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Introduction: Currently, the design of extracellular matrix (ECM) with nanoscale properties in 

bone tissue engineering is challenging. For bone tissue engineering, the ECM must have certain 

properties such as being nontoxic, highly porous, and should not cause foreign body reactions.

Materials and methods: In this study, the hybrid scaffold based on polyvinyl alcohol (PVA) 

blended with metallocene polyethylene (mPE) and plectranthus amboinicus (PA) was fabricated for 

bone tissue engineering via electrospinning. The fabricated hybrid nanocomposites were character-

ized by scanning electron microscopy (SEM), Fourier transform and infrared spectroscopy (FTIR), 

thermogravimetric analysis (TGA), contact angle measurement, and atomic force microscopy (AFM). 

Furthermore, activated partial thromboplastin time (APTT), prothrombin time (PT), and hemolytic 

assays were used to investigate the blood compatibility of the prepared hybrid nanocomposites.

Results: The prepared hybrid nanocomposites showed reduced fiber diameter (238±45 nm) 

and also increased porosity (87%) with decreased pore diameter (340±86 nm) compared with 

pure PVA. The interactions between PVA, mPE, and PA were identified by the formation of the 

additional peaks as revealed in FTIR. Furthermore, the prepared hybrid nanocomposites showed a 

decreased contact angle of 51°±1.32° indicating a hydrophilic nature and exhibited lower thermal 

stability compared to pristine PVA. Moreover, the mechanical results revealed that the electrospun 

scaffold showed an improved tensile strength of 3.55±0.29 MPa compared with the pristine PVA 

(1.8±0.52 MPa). The prepared hybrid nanocomposites showed delayed blood clotting as noted in 

APTT and PT assays indicating better blood compatibility. Moreover, the hemolysis assay revealed 

that the hybrid nanocomposites exhibited a low hemolytic index of 0.6% compared with pure PVA, 

which was 1.6% suggesting the safety of the developed nanocomposite to red blood cells (RBCs).

Conclusion: The prepared nanocomposites exhibited better physico-chemical properties, 

sufficient porosity, mechanical strength, and blood compatibility, which favors it as a valuable 

candidate in bone tissue engineering for repairing the bone defects.

Keywords: scaffold, electrospinning, bone tissue engineering, physico-chemical characteriza-

tion, blood compatibility

Introduction
Finding clinical applications for the repair of massive bone defects produced by dis-

ease or trauma is a challenge. The diseases or traumas included in this list are tumor 

ablation, bone cysts, osteolysis, and neurosurgical defects.1 Recently, in biomedical 

Correspondence: Saravana Kumar 
Jaganathan
Department for Management of 
Science and Technology Development, 
Ton Duc Thang University, Ho Chi 
Minh City, Vietnam
Tel +84 8 3775 5037
Email saravana@tdt.edu.vn 

Journal name: International Journal of Nanomedicine
Article Designation: Original Research
Year: 2018
Volume: 13
Running head verso: Qi et al
Running head recto: Development and blood compatibility assessment of electrospun PVA/mPE/PA
DOI: 151242

In
te

rn
at

io
na

l J
ou

rn
al

 o
f N

an
om

ed
ic

in
e 

do
w

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.d
ov

ep
re

ss
.c

om
/

F
or

 p
er

so
na

l u
se

 o
nl

y.

http://www.dovepress.com/permissions.php
https://www.dovepress.com/terms.php
http://creativecommons.org/licenses/by-nc/3.0/
https://www.dovepress.com/terms.php
www.dovepress.com
www.dovepress.com
www.dovepress.com
http://dx.doi.org/10.2147/IJN.S151242
https://www.facebook.com/DoveMedicalPress/
https://www.linkedin.com/company/dove-medical-press
https://twitter.com/dovepress
https://www.youtube.com/user/dovepress
mailto:saravana@tdt.edu.vn


International Journal of Nanomedicine 2018:13submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

2778

Qi et al

applications, bone tissue engineering is promising as a 

new approach for bone repair. The tissue-engineered bone 

scaffold helps in eliminating problems of donor scarcity, 

supply limitation, pathogen transfer, and immune rejection 

compared to traditional autograft and allograft procedures.2 

Moreover, tissue-engineered bone possesses an extracel-

lular matrix (ECM), which helps in promoting osteoblast 

proliferation for the differentiation, growth, and mineralized 

tissue formation.3,4 The ideal scaffold in bone tissue engineer-

ing must be biocompatible, biodegradable, nontoxic, and 

highly porous and should not cause foreign body reactions. 

