zole (−50.2%, P,0.05) and olanzapine (−42.5%, P=0.078) 

significantly decreased 5-HT
2C

 expression in the PFC in 

comparison to the control. Following analysis of the male 

cohort via one-way ANOVA, a significant effect of early 

APD treatment was discovered in the PFC (F
3,20

=8.004, 

P,0.01) and hippocampus (F
3,22

=15.474, P,0.001), 

while a trend to significant effect was found in the CPu 

(F
3,22

=2.946, P=0.059). Post hoc analysis found decreases 

in 5-HT
2C

 receptor expression in the PFC following early 

APD treatment with aripiprazole (−45.1%, P,0.05) and 

olanzapine (−50.1%, P,0.01) (Figures 4A′ and A″ and S3). 

Additionally, increases in 5-HT
2C

 receptor expression were 

uncovered in the hippocampus following early treatment 

′

′

′

Figure 3 Examples of 5-HT2A receptor binding in the adult rat brain following childhood/adolescent APD treatment.
Notes: The schematic diagram is adapted from Paxinos G, Watson C. The Rat Brain in Stereotaxic Coordinates. 6th edition. London: Elsevier; 2007. © Academic Press 2007.68 
Showing the level of Bregma for each investigated region (A: PFC, 4.68 mm; B: CPu and NAc, 1.08 mm; C: Hipp, −2.76 mm). (A′–C′) Examples of autoradiograms to 
demonstrate [3H]Ketanserin binding to 5-HT2A receptors. The scale bar applies to all autoradiograms and is 2.0 mm for A′, 2.8 mm for B′, and 3.2 mm for C′.
Abbreviations: APD, antipsychotic drug; CPu, caudate putamen; Hipp, hippocampus; 5-HT, serotonin; NAc, nucleus accumbens; PFC, prefrontal cortex.
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Figure 4 Effects of three APDs on 5-HT2C expression levels in the PFC (A′, A″), CPu (B′, B″), NAc (C′, C″), and Hipp (D′, D″) of female and male rats.
Notes: Sprague Dawley rats were treated chronically with aripiprazole (1.0 mg/kg, tid), olanzapine (1.0 mg/kg, tid), risperidone (0.3 mg/kg, tid), or control (vehicle). 
The number of samples per gender per group is 6. Data expressed as mean ± SEM. *P,0.05, **P,0.01, ***P,0.001 vs control. The representative bands of Western Blot 
are shown.
Abbreviations: APDs, antipsychotic drugs; CPu, caudate putamen; Hipp, hippocampus; 5-HT, serotonin; NAc, nucleus accumbens; PFC, prefrontal cortex; SEM, standard 
error of the mean; tid, three times daily.
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with both aripiprazole (+41.5%, P,0.05) and risperidone 

(+79.6%, P,0.001) (Figures 4D′ and D″ and S3), while no 

alterations were uncovered in either the CPu (Figures 4B′ 
and B″ and S3) or the NAc (Figures 4C′ and C″ and S3). 

No significant alterations to 5-HT
2C

 receptor expression, 

however, were found in the female cohort.

Discussion
The present study has, for the first time, provided insight into 

the long-term effects of early (juvenile) treatment with the 

APDs aripiprazole, olanzapine, and risperidone on the density 

of 5-HT receptors in the adult brain. Our investigation has 

revealed that juvenile APD treatment during the critical neu-

rodevelopmental time period resulted in significant long-term 

alterations to 5-HT
2A

 and 5-HT
2C

 receptors, predominantly 

in hippocampal and cortical brain regions. Furthermore, we 

have uncovered more widespread alterations to the density 

of male 5-HT receptors in comparison to female 5-HT recep-

tors, with changes in 5-HT
2A

 and 5-HT
2C

 receptors uncovered 

across multiple drug treatment groups.

While previous investigations into the long-term effects 

of juvenile APD use on 5-HT
1A

, 5-HT
2A

, and 5-HT
2C

 recep-

tors have, to our knowledge, not been completed, numerous 

studies have examined the immediate effects of aripiprazole, 

olanzapine, or risperidone treatment on the density of 5-HT 

receptors in young45,46,69 and adult65,67,70,71 rodents, over both 

short- and long-term treatment periods. Such investiga-

tions have uncovered a trend for APD treatment to result in 

immediate decreases to both 5-HT
2A

 and 5-HT
2C

 receptor 

subtypes following a cessation of treatment. We believe 

that our investigation is the first to identify that if treated in 

a juvenile animal, this alteration to 5-HT receptor density is 

still prominent in adulthood.

Long-term alterations to 5-HT
2A

 receptors after early APD 

exposure were uncovered in hippocampal and cortical brain 

regions in the current study. In the male cohort, significant 

decreases to the density of 5-HT
2A

 receptors were found in 

the hippocampus of adult brains following juvenile treatment 

with the APDs aripiprazole, olanzapine, and risperidone. 

