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Background: Economic models in oncology are commonly based on the three-state partitioned 

survival model (PSM) distinguishing between progression-free and progressive states. However, 

the heterogeneity of responses observed in immuno-oncology (I-O) suggests that new approaches 

may be appropriate to reflect disease dynamics meaningfully. 

Materials and methods: This study explored the impact of incorporating immune-specific 

health states into economic models of I-O therapy. Two variants of the PSM and a Markov model 

were populated with data from one clinical trial in metastatic melanoma patients. Short-term 

modeled outcomes were benchmarked to the clinical trial data and a lifetime model horizon 

provided estimates of life years and quality adjusted life years (QALYs). 

Results: The PSM-based models produced short-term outcomes closely matching the trial 

outcomes. Adding health states generated increased QALYs while providing a more granular 

representation of outcomes for decision making. The Markov model gave the greatest level of 

detail on outcomes but gave short-term results which diverged from those of the trial (overstat-

ing year 1 progression-free survival by around 60%). 

Conclusion: Increased sophistication in the representation of disease dynamics in economic 

models is desirable when attempting to model treatment response in I-O. However, the assump-

tions underlying different model structures and the availability of data for health state mapping 

may be important limiting factors.

Keywords: immuno therapy, metastatic melanoma, nivolumab, dacarbazine, Markov, parti-

tioned survival

Introduction
Reliable evidence to determine long-term cost-effectiveness is frequently absent when 

a marketing authorization application is submitted for a new therapy. This evidence 

is central to recent debates around the affordability of cancer drugs and the sustain-

ability of high drug prices.1–3 The tension between effective management of health care 

budgets and the provision of optimal care to cancer patients highlights the need for 

decision makers to assess the true value of cancer treatments using the most rigorous 

and robust methods.4,5 

Together with the challenge of affordability, an accurate depiction of the true 

impact of anticancer medication is critical particularly given escalating price 

benchmarks accompanied by, in some cases, only moderate improvements in overall 

survival (OS). Comparing treatment effect can be complex; this is particularly true 
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given the numerous surrogate endpoints often used in clini-

cal trials which may, or may not, be predictive of a true OS 

benefit.1,6 In the evaluation of new treatments, a balance 

between disease progression and treatment-related toxici-

ties is key to determining clinically meaningful outcomes 

for patients. To improve cross product and disease area 

comparisons, the European Society for Medical Oncology 

(ESMO) has developed a reproducible tool which can be 

applied to new anticancer treatments to assess the mag-

nitude of clinical benefit (ESMO Magnitude of Clinical 

Benefit Scale). The tool grades each trial within the curative 

and non-curative disease settings using a two-part rule. 

Firstly, the lower limit of the 95% confidence interval (CI) 

on the hazard ratio is compared with specified thresholds. 

Secondly, the observed absolute difference in treatment 

outcomes is compared with the minimum absolute gain 

considered as beneficial.7,8 

As more innovative treatments are introduced, the value 

defined by conventional economic modeling requires renewed 

scrutiny given the complex technical and data availability 

issues raised by new therapies.4,5 

An established approach to economic modeling in oncol-

ogy is the three-state partitioned survival model (PSM), 

which classifies patients into the states of “progression 

free,” “progressive disease” (PD), and “death” (Figure 1). 

The approach mirrors the data on progression-free survival 

(PFS) and OS commonly reported in clinical trials, and 

is designed to evaluate therapies in which the course of 

disease is relatively easily captured by a limited number 

of health states.9 

Particular challenges for economic modeling in 

oncology have been raised by the emergence of checkpoint 

inhibitors, which are a new therapeutic class of immuno-

oncology (I-O) compounds,10 an evolving treatment 

modality that harnesses the immune system to fight can-

cer. Fundamental differences in pharmacodynamic and 

anticancer properties of I-O compared with conventional 

therapies call for innovative ways to model patient response 

to treatment. In particular, treatment response with I-O 

drugs differs from progression with conventional therapies, 

an example being “pseudo-progression” (ie, tumor growth 

from treatment effect rather than true disease progression) 