Furthermore, it should have significant mechanical and 

physical properties in order to meet the need of bone tissue 

engineering.5,6 Currently, a variety of materials are utilized 

in repairing the damaged or traumatized bone tissue. The 

materials include metals, ceramics, and polymers (natural 

and synthetic).7 Owing to many disadvantages in metals 

and ceramics, such as lack of degradability in a biological 

environment and limited process ability, their utilization in 

bone tissue-engineering applications is restricted.8 In con-

trast, polymers are attractive due to design flexibility and 

may be easily tailored according to the specific needs.9 The 

commonly used polymers in bone tissue engineering are 

poly(lactic acid), poly(glycolic acid), poly(lactic-co-glycolic 

acid) (PLGA), poly(caprolactone), and natural polymers such 

as collagen, gelatin, silk, and chitosan.10

The design of scaffolds as ECM in guiding the tissue 

regeneration process is still challenging in bone tissue 

engineering. For tissue-engineering applications, the fabri-

cated scaffolds should imitate the biological functions and 

also resemble the structure of the ECM.4,11,12 Moreover, the 

developed scaffolds should provide sufficient mechanical 

support to direct the inductive molecules or cells to the 

repair site for the generation of new tissue growth. There 

are many techniques such as particle leaching, phase separa-

tion, and self-assembly to develop three-dimensional porous 

architectures.3,4 However, the scaffolds developed using 

these techniques do not effectively imitate the structure of 

the natural ECM, which limits the bone tissue formation.4 

ECM is a natural composite in which the fibrous collagens 

are embedded in a three-dimensional porous network. The 

hierarchical 3D porous structure was made of collagen 

fibers with tissue architecture that ranges from nanometer to 

macroscopic dimensions.13 The scaffold generated by an elec-

trospinning technique has nanoscale fibers that resemble the 

topographic features of the ECM. Nowadays, the electrospun 

fibrous scaffold has been widely used for tissue engineering. 

Moreover, many studies have focused on processing the 

various natural and synthetic polymers in fabricating porous 

scaffold for tissue-engineering applications.11,14–16

Electrospinning is a versatile and cost-effective technique 

that produces fibers in nanoscale diameters with the aid of a 

high electric field. In the electrospinning setup, the polymer 

solution in a syringe needle is subjected to an electric field 

and the polymer jet is converted into nanofibers when the 

electric field overcomes the threshold voltage. The result-

ing nanofibers are deposited in the form of a nonwoven 

fabric on the collector drum. Electrospinning is a versatile 

technique for fabricating the scaffold for tissue-engineered 

applications because control of fiber diameters and poros-

ity may be performed by adjusting solution properties and 

operating parameters.17–19 In this study, the polymer used 

in fabricating the scaffold was polyvinyl alcohol (PVA). 

The various applications of PVA composites in biomedi-

cal applications include manufacturing of contact lenses, 

artificial heart surgery, drug delivery systems, and wound 

dressings.20 Furthermore, PVA is used as a biomaterial in 

medical devices because of its favorable properties such as 

biocompatibility, nontoxicity, noncarcinogenicity, swelling 

properties, and bioadhesive characteristics.21

Another material used in this study was metallocene 

polyethylene (mPE). The metallocene-based polyolefins 

possess enhanced toughness, seal ability, clarity, and 

elasticity.22 mPE provides excellent permeability to oxygen 

and also acts as a barrier toward ammonia and water. 

Currently, mPE is used in many medical applications such 

as disposable bags, storage bottles, blood bags, and syringe 

tubes.23 Generally, the use of PVA in certain applications is 

limited by low strength20 and it is hypothesized that adding 

mPE will provide suitable strength to the electrospun mem-

brane. Furthermore, leaves of plectranthus amboinicus (PA) 

were blended with the composite to improve its properties. 

The leaves of PA have been used as flavoring agents in meat 

and poultry, as ornamentals, and also as essential oils. PA 

leaves were also utilized for other ranges of problems such as 

infections, rheumatism, and flatulence.24,25 The constituents of 

PA were reported to have various bioactivities such as anti-

oxidant, antibacterial, antimicrobial, antifungal, and wound 

healing activities. Moreover, the constituents of PA were 

found to possess anti-inflammatory activity inhibiting the 

activator protein-1 (AP-1) and tumor necrosis factor (TNF-α), 

which are vital for the pathogenesis of inflammatory bone 

resorption.26 In this study, a novel bionanocomposite based 

on PVA blended with mPE and PA will be fabricated using 

a single-step electrospinning process. The aim of this study 

was the fabrication and investigation of physico-chemical 
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characterization and mechanical properties of the developed 

nanocomposite. Furthermore, blood compatibility assays 

were performed to assess the safety of the fabricated nano-

composite along with the pure PVA nanofibers.