Furthermore, similar decreases were also found in the PFC 

of those that underwent early treatment with aripiprazole 

and risperidone in comparison to the control. Decreases in 

5-HT
2A

 receptor densities were also found in the hippocampus 

of females following treatment with the APDs olanzapine 

and risperidone.

Although previous investigations into the immediate 

effects of short- and long-term treatments with olanzapine 

have also found region-specific alterations to the density 

levels of 5-HT
2A

 receptors of both young45,69 and adult67,70,71 

rats, results from the current study extended that of previ-

ous findings. Specifically, while decreases in 5-HT
2A

 levels 

have been observed in the hippocampus of the present study, 

previous investigations over multiple time periods, and 

across both genders, have found no changes to hippocampal 

5-HT
2A

 receptor levels in the adult brain following olanzapine 

treatment.70,71 Furthermore, while no changes in 5-HT
2A

 levels 

were uncovered in the PFC of our investigation, olanzapine 

has been found to immediately decrease PFC 5-HT
2A

 receptor 

levels in young rats following short-term treatment periods45,69 

and adult rats following both short-term70,71 and long-term 

treatment periods.67 While studies on the short- and long-term 

effects of risperidone treatment in both young and adult rats 

have also uncovered similar significant decreases in 5-HT
2A

 

receptor levels in the PFC,45,46,70 no changes in 5-HT
2A

 levels 

in brain regions including the CPu, NAc, and hippocampus 

have been previously uncovered.45,69,70 In addition, although 

significant decreases in 5-HT
2A

 receptors were observed 

in both the hippocampus and PFC of animals treated with 

aripiprazole in the present study, limited investigations have 

previously been completed investigating the potential for 

aripiprazole’s antagonistic actions on 5-HT
2A

 receptors to 

cause short- or long-term changes. While one investigation 

into the immediate effects of short-term treatment with arip-

iprazole has uncovered decreased levels of 5-HT
2A

 receptors 

in the PFC of young male rats,45 further investigations into 

the immediate and long-term effects of short- and long-term 

treatments will shed further light and allow further compari-

sons to be drawn to the current investigation findings.

In addition to the 5-HT
2A

 receptor changes, alterations to 

the 5-HT
2C

 receptor were found in the PFC and hippocampus 

of males only in the present study. Contrasting results were 

revealed between the aforementioned regions, with decreases 

in 5-HT
2C

 receptor levels uncovered in the PFC of adult male 

rodents following juvenile treatment with aripiprazole and 

olanzapine, while increases were found in the hippocampus 

of aripiprazole- and risperidone-treated groups in comparison 

to control.

Previous investigations into the immediate effects of 

APD treatment on 5-HT
2C

 receptor density levels have 

found differing results to that observed by the current study, 

where long-lasting effects were revealed. First, contrary to 

our study, alterations to 5-HT
2C

 receptors have been found 

across both male and female rodents in studies of varying 

treatment durations, utilizing both young and adult models, 

and through multiple brain regions. In addition, while olan-

zapine treatment has been found to decrease 5-HT
2C

 levels in 
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the PFC of studies, investigations into the immediate effects 

of short- and long-term APD treatment on 5-HT
2C

 receptors 

in the hippocampus of young and adult rodents have found 

treatment with olanzapine resulted in either a decrease or 

no change in the density of receptors.45,67,70,71 In particular, 

while short-term olanzapine treatment of both young male 

and female rodents resulted in immediate decreases across 

cortical and striatal brain regions,45 variations in results have 

been found in the immediate effects of adult olanzapine 

treatment models over both short-term70,71 and long-term 

periods,67 with either decreases or no change in receptor 

densities found in investigated brain regions including PFC, 

CPu, NAc, and hippocampus. Investigations into the effects 

of aripiprazole and risperidone on 5-HT2C receptor have 

been concentrated on the immediate effects of short-term 

treatment periods, with no alterations to any brain regions 

found following short-term aripiprazole treatment across both 

male and female young animals45 or short-term risperidone 

treatment in adult male rodents.70

Minimal changes in adult 5-HT
1A

 receptors were uncov-

ered following juvenile APD treatment in the present study. 