that has been described with immune checkpoint inhibitors 

in melanoma. One may inaccurately assess these unique 

I-O-associated clinical response parameters which, in turn, 

may prevent robust cost-effectiveness analysis and value-

based assessments11,12 – as demonstrated in the survival 

extrapolation of I-O with traditional data fits versus more 

flexible approaches.13

While conventional therapies demonstrate early benefit 

but often with limited durability (Figure 2A, B),11,14 some 

patients treated with I-O therapy tend to exhibit delayed 

response, followed by subsequent long-term survival.15 This 

typically occurs in about 20%–30% of patients across several 

tumor sites.16–18 Meanwhile, the potential for quality of life 

to be maintained in melanoma has been demonstrated with 

nivolumab.19 

Related to the differences in clinical response is the 

duration of therapy needed to sustain such responses. Tra-

ditionally, a treat to progression approach has been used, but 

there is emerging evidence that a shorter duration of therapy 

can still be associated with sustained clinical response. In 

addition, clinical trials in some indications have revealed 

treatment beyond progression (where treatment is still 

tolerated) as response continues to be seen irrespective of 

the standard definition of progression. This highlights the 

need for models to capture time on treatment as well as 

disease progression. 

Improvements on existing model frameworks used in 

cost-effectiveness analyses could include increasing the 

number of health states in the traditional model, partition-

ing of data based on patient prognosis or clinical outcomes, 

or patient-level approaches that account for greater hetero-

geneity. Such methods have the potential to demonstrate 

significant improvements over a three-state model without 

addressing the fundamental differences that the patterns of 

survival associated with I-O imply. To deal with some of these 

issues, other economic measures that may be applicable have 

Figure 1 Three-state partitioned survival model. Patients can remain in pre- or 
post-progression, move from pre- to post-progression, or move from either state 
to death.

Pre-
progression

Post-
progression

Death

www.dovepress.com
www.dovepress.com
www.dovepress.com


ClinicoEconomics and Outcomes Research 2018:10 submit your manuscript | www.dovepress.com

Dovepress 
141

Dovepress New economic model frameworks in immuno-oncology

141

Figure 2 Kaplan–Meier plots for (A) PFS for both treatment arms, (B) OS for both treatment arms, and data fits of conventional and flexible methods applied to (C) PFS 
for nivolumab, (D) PFS for dacarbazine, (E) OS for nivolumab, and (F) OS for dacarbazine.
Abbreviations: RCS, restricted cubic splines; CI, confidence interval; PFS, progression-free survival; OS, overall survival.
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been proposed (eg, assessing survival benefit over a daily 

scale).1,3,6,8 A key issue is whether economic models can 

be designed to provide more clinically relevant representa-

tions of disease compared with the traditional approaches, 

which continue to be applied in published cost-effectiveness 

analyses.20–22 A related challenge is the extent to which the 

data typically collected as part of clinical trials are reflective 

of disease dynamics in I-O therapies, potentially constraining 

analysts’ ability to develop more sophisticated approaches. 

By testing innovative economic model approaches, the aim of 

this paper is to explore new ways of aligning model structure 

with clinical observations in I-O therapy, and to contribute 
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to the development of economic evaluation guidelines in 

this area.

Materials and methods
This paper presents an empirical application of a range of 

economic model structures varying in terms of numbers and 

definitions of health states. These health states are tested 

against a set of I-O data drawn from one randomized trial 

in malignant melanoma (CheckMate 066).12 The models 

are used to investigate how increasingly refined structures, 

compared with the reference point of the traditional three-

state PSM, can help provide more detailed evidence of value 

for decision making. While the approach is intended to be 

generalizable to other disease areas and therapeutic options, 

the picture of immune responses to different single and com-

bination therapies is still emerging. To reinforce good practice 

and consistency in economic model development, an initial 

generalized approach to the selection of model frameworks 

is presented and the implications for economic evaluation in 

I-O are drawn out. The empirical application is then reported 

using a stepwise approach to develop models of increasing 

complexity within that framework. 