Materials and methods
Materials
The following materials were used in this study: PVA was 

from Sigma-Aldrich Co. (St Louis, MO, USA); mPE sheets 

were gifts from Indian Institute of Technology (Kharagpur, 

India); fresh leaves of PA were obtained locally; phosphate-

buffered saline (PBS) and physiological saline (0.9%, w/v) 

were from Sigma-Aldrich Co.; and the coagulation assay 

reagents were from Diagnostic Enterprises (Solan, India).

Preparation of nanocomposite
Distilled water was used as a solvent for PVA, and 10 wt% 

of PVA was used for the preparation of the nanocomposite. 

To prepare 10 wt% of PVA, 0.70 g of PVA polymer was 

mixed in 7 mL of distilled water and stirred for 12 h at room 

temperature to obtain a clear homogeneous solution. Both 

mPE and PA were incorporated into the PVA matrix at a 

concentration of 1 wt%. To prepare 1 wt% of mPE, 0.030 g 

of mPE was mixed in 3 mL of xylene and stirred for 24 h 

until the homogeneous solution was obtained. Similarly, the 

homogeneous solution of PA was obtained by adding 30 µL 

of PA in 3 mL of distilled water and stirred for 3 h at room 

temperature. Finally, the PVA/mPE/PA nanocomposite was 

obtained by adding the prepared homogeneous solution of 

mPE and PA solutions in PVA at the ratio of 8:1:1 (v/v) and 

stirred for 2 h for the uniform dispersion.

Fabrication of PVA and nanocomposite 
dressing
The pure PVA nanofiber and PVA/mPE/PA nanocomposites 

were obtained by an electrospinning technique. Electro-

spinning of both PVA and PVA/mPE/PA nanofibers was 

performed at an applied voltage of 10 kV with a flow rate 

of 0.5  mL/h. The obtained nanofibers were deposited on 

the collector, which was placed at 17 cm from the tip of the 

needle. The fabricated PVA and PVA/mPE/PA scaffolds 

were dried at room temperature under vacuum.

Physico-chemical characterizations
Scanning electron microscopy (SEM) micrographs
The electrospun PVA and PVA/mPE/PA nanocomposites 

were investigated using the Tabletop TM-300 (Hitachi 

Ltd., Tokyo, Japan) to analyze the morphological features. 

Before obtaining microphotographs, the fabricated membranes 

were coated with gold and the average fiber diameter was cal-

culated using the ImageJ software (Bethesda, MD, USA).

Attenuated total reflectance Fourier transform 
infrared spectroscopy (ATR-FTIR) analysis
The spectra of electrospun PVA and PVA/mPE/PA were 

obtained using the Nicolet iS5 ATR-FTIR unit (Thermo 

Fischer Scientific, Waltham, MA, USA). Initially, the 

samples of electrospun PVA and PVA/mPE/PA were placed 

on the sensor and scanned at a resolution of 4/cm in the fre-

quency range of 600–4,000 cm-1 to examine the presence of 

characteristic peaks.

Porosity and pore size measurement
The density bottle method was used to measure the porosity 

percentage of the pure PVA and the prepared PVA/mPE/PA. 

Then, the apparent density (ρ
i
) was calculated using the fol-

lowing formula:

	

Apparent density 

Weight of  the nanofiber membrane (m)

( )ρ
i

=
TThickness (t) Area of  the sample 1 w× × ( ) �

(1)

After calculating the apparent density (ρ
i
) and the bulk/

standard density ρ
0
 of PVA, the values were placed in the 

following equation to calculate the porosity percentage (ε):

	

Porosity percentage 1 100%
0

 ( )ε = − ×
ρ
ρ







�

(2)

Finally, the average pore size diameter in both PVA and 

PVA/mPE/PA was calculated using ImageJ and the obtained 

values were explored into the Excel sheet to draw the pore 

size distribution.