Decreases in 5-HT
1A

 receptor density levels in the adult brain 

were uncovered in the NAc following juvenile risperidone 

APD treatment in the male cohort, and in the NAc of female 

rodents treated with aripiprazole in comparison to the 

control. Previous investigations once again centered upon 

uncovering the immediate effect of treatment on 5-HT
1A

 

receptor density levels, with the majority of studies reveal-

ing no changes in receptor levels following APD treatment 

with aripiprazole, olanzapine, or risperidone in investigated 

regions. Some short-term studies did however reveal that 

acute and short-term treatment in both young and adult rats 

increased 5-HT
1A

 receptor density levels.46,70 Specifically, 

while increases in 5-HT
1A

 receptor density levels have been 

found previously across both the PFC and hippocampus of 

both young and adult male rodents following short-term treat-

ment with risperidone and olanzapine,46,70 acute treatment of 

female rats with aripiprazole has also uncovered increases in 

5-HT
1A

 levels in the hippocampus. No alterations, however, 

were found following acute and long-term olanzapine or 

haloperidol treatments and across cortical and hypothalamic 

brain regions.65

The minimal observed alterations to the 5-HT
1A

 receptor 

in comparison to 5-HT
2A

 and 5-HT
2C

 may be due to a number 

of factors. First, of the three APDs investigated in the current 

study, only aripiprazole has been found to have a significant 

affinity for the 5-HT
1A

 receptor,65,72 while the similar antago-

nistic pharmacological profile of olanzapine and risperidone 

on 5-HT
2A

 and 5-HT
2C

 receptors may be resulting in the 

comparable decreases in adult brain receptor density levels 

between the two receptor subtypes.22 The 5-HT
1A

 is known to 

be located both pre- and postsynaptically and have autorecep-

tor functions.38,73,74 Investigations have found that the 5-HT
1A

 

receptor located presynaptically in the dorsal raphe nucleus, 

performing regulatory functions for the 5-HT NT, and also 

located postsynaptically in limbic structures including the 

hippocampus, performing traditional postsynaptic receptor 

functions.38,73,74

The repeated antagonism of the 5-HT
2A

 and 5-HT
2C

 

receptors, along with the presynaptic 5-HT
1A

 receptor, has 

the potential to result in a downregulation in number and 

sensitivity and subsequently a long-term deficiency in 5-HT 

NT signaling.38,75,76 With the 5-HT
2A

 receptor in particular 

well known to play critical roles in both APD treatment 

efficacy19–22 and the regulation and functioning of the 5-HT 

NT system,36–38,77,78 and with previous investigations dem-

onstrating a correlative functions of the 5-HT NT in the 

pathophysiology of multiple mental illnesses,16,22,29,38,79,80 any 

disturbances to the regulation of the 5-HT NT system, such 

as through early APD treatment targeting 5-HT receptors, 

have the potential to alter 5-HT transmission and, thus, elicit 

related changes to multiple facets of mental illness over long 

term. Furthermore, the subsequent deficiency in projections 

of the 5-HT NT has been found to result in the disinhibi-

tion and therefore enhancement of the DA signal36–38 and 

correlated to changes in behaviors, as demonstrated in our 

previous investigations.35,39 Changes in behaviors including 

enhanced locomotor activity36,37 and anxiolytic and decreased 

depressive-like behaviors8,36,75,81–84 have previously been 

uncovered and correlated to the repeated antagonism of the 

5-HT
2
 receptor, potentially the negatively correlated altera-

tions to the DA signal.

APDs such as aripiprazole have also been found to elicit 

partial agonist effects on presynaptic 5-HT
1A

 receptors in 

the dorsal raphe nuclei of previously investigated brains,76,85 

Investigations into the effects of APD treatment on 5-HT 

receptors in the dorsal raphe nuclei, however, will need to 

be the focus of future studies, as the focus of the current 

investigations only shifted to the 5-HT NT system following 

previous results, and thus, no relevant tissue is available for 

analysis.

With previous investigations into the effects of APD 

treatment on 5-HT receptors centered upon revealing any 

immediate changes in receptor density levels, and the current 

study looking into long-lasting effects, the contrasting results 

between the current and previous investigations may be the 
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product of a myriad of influencing factors. Factors including 

the treatment duration of the study, differences in age of the 

animals treated, and duration of time between the cessation of 

APD treatment and detection of 5-HT receptors have previ-

ously been highlighted as having the potential to influence 

the observed results, with the current study specifically inves-

tigating the long-term effects of juvenile APD treatment on 

5-HT receptors in the adult brain. There is the potential that 

the alterations to measured variables uncovered in the pres-

ent study may have occurred following the cessation of APD 

treatment and during the drug withdrawal period. During such 

time, the antagonistic action of APDs on 5-HT receptors in 

an adult brain may result in a short-term over-compensatory 

increase in receptor numbers (as observed in previous investi-

gations65), followed by a regulation of density over long term. 