Selection of model framework
A number of general methodological guidelines exist on 

decision analytic modeling for the economic evaluation of 

health care interventions.23–25 Those which focus specifi-

cally on the structural design of models26–28 identify patient 

heterogeneity as a critical factor in model selection. Where 

heterogeneity between groups is an issue, as is the case 

with I-O therapy, a well-known method of overcoming the 

homogeneity assumptions inherent in economic models 

is to increase the number of states in the model,26 with 

the health states designed to represent the natural history 

of disease, treatments, and their effects.27 In the context 

of I-O therapy, limiting the model to pre-progression 

(PP) and post-progression (PsP) health states is unlikely 

to capture adequately the evolution of the disease and 

patients’ response to treatment. This has been recognized 

to some extent in health technology assessments by the 

National Institute for Health and Care Excellence (NICE), 

with some submissions for example, extending the basic 

model by introducing an on treatment/off treatment dis-

tinction,29,30 while others have retained the three-state 

model.31,32

To make allowances for different patient attributes, 

health states can be subdivided depending on the impact on 

health outcomes of various risk factors, which might include 

stages of the natural history of disease.27 Disadvantages of 

increasing the number of health states are an increase in 

model complexity,28 with the potential for reduced trans-

parency and ease of validation, and, in some cases, the 

placing of excessive demands on data availability. On the 

other hand, caution has been expressed about simplifying 

a complex model as it equates to adjusting one or more 

model parameters,26 a step which may not be justified. In 

some situations, the identification of a clinically relevant 

set of health states which capture the important aspects of 

the condition under investigation may necessitate a recon-

sideration of the fundamental model structure. If a large 

number of health states are relevant (and can be supported 

by data), it is recommended that there is a need to consider 

individual level modeling.27 

More complex approaches, in terms of the number and 

types of health states defined, reduce the number of observa-

tions to populate each health state and stretch the ability of 

the available data to match the theoretical concepts embodied 

in those health states. This may not be excessively restric-

tive if data can be sourced from general scientific literature. 

In the current context of implementing different model 

structures on the basis of data from a single clinical trial, 

there is a trade-off between the number of health states and 

the number of patient observations with which to populate 

each individual health state. A potential conflict explored 

in this study (and one which could usefully be addressed in 

early economic modeling to inform clinical development 

programs) is between increased sophistication in the por-

trayal of the condition being investigated and an effective 

reduction in the available data, with a consequent increase 

in uncertainty in the model. 

Empirical application
Patient population and trial data
The analysis of treatment outcomes was based on patient-

level data from the CheckMate 066 (the clinical trial was 

funded by Bristol-Myers Squibb; ClinicalTrials.gov num-

ber NCT01721772) randomized Phase III clinical trial of 

nivolumab (N=210, 3 mg/kg every 2 weeks) versus dacar-

bazine (N=208, 1000 mg/m2 body surface every 3 weeks) 

in treatment-naïve melanoma patients without the BRAF 

mutation (average age of 65 years). The primary endpoint 

of OS was reported alongside secondary endpoints of PFS 

and objective response rate (ORR). Patients were treated 

until progression, with tumor response assessed according 
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to Response Evaluation Criteria in Solid Tumors (RECIST; 