Contact angle measurements
The wettability of electrospun PVA and PVA/mPE/PA was 

calculated using the VCA Optima (AST Products, Inc., 

Billerica, MA, USA) contact angle measurement unit. The 

measurement was performed by placing a water drop on the 

sample, and the image of the water droplet on the membranes 

was captured using high-resolution camera. From the cap-

tured image, the mean contact angles were calculated using 

the computer-integrated software.

Thermogravimetric analysis (TGA)
The thermal properties of electrospun PVA and PVA/mPE/

PA were investigated using the TGA unit (PerkinElmer 
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Inc., Waltham, MA, USA). The thermal properties were 

determined by heating a sample weighing 3 mg from 50 to 

1,000°C at 10°C/min.

Mechanical testing
The mechanical testing was measured according to ASTM 

D638-98 standard using a uniaxial load test machine (AI-3000; 

Gotech Testing Machines, Taichung, Taiwan). To begin, a small 

piece of electrospun PVA and PVA/mPE/PA was mounted 

on its cut ends and the testing was carried out at a cross-head 

speed of 5 mm/min until the onset failure occurs. Then, the 

tensile strength and Young’s modulus (modulus of elasticity) 

were calculated from the slope of the stress–strain curve.

Functionalization of PVA and PVA/mPE/PA 
nanocomposites
Functionalization was performed through a heating method. 

Samples with a size of 2×2 cm2 were cut and placed on the 

heating unit. Heating was performed at 70°C for 7 days in 

room temperature continuously.27 After heating, the samples 

were weighed (W
d
) and then immersed into warm distilled 

water (37.0°C) for 1, 7, and 14  days.28 After 1, 7, and 

14 days, the samples were taken out and the weight of the 

immersed samples (Wi) was measured after drying. Finally, 

the solubility in water for both samples was calculated.

Blood compatibility assessments
Ethical approval and blood sample procurement
The coagulation assay procedures were approved by the 

Chairman, Ethical and Medical Researcher Committee, 

Universiti Tekonologi Malaysia, with the ref no UTM.J.45.01/ 

25.10/3Jld.2(3). Before the procedures, a written consent 

form was given to the healthy volunteers. They were 

informed about the risks and benefits and they signed the 

informed consent before blood withdrawal. The blood col-

lection and the preparation of platelet-poor plasma (PPP) 

were carried out as reported in previous work.29

Activated partial thromboplastin time (APTT)
The APTT assay was used to measure the activation of 

intrinsic pathway to detect the blood compatibility of pure 

PVA nanofiber and PVA/mPE/PA nanocomposite. To begin, 

the samples of PVA nanofiber and PVA/mPE/PA nanocom-

posite were added to 100 μL of PPP and incubated at 37°C. 

Then, the mixture was added with 100 μL of rabbit brain ceph-

alin followed by adding 50 µL of CaCl
2
. Finally, the mixture 

was stirred using a needle and time taken for the appearance 

of the initial clot was measured using a chronometer.29

Prothrombin time (PT)
PT was calculated for pure PVA nanofiber and PVA/mPE/PA 

nanocomposite to investigate the activation of the extrinsic 

pathway. For the PT assay, cut samples of fabricated 

pure PVA nanofiber and PVA/mPE/PA nanocomposite 

(0.5×0.5 cm2) were added with 100 μL of PPP and incubated 

at 37°C. Then, the mixture was activated by adding 0.9% of 

NaCl-thromboplastin (Factor III, 100 mL)-containing Ca2+ 

ions and the initiation for clot formation was identified using 

a chronometer.29

Hemolysis assay
To begin this assay, the fabricated pure PVA nanofiber and 

PVA/mPE/PA were cut into small pieces with the dimension 

of 1×1 cm and equilibrated in 4 mL of saline for 30 min at 

37°C. After that, the samples were exposed to 0.2 mL of 

diluted blood and incubated for 60 min at 37°C. The posi-

tive and negative controls were constituted by mixing human 

blood into distilled water in the ratio 4:5 (100% hemolysis) 

and the physiological saline solution, respectively. Then, the 

mixture was retrieved and centrifuged at 1,000 rpm for 5 min. 

After that, the absorbance of the supernatant was measured 

at 545 nm, which represents the damage of red blood cell 

(RBC). The percentage of hemolysis or hemolytic index was 

calculated using the protocol as described earlier.29

Statistical analysis
In this study, all the experiments were performed thrice inde-

pendently. Using unpaired t-test, the statistical significance 

was determined and the results obtained were expressed in 

mean ± SD.