Drug treatment during the critical neurodevelopmental time 

period may subsequently result in a long-term decrease in 

morphology and/or density over the large time duration, in a 

process previously labeled as neuronal imprinting.25 Previous 

studies have demonstrated similar age-dependent effects of 

drug treatment, with psychotropic drugs such as fluoxetine 

(a selective serotonin re-uptake inhibitor [SSRI]) previously 

proven to elicit different effects on a juvenile compared to 

an adult, mature brain.25,34,86,87

Chronologically, and as outlined briefly earlier, 5-HT is 

also known to play a significant role first as a trophic factor 

in overall brain development and then undergo significant 

neurodevelopmental phases itself as the NT system develops 

from birth through to adulthood.8,31 Specifically, the 5-HT 

ligand, along with the 5-HT
1A

 receptor, has been found to 

play key roles in overall axonal growth and synapse forma-

tion throughout the brain.88 Alterations to baseline levels of 

5-HT during these early critical phases of neurodevelopment, 

through either intrinsic or extrinsic factors (eg, early APD 

treatment), have been found to alter the developmental trajec-

tory of the adult brain and subsequently impact the adult brain 

functioning.8,26,30,32,88 Therefore, there is the potential that the 

juvenile APD treatment utilized in the present study, with 

a high affinity and potent actions on the 5-HT NT system, 

has impacted not only the observed long-lasting changes in 

5-HT receptors but also widespread long-lasting alterations 

to overall axonal growth, neurite, and dendrite formations.

Additionally, and as indicated previously, gender-specific 

alterations to adult 5-HT receptor density levels were also 

observed following juvenile APD treatment in the present 

study. In particular, more widespread alterations to the 

5-HT
2A

 and 5-HT
2C

 receptors were uncovered in the PFC 

and hippocampus of males, while minimal alterations were 

observed in the female cohort across all investigated 5-HT 

receptor subtypes and across all four brain regions and 

APD treatment groups. Potential influencing factors on the 

observed gender differences in results have been outlined 

extensively in previous publications.35,39 Specifically, the 

well-known differences in the development and expression 

of 5-HT receptors between genders89 and with the influence 

of the sex hormones testosterone and estrogen26,82,89–91 have 

the potential to play a role in the observed gender differ-

ences. Previously demonstrated gender variations to 5-HT-

mediated functions have an obvious potential to influence 

the observed results,89,92 with the sex hormones testosterone 

and estrogen found to play a critical role.89,91,93–96 Changes in 

the levels of the sex hormone estrogen have been found to 

influence the levels of 5-HT ligand in brain regions including 

the cortex and raphe nucleus94–96 and, furthermore, alter the 

density levels of 5-HT
1A

 and 5-HT
2
 receptors in brain regions 

including the cortex, raphe nucleus, and hippocampus.89 

Additionally, estrogen has previously been found to play 

a neuro-protective effect on 5-HT NT system, with studies 

uncovering its ability to inhibit behavioral changes in infor-

mation processing mediated by both the 5-HT
1A

 and DA D
2
 

receptors, an attribute that found deficient in people suffering 

from mental illness.90

Conclusion
The current study has uncovered the potential for treatment 

with the APDs aripiprazole, olanzapine, and risperidone 

during the critical neurodevelopmental period to cause long-

lasting alterations to the density of 5-HT receptors in the 

adult brain. In particular, significant alterations to 5-HT
2A

 

and 5-HT
2C

 receptors in cortical and hippocampal brain 

regions were observed in the male cohort across aripiprazole, 

olanzapine, and risperidone APD treatment groups in com-

parison to controls. These observed changes are in addition 

to the alterations to various behavioral attributes (including 

anxiety and depressive-like behaviors) and the dopamine 

NT system (including receptors, transporters, and synthesis 

markers) previously reported with the same treatment model 

in our laboratory.35,39 Although the observed alterations to the 

5-HT NT system in the investigated regions provide some 

evidence of the potential for early APD treatment to elicit 

long-term alterations to a NT system functioning, further 

investigations have the potential to uncover both the scope 

of changes elicited on the 5-HT NT system and potential 

alterations to other NT groups. Other NT systems including 

the adrenergic and muscarinic NT systems are also known 

to be a part of the pharmacological mechanisms of action of 
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APDs and interplay with other NT systems,37,97–99 and thus, 

antagonist actions during the critical neurodevelopmental 

time period have the potential to elicit long-lasting changes 

that may be exhibited clinically. Furthermore, investigations 

into the effects of juvenile APD in a disease animal model 

would also provide invaluable insight into the potential long-

lasting effects of treatment during such a critical neurodevel-

opmental time period. The alterations observed in the present 

study provide some of the first evidence of the potential of 

juvenile APD treatment with aripiprazole, olanzapine, and 

risperidone to elicit long-term alterations to the 5-HT NT 

system in the adult brain. With all three APDs approved for 

use in adolescents with various medical conditions and also 

known to be prescribed off-label, the potential long-term 

effects of early use should be highlighted before they are 

prescribed clinically, especially in the male cohort where 

the vast majority of alterations have been found.
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