version 1.1),33 except those who had a clinical benefit without 

experiencing substantial adverse events. Following discon-

tinuation, patients (30.0% in the nivolumab group and 54.8% 

in the dacarbazine group) received systemic treatment, most 

commonly ipilimumab, another checkpoint inhibitor that 

was approved by the US Food and Drug Administration for 

melanoma in 2011.17

At the first database lock (August 2014, 16.7 months), 

median OS had not been reached in the nivolumab group 

(ORR of 40%) and was 10.8 months (ORR of 13.9%) in the 

dacarbazine group. Median PFS and percentage survival at 

1 year were significantly longer with nivolumab (5.1 months 

and 72.9%) compared with dacarbazine (2.2 months and 

42.1%).14,34 At the second database lock (July 2015), OS at 

2 years showed a significantly higher proportion surviving 

in the nivolumab group (57.7%) compared with dacarbazine 

(26.7%).35

Trial data available for the current analysis included up 

to 34 months’ follow-up (nivolumab) and 27 months (dacar-

bazine) for PFS and 36 months for OS (both arms). Cross-

over to ipilimumab was allowed from July 2014. Baseline 

characteristics, ORR, and disease status were available and 

extracted to supplement the model structures. Clinical out-

comes generated by the model frameworks presented in this 

paper were compared with the trial results reported in Table 1.

Model structures
To understand the value of different model frameworks, a 

stepwise approach to model development (based on clinical 

input) was taken. The health states considered were chosen 

to be clinically relevant to patients treated with I-O drugs. 

For the purposes of capturing the expected benefits of I-O 

therapy in delayed progression and prolonged survival (in 

the relevant subset of patients), and to provide a framework 

that is flexible enough to address some of the limitations 

of the conventional approach and I-O data (including 

immature OS and PFS data), three additional frameworks 

were developed. Two of the three were extensions of the 

conventional PSM approach, incorporating a broader set 

of health states but yielding the same estimates of survival. 

The other was a state-transition model designed to capture 

the impact of I-O therapy in terms of immune response 

(Figure 3A–D). 

As the additional health states in the three new models 

were intended to capture a specific immune response, the non 

I-O group was restricted to the progression-free, PD, and death 

health states and was excluded from entering the I-O states. 

Model 1: PSM
The conventional PSM typically used in the evaluation of 

oncology treatments involves partitioning survival into 

states of interest, and was used as a baseline against which 

to compare the other model frameworks. Model 1 is the 

standard three-state model including states of PP, PsP, and 

death (Figure 3A). Trial outcomes for PFS and OS were 

each modeled directly using survival analysis to allow for 

extrapolation. This approach did not consider PsP survival 

directly; instead, time to progression was derived from the 

difference between the areas under the PFS and OS curves. 

Model 2: PSM extension with response 
differentiation
With the conventional approach, the PP state includes treat-

ment responders and nonresponders. To provide a more 

definitive representation of response to treatment (and its 

duration), PP was segregated into PP without response 

(PP
1
) and PP with response (PP

2
). PP

1
 defined patients with 

stable disease (SD) without clinical change in lesions, and 

PP
2
 referred to patients with partial response (PR) or com-

plete response (CR) to treatment, consistent with the trial 

definitions. The other health state definitions for PsP and 

death remain unchanged from the conventional approach 

(model 1). Based on the best overall response (BOR), the 

proportion responding (PR/CR) was applied to PFS to define 

the responder category. Similarly, the proportion with SD 

based on BOR was applied to PFS to define nonresponders. 

BOR is a standard approach to classify response categories 

although others are possible (eg, landmark models). 

Trial outcomes for PFS (SD, CR, and PR) and OS were 

each modeled directly using survival analysis to allow 

for extrapolation. In line with model 1 (the conventional 

approach), progression was represented by the difference in 

the areas under the PFS (SD, and CR/PR) and OS curves.

Model 3: PSM extension with response and 
progression differentiation
The second extension (model 3, Figure 3C) classified post- 

progression into normal (PsP
1
) and I-O progression (PsP

2
) 

states, to reflect the differences in the underlying mechanism 

of action of treatment, which has given rise to the immune-

related response criteria36 alongside the RECIST33 clas-

sification system. The health state definitions for PP were 

consistent with model 2. 