Results and discussion
Morphological analysis
The SEM images denote the morphology of the electrospun 

PVA and PVA/mPE/PA nanocomposites. The SEM analysis 

clearly indicates that the electrospun PVA and PVA/mPE/

PA nanocomposites possessed beadless fibers as shown in 

Figure 1A and B. The fiber diameters of PVA and PVA/

mPE/PA nanocomposites were found to be 326±56 and 

238±45 nm, respectively. The obtained results clearly showed 

that the PVA/mPE/PA nanocomposites showed reduced fiber 

diameter compared to pure PVA. The corresponding fiber 

distribution curve for the electrospun PVA and PVA/mPE/

PA nanocomposites are shown in Figure 2A and B. Linh 

and Lee utilized PVA scaffold blended with gelatin for bone 

tissue engineering application. It was observed that the fiber 

diameter of electrospun PVA nanofibers was 250±20 nm, 

whereas PVA/gelation showed reduced fiber diameter in the 
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range of 150±10 nm. Furthermore, the PVA/gelatin scaffold 

with smaller fiber diameter showed enhanced osteoblast 

proliferation compared to pure PVA.30 In our study, the fiber 

diameter of electrospun PVA/mPE/PA nanocomposites was 

found to be of similar range, which seems to be conducive 

for enhanced bone tissue growth.

ATR-FTIR analysis
The characteristic peaks present in the PVA, mPE, PA, and 

PVA/mPE/PA are indicated in Figure 3. In the absorption 

band of PVA, a broad band visible at 3,325 cm-1 signals the 

OH group. A sharp peak seen at 2,918 cm-1 denotes the CH 

stretching, and the peaks at 1,375 and 1,435 cm-1 indicate 

Figure 1 SEM images of (A) PVA membrane and (B) PVA/mPE/PA nanocomposites.
Abbreviations: mPE, metallocene polyethylene; PA, plectranthus amboinicus; PVA, polyvinyl alcohol; SEM, scanning electron microscopy.

Figure 2 Fiber distribution curves of (A) PVA membrane and (B) PVA/mPE/PA nanocomposites.
Note: *Mean differences were significant compared with pure PVA (P,0.05).
Abbreviations: mPE, metallocene polyethylene; PA, plectranthus amboinicus; PVA, polyvinyl alcohol.

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


International Journal of Nanomedicine 2018:13submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

2782

Qi et al

CH vibrations. The presence of carboxylic (C=O) stretch-

ing was observed at 1,732, and bands at 1,246, 1,092, 843, 

and 607 cm-1 indicate the C-O stretching corresponding to 

alcohol groups.31,32 Similarly, in the mPE spectrum, a sharp 

twin peak at 2,917 and 2,849 cm-1 indicating the CH stretch-

ing and the vibrations of CH stretching was identified by the 

characteristic bands at 1,371 and 1,468 cm-1, respectively. 

Furthermore, a band seen at 1,737 cm-1 indicates the C-O 

stretching and their vibrations of C-O corresponding to alco-

hol were seen at 1,237, 1,019, and 719 cm-1, respectively.33 

Similarly, in the IR spectrum of PA, a wide band observed 

at 3,345 cm-1 indicates the OH stretching and a sharp peak 

at 1,634  cm-1 indicates the C=O stretching. From the IR 

spectrum of PVA/mPE/PA nanocomposites, it was observed 

that the intensity of the absorption bands was increased due to 

the formation of the OH bond.34 Furthermore, the formation 

of additional bands at the peak of 1,645 and 1,539 cm-1 was 

attributed to the vibrations of OH group, which clearly indi-

cate the interaction between the PVA, mPE, and PA.35 The 

interaction between PVA, mPE, and PA was also identified 

by a shifting of the OH group to a lower wave number from 

3,325 cm-1 in pure PVA to 3,292 cm-1 in PVA/m PE/PA, con-

firming the addition of mPE and PA in the PVA matrix.34

Porosity measurements
The results of percentage porosity are shown in Figure 4. 

The pure PVA membrane exhibited a mean porosity of 76%, 

whereas in the fabricated PVA/mPE/PA, the porosity was 

found to be 87%. The results clearly show that the PVA/

mPE/PA membrane has high porosity ~8.8% enhance-

ment compared to pure PVA. Furthermore, the fabricated 

PVA/mPE/PA membrane showed a decrease in pore size 

diameter compared to control as indicated in Figure 5. The 

developed nanocomposite mesh exhibited a pore diameter 

of 340±86 nm, while for the pure PVA, the pore size diam-

eter was found to be 460±53 nm. Sicchieri et al prepared 

PLGA–calcium phosphate (CaP) scaffolds for bone tissue 

engineering. It was reported that the scaffold with low pore 

Figure 3 Infrared spectrum of PVA membrane, mPE, PA, and PVA/mPE/PA nanocomposites.
Abbreviations: mPE, metallocene polyethylene; PA, plectranthus amboinicus; PVA, polyvinyl alcohol.

Figure 4 Porosity percentage of PVA membrane and PVA/mPE/PA nanocom
posites.
Note: *Mean differences were significant compared with pure PVA (P,0.05).
Abbreviations: mPE, metallocene polyethylene; PA, plectranthus amboinicus; PVA, 
polyvinyl alcohol.
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size diameter showed enhanced osteoblast cell response and 

favored enhanced bone formation.36 Hence, the fabricated 

novel nanocomposites with decreased pore size diameter 

might be favorable for the new bone tissue formation.

Wettability
The wettability of electrospun PVA and PVA/mPE/PA is 

shown in Table 1. The contact angle measurements revealed 

that the contact angle of PVA/m PE/PA decreased compared 

to pure PVA. It was in agreement with our FTIR findings, 

which depicted the significant increase in OH intensity, con-

firming the hydrophilic nature of the nanocomposites. The 

contact angle of PVA was found to be 62° whereas the contact 

angle of PVA/mPE/PA was found to be 51°, which clearly 

indicates that the addition of mPE and PA into the PVA 

matrix improved wettability of the fabricated hybrid mem-

brane. Abdal-hay et al prepared electrospun nylon-6 scaffold 

blended with hydroxyapatite (HAp) for bone tissue formation. 

It was reported that the prepared nanocomposites showed 

hydrophilic nature and concluded that increased wettability is 

observed to be linked to enhanced bone regeneration.37

TGA
The TGA serves as a proof for chemical interactions and the 

formation of strong hydrogen bonds in the electrospun PVA 

and PVA/mPE/PA. The results of thermal analysis are shown 

in Figure 6. The results clearly showed that the pure PVA 

°

Figure 6 TGA of PVA membrane and PVA/mPE/PA nanocomposites.
Abbreviations: mPE, metallocene polyethylene; PA, plectranthus amboinicus; PVA, 
polyvinyl alcohol; TGA, thermogravimetric analysis.

Figure 5 Pore size distribution of (A) PVA membrane and (B) PVA/mPE/PA nanocomposites.
Note: *Mean differences were significant compared with pure PVA (P,0.05).
Abbreviations: mPE, metallocene polyethylene; PA, plectranthus amboinicus; PVA, polyvinyl alcohol.

Table 1 Contact angle measurement of PVA and PVA/mPE/PA 
nanocomposites

Serial 
number

Sample Average contact 
angle (°)

1 Pure PVA 62±1.19
2 PVA/mPE/PA nanocomposites 51±1.32*

Note: *Mean differences were significant compared with pure PVA (P,0.05).
Abbreviations: mPE, metallocene polyethylene; PA, plectranthus amboinicus; PVA, 
polyvinyl alcohol.
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displayed two-stage degradation and the PVA/mPE/PA nano-

fibers depicted stages of degradation indicating lower thermal 

stability compared to control. The PVA/mPE/PA nanofibers 

showed initial onset temperature of 56°C whereas the onset 

temperature value for pure PVA was found to be 274°C, 

which clearly indicates that the developed nanocomposites 

exhibited lower thermal stability. The reason for lower ther-

mal stability was due to the presence of water molecules in the 

PVA matrix due to the addition of PA. Balaji et al fabricated 

polyurethane (PU) scaffold blended with honey and papaya 

fibers. It was observed that the addition of the papaya and 

honey into the PU matrix decreased the degradation of tem-

perature, and our obtained results resemble the similar find-

ings.38 Abdullah et al prepared a PVA scaffold blended with 

aloe vera using electrospinning technique. It was reported that 

the addition of aloe vera into the PVA matrix decreased the 

degradation temperature due to the high water content pres-

ent in the aloe vera.35 Our developed hybrid nanocomposites 

showed decreased thermal stability, which might be due to the 

water molecules present in the fabricated nanocomposites.

Mechanical properties
The results of tensile strength and modulus for pure PVA 

and PVA/mPE/PA nanocomposites were shown in Figure 7. 

The electrospun PVA/mPE/PA nanocomposites exhibited 

higher tensile strength compared to the pure PVA nanofibers. 