In line with models 1 and 2, progression was represented 

by the difference in the areas under the PFS (SD, CR, and PR) 

and OS curves. A further adjustment was made to address the 
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Table 1 Overview of the results from the CheckMate 066 trial and comparisons to clinical outcomes from the conventional PSM, 
extended versions of the conventional PSM, and the immune-response-based Markov model*

Arm Endpoint Trial reported Model 1 Model 2 Model 3 Model 4

Nivolumab 
(N=210)

Overall survival, % (range)
•	 Year 1
•	 Year 2

72.9 (65.5–78.9)
57.7 

73.3
58.7

73.3
58.7

73.3
58.7

73.8
58.6

Progression-free  
survival (%)

•	 Year 1
•	 Year 2

44.3
39.2

40.5
35.8

40.5
35.8

40.5
35.8

69.8
55.5

Best overall response (%)
•	 SD
•	 CR
•	 PR
•	 PD
•	 Unknown

12.6 
17.5 
26.2 
35.0 
8.7 

55.3 (SD, PR, and CR)

32.8
–

12.6 
42.7 (CR and PR)

32.8
–

12.6
42.7 (CR and PR)

32.8 (19.1:13.7)
–

14.1
21.1
28.9
3.6
–

Objective response, % (range)
•	 Year 1
•	 Year 2

40.0 (33.3–47.0)
42.9

–
–

31.3
27.6

31.3
27.6

53.7
43.1

Time to objective response 
(months)

•	 Mean
•	 Range

2.6±1.3
1.2–7.6

–
–

–
–

–
–

–
–

Duration of response 
(months [range])

•	 Year 1
•	 Year 2

NR (0–12.5)
–

–
–

–
–

–
–

–
–

Dacarbazine 
(N=208)*

Overall survival, % (range) 
•	 Year 1
•	 Year 2

42.1 (33.0–50.9)
26.7

50.3
29.1

50.3
29.1

50.3
29.1

51.5
28.8

Progression-free survival (%)
•	 Year 1
•	 Year 2

7.7
–

7.9
5.2

7.9
5.2

7.9
5.2

48.6
26.9

Best overall response (%)
•	 SD

•	 CR
•	 PR
•	 PD
•	 Unknown

21.5 

1.5 
13.2 
50.2 
13.7 

43.9 (SD, PR, and CR)

42.0
–

43.9 (SD, PR, 
and CR)

42.0
–

43.9 (SD, PR, 
and CR)

42.0
–

38.1 (SD, PR, 
and CR)

2.5
–

Objective response, % (range)
•	 Year 1
•	 Year 2

13.9 (9.5–19.4)
14.4

–
–

–
–

–
–

–
–

Time to objective response 
(months)

•	 Mean
•	 Range

2.5±0.7
1.8–3.6

–
–

–
–

–
–

–
–

Duration of response, 
months (range)

•	 Year 1
•	 Year 2

6.0 (1.1–10.0) –
–

–
–

–
–

–
–

Note: *Patients treated with dacarbazine cannot access the I-O health states in models 2–4. **The differentiation between normal and I-O post-progression is provided in brackets.
Abbreviations: CR, complete response; PR, partial response; NR, not reached; PD, progressive disease; SD, stable disease; PSM, partitioned survival model; I-O, immuno-
oncology. 

difference in progression types by applying the proportions 

who respond using BOR as an indicator (PsP
1
) and who are 

nonresponders (PsP
2
)

 
to overall progression as reported in 

the CheckMate 066 trial.

Model 4: immune-response Markov state-transition 
model 
A state-transition Markov model was developed to model the 

I-O mechanism in a more exhaustive way than was possible 
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with the basic PSM and variants thereof. Patients in the model 

were allowed to move between states based on a set of transi-

tion probabilities estimated from reported clinical trial events 

defined by BOR. The model included states of treated/PP, 

no immune response (NIR), initial immune response (IIR), 

durable immune response (DIR), post-response progression 

(PRP), and death. The model can be applied to I-O treated 

patients and patients treated with other forms of therapy (che-

motherapy or targeted therapy) although patients not treated 

with I-O are theoretically restricted to PP and NIR states. 

PP, NIR, IIR, DIR, and PRP states were mapped to available 

clinical trial data according to the following definitions: 

•	 Treated/PP: nonfatal event of SD without progression

•	 NIR: nonfatal event of PD

•	 IIR: nonfatal event of PR without progression

•	 DIR: nonfatal event of CR without progression 

•	 PRP: SD in responders with PR/CR

Transitions from 1) treated/PP to NIR, IIR, DIR, and 

death, 2) IIR to DIR, PRP, and death, 3) DIR to PRP 

and death, and 4) PRP to death were possible. Due to 

data limitations, all transition probabilities presented in 

Table 2 were based on the average patient experience 

over the period for which trial observations were avail-

able, rather than being estimated separately at each time 

point. Extrapolation beyond the period of data observation 

assumed time-invariant transition probabilities adjusted 

for the background mortality consistent with OS applied  

to PSM. 

Model estimation and outcomes
All models were constructed in Microsoft Excel 2010, using 

a lifetime time horizon, monthly cycles, and a half-cycle 

correction. Life years (LYs) and quality adjusted life years 

(QALYs) were discounted at 3.5% to represent the UK per-

spective for all model approaches. Clinical outcomes of OS, 

PFS, ORR, and BOR were compared with trial outcomes. 

Costs were excluded from the current analysis to focus on 

the way in which the different approaches modeled treatment 

outcomes. 

Figure 3 Model schematics for the (A) conventional three-state PSM, (B) conventional three-state PSM with the additional health state to differentiate levels of response, 
(C) conventional three-state PSM with additional health states to differentiate levels of response and progression types, (D) immune-response-based Markov model.
Abbreviations: PSM, partitioned survival model; I-O, immuno-oncology.
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Table 2 Monthly transition probabilities adjusted for the immune-based Markov model (model 4) based on event rates from patient-
level trial data from the CheckMate 066 trial for nivolumab and dacarbazine treatment arms

Transition Definition Probability (%): nivolumab Probability (%): dacarbazine*

Treated/PP Nonfatal event of SD (without progression) 99.70 99.7
Treated/PP→NIR 0.02 0.10

Treated/PP→IIR 0.10 –

Treated/PP→DIR 0.09 –

Treated/PP→death 0.07 0.17
NIR Nonfatal event of PD 99.68 99.62
NIR→death 0.32 0.38
IIR Nonfatal event of PR without progression 99.82 –
IIR→DIR 0.17 –

IIR→PRP 0.00 –

IIR→death 0.01 –
DIR Nonfatal event of CR without progression 99.95 –
DIR→PRP 0.00 –

DIR→death 0.05 –
PRP PD in IIR and/or DIR 99.79 –
PRP→death 0.21 –
Death Fatal event 100.0 100.0

Note: *Patients treated with dacarbazine cannot access the I-O health states in model 4.
Abbreviations: CR, complete response; DIR, durable immune response; IIR, initial immune response; NIR, no immune response; PD, progressive disease; PP, pre-
progression; PR, partial response; PRP, post-response progression; SD, stable disease; I-O, immuno-oncology.

Survival estimation
The process of fitting parametric survival curves to patient-

level data was based on the NICE Decision Support Unit 

guidance,37 with some modifications to handle I-O data. 

For internal validation (prior to interpolation) and in the 

absence of long-term I-O data, the trial data were randomly 

partitioned into two datasets: 1) the “training” dataset used 

to assess the initial data fits and 2) the “validation” dataset 

used to confirm consistency for optimal model selection. 

Heterogeneity between the two datasets was assessed by com-

paring patient characteristics, Kaplan–Meier (K-M) plots, 

and primary outcomes with the core dataset, and applying a 

95% CI to assess variance.13

Traditional parametric methods for Weibull, exponential, 

lognormal, and log-logistic functions, as well as flexible para-

metric survival models using restricted cubic splines (RCS) 

with 1–7 knots were fitted to both OS and PFS in each treat-

ment arm. To assess the goodness of fit to the observed data 

for each predicted survival model, visual inspection against 

the K-M plots (for the overall fit and at the distinct I-O phases 

with emphasis on the plateau) was undertaken (Figure 2C–F). 