The developed hybrid nanocomposites showed a tensile 

strength of 3.55±0.29 MPa, while for PVA, it was found 

to be 1.8±0.52 MPa. The mechanical testing results clearly 

revealed that the blending of the mPE into the PVA matrix has 

improved the tensile properties of the electrospun PVA nano-

fibers. Linh and Lee prepared a PVA scaffold blended with 

gelatin fibers for bone tissue engineering. It was reported that 

the tensile strength of pure PVA was 0.85±0.60 MPa while a 

PVA-blended gelatin membrane exhibited a tensile strength 

of ~4.20±0.40 and concluded the fabricated PVA/gelatin 

membrane as a suitable candidate for bone tissue formation.30 

In our developed nanocomposites, the tensile strength was 

found to be within the range of the above reported value and 

it might be used as a scaffold for the bone tissue formation.

Functionalization
The functionalization of PVA and PVA/mPE/PA nano-

composites was obtained using a heating method. The 

dissolution percentage of unfunctionalized PVA and 

PVA/mPE/PA nanocomposites after 1, 7, and 14  days is 

listed in Table 2. The SEM images of the functionalized PVA 

Table 2 Dissolution percentage of unfunctionalized and func
tionalized PVA and PVA/mPE/PA nanocomposites

Days Unfunctionalized PVA 
and PVA/mPE/PA 
nanocomposites (%)

Functionalized 
PVA (%)*

Functionalized 
PVA/mPE/
PA (%)*

1 100 0 0
7 100 0.39±0.07 0.46±0.02
14 100 1.26±0.30 1.65±0.57

Note: *Mean differences were significant compared with unfunctionalized PVA and 
PVA/mPE/PA nanocomposites (P,0.05).
Abbreviations: mPE, metallocene polyethylene; PA, plectranthus amboinicus; PVA, 
polyvinyl alcohol.
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Figure 7 Mechanical testing of (A) PVA membrane and (B) PVA/mPE/PA nanocomposites.
Note: *Mean differences were significant compared with pure PVA (P,0.05).
Abbreviations: mPE, metallocene polyethylene; PA, plectranthus amboinicus; PVA, polyvinyl alcohol.
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and PVA/mPE/PA nanocomposites after 1, 7, and 14 days 

are shown in Figures 8A and B, 9A and B, and 10A and B, 

respectively. The heat treatment improved the degradation 

behavior of the PVA membrane. It was reported that the 

heat treatment causes an increase in entanglements of longer 

polymer chains, which results in an increase in molecular 

weight. Furthermore, an increase in molecular weight reduces 

the formation of crystals, which favored the decreased weight 

loss.39 In our study, heat treatment might reduce the forma-

tion of crystals in PVA nanofibers, which ultimately reduces 

the weight loss in water. Asran et al prepared a nanofibrous 

scaffold based on PVA blended with collagen and HAp for 

bone tissue engineering. It was reported that the addition 

of HAp into the PVA matrix reduced the crystal structure 

of the PVA, which favored the reduction in weight losss.32 

Hence, in our study, the addition of mPE and PA might also 

be the reason for decreasing the size of the crystal structure of 

the PVA, which resulted in a reduced weight loss. Similarly, 

in a recent study, Hong prepared a PVA scaffold blended 

with AgNO
3
 nanoparticles and performed heat treatment 

under ultra violet (UV) lamp. It was reported that the heat 

treatment of electrospun PVA/AgNO
3
 made them insoluble 

in a moist environment.40 Hence, functionalizing the PVA 

using heat renders the nanocomposite insoluble in an aqueous 

environment. The functionalized PVA was explored for its 

blood compatibility in order to assess its safety.

Figure 8 SEM images of functionalized (A) PVA membrane and (B) PVA/mPE/PA nanocomposites after 1 day.
Abbreviations: mPE, metallocene polyethylene; PA, plectranthus amboinicus; PVA, polyvinyl alcohol; SEM, scanning electron microscopy.

Figure 9 SEM images of functionalized (A) PVA membrane and (B) PVA/mPE/PA nanocomposites after 7 days.
Abbreviations: mPE, metallocene polyethylene; PA, plectranthus amboinicus; PVA, polyvinyl alcohol; SEM, scanning electron microscopy.
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Coagulation assay measurements
The blood compatibility assessments play a significant role 

in deciding the application of developed implants in biomedi-

cal applications. When the implants contact with the blood, 

they absorb more plasma proteins and also enhance platelet 

surface interaction, which causes the thrombus formation, 

which ultimately results in the failure of the implants. 

Hence, it is required to design an implant, which should 

minimize the plasma protein adsorption and increase the 

thromboresistance.41 The formation of thrombus was initiated 

by a blood coagulation cascade, which follows two pathways, 

namely the intrinsic and extrinsic pathways. In the intrinsic 

pathway, the coagulation of blood was activated by plasma 

factors whereas, in the extrinsic pathway, the blood coagula-

tion was activated by tissue factors.42 The APTT assay deter-

mines the blood compatibility through the intrinsic pathway 

while the PT determines blood compatibility through the 

extrinsic pathway. The results of the APPT and PT assays are 

shown in Figure 11. It was observed that the PVA/mPE/PA 

matrix showed delayed blood clotting time compared with 

pure PVA. For the APTT assay, the blood clotting time of 

PVA/mPE/PA was found to be 177±3.05 s whereas, for pure 

PVA, the blood clotting was found to be 147±3.6 s. Similarly, 

for the PT assay, the blood clotting time of PVA/mPE/PA 

was found to be 75±2.0 s whereas, for pure PVA, the blood 

clotting time was observed to be 61±2.0 s. Hence, the addi-

tion of mPE and PA into the PVA matrix improved the 

anticoagulant and thrombogenic nature of pure PVA. Fur-

thermore, hemolysis was performed to investigate the safety 

of RBCs on the electrospun PVA/mPE/PA nanocomposites. 

The results of the hemolysis assay are shown in Figure 12. 

From results obtained, the hemolytic index of pure PVA was 

1.6% while, for electrospun PVA/mPE/PA nanocomposites, 

the index was only 0.6%. It was reported, if the hemolysis 

percentage was .2%, the material was considered as hemo-

lytic material, and when the percentage was ,2%, then the 

material was considered as nonhemolytic material.43 Hence 

our fabricated nanocomposites showed only 0.6%, which 

was ,1% indicating nonhemolytic material. A recent report 

suggested that the blood compatibility is influenced by a 

combination of factors such as surface roughness, surface 

energy and surface tension, surface wettability, and fiber 

Figure 10 SEM images of functionalized (A) PVA membrane and (B) PVA/mPE/PA nanocomposites after 14 days.
Abbreviations: mPE, metallocene polyethylene; PA, plectranthus amboinicus; PVA, polyvinyl alcohol; SEM, scanning electron microscopy.

Figure 11 APTT and PT assays of PVA membrane and PVA/mPE/PA nanocom
posites.
Note: *Mean differences were significant compared with pure PVA (P,0.05).
Abbreviations: APTT, activated partial thromboplastin time; mPE, metallocene 
polyethylene; PA, plectranthus amboinicus; PT, prothrombin time; PVA, polyvinyl 
alcohol.
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diameters.44 Hence, the prediction of the combinational 

factors affecting the blood compatibility of the developed 

nanocomposites is cumbersome. Vincent et al developed 

multiple scaffolds based on degarapol and PLGA and inves-

tigated the significance of blood compatibility on different 

fiber diameters. It was reported that a small fiber diameter 

has a great influence in improving the blood compatibility 

of the fabricated nanocomposites.45 Manikandan et al pre-

pared a PU scaffold blended with murivenenai oil for tissue 

engineering applications. It was observed that the fabricated 

nanocomposites exhibited a hydrophilic nature indicating 

improved surface wettability. Furthermore, the PU-blended 

with murivennai oil nanocomposite showed improved blood 

compatibility compared with pure PU.46 In our study, the 

fabricated PVA/mPE/PA nanofibers exhibited smaller fiber 

diameter and improved surface wettability compared with the 

pure PVA fibers, which might be attributed to the enhanced 

blood compatibility.

Conclusion
In this study, we successfully fabricated a hybrid nanocom-

posite membrane based on PVA, mPE, and PA fibers. The 

hybrid nanocomposites exhibited reduced fiber diameter 

in the nanometer range and also a hydrophilic nature, as 

revealed in contact angle measurements. The mechanical 

results revealed that the hybrid membrane showed enough 

tensile strength required for bone tissue engineering. A hybrid 

nanocomposite comprising mPE, PVA and PA delayed blood 

clotting and displayed a low hemolytic index, indicating 

better blood compatibility. Hence, the newly developed 

nanocomposites mimicking the ECM structure might be a 

suitable scaffold for repairing bone defects.
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