In addition, the Akaike information criterion and Bayesian 

information criterion statistical tests were compared among 

models and hazard plots examined.13

For OS, the lognormal function was used while, for PFS, 

the RCS with two knots was found to provide the best fit. 

The limited number of knots provides mitigation against 

overfitting the data although other approaches to validation, 

such as bootstrap resampling and k-fold cross-validation, 

are available. In the absence of long-term external data 

for nivolumab, ipilimumab studies with 5- and 10-year 

survival data were used to validate extrapolated survival 

estimates.12,15,17 On the extrapolated portions of the OS and 

PFS curves, it was found that modeled PFS and OS crossed 

(which cannot happen in reality). As modeled PFS was 

based on a more mature dataset and better validated, it was 

taken to represent OS and PFS following the overlap of the 

two curves, an assumption considered to be conservative. 

Alternative methods of applying an adjustment factor to OS 

relative to PFS to capture additional survival benefit and 

surrogacy assumptions over OS in previous submissions 

have been explored in the evidence submitted to NICE38 but 

rejected by the Evidence Review Group. In general, when 

extrapolating OS based on PFS, the background mortality 

should be accounted for to avoid potential overestimation.

Utility estimates
Health-related quality of life estimates suitable for calculating 

QALYs (utilities) were drawn from the literature and assigned 

to model health states, without differentiation between 

patients on and off treatment or between treatment arms. In 

the absence of literature for specific health states defined in 

the models presented, proxies based on closely related health 

states were used to estimate QALYs (Table 3).
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For model 1, the utility values for the PP (0.802) and 

PsP (0.728) health states were drawn from a UK prospective 

study of individual patient-level data (the CheckMate 066 

trial), adjusted for significant predictors of utility over time 

(baseline utility, progression status, time to death or end of 

follow-up, and treatment arm).39 

For models 2–4, the analysis used estimates from a 

universal set of utility values relating to clinical response 

states for PR, SD, and PD in advanced melanoma for the 

general UK population, to capture the variation in utili-

ties with treatment response.40 The utility estimate for SD 

(0.770)40 was allocated to the PP
1
 health states in models 

2 and 3, and to the treated/PP health state in model 4. The 

PR (0.850)40 utility value was assigned to the PP
2
 state in 

models 2 and 3, and to the IIR and DIR states in model 4 

(in the absence of information to differentiate between the 

level of response). The PD (0.590)40 estimate was assigned 

to PsP in model 2, to PsP
1
 and PsP

2 
states in model 3, and 

to NIR and PRP states in model 4 (in the absence of infor-

mation to differentiate between progression in responders 

and nonresponders).

Compliance with ethical standards
The protocol and amendments for the CheckMate 066 trial 

were reviewed by the institutional review board at each trial 

site. The study’s Independent Data Monitoring Committee 

(DMC) was established to provide oversight on the safety 

and efficacy considerations and provide advice to the spon-

sor regarding actions the DMC deemed necessary for the 

continuing protection of subjects enrolled in the study. The 

trial was conducted in accordance with the provisions of the 

Declaration of Helsinki and with Good Clinical Practice 

guidelines as defined by the International Conference on 

Harmonisation. All the patients provided written informed 

consent before enrollment.

Results
Trial endpoints: PSM-based approaches
The modeling of OS benefit using the PSM frameworks 

over the trial period generated survival estimates of 73.3% 

(nivolumab) and 50.3% (dacarbazine) in year 1, and 58.7% 

(nivolumab) and 29.1% (dacarbazine) in year 2. These com-

pared with reported trial outcomes in year 1 of 72.9% and 

42.1% for nivolumab and dacarbazine, respectively, and in 

year 2 of 57.7% and 26.7%. The PSM-based approaches gave 

PFS of 40.5% (nivolumab) and 7.9% (dacarbazine) in year 

1, with corresponding estimates of 35.8% and 5.2% in year 

2 (Table 1). These findings were comparable with the trial 

reported PFS outcomes of 44.3% for nivolumab and 7.7% 

for dacarbazine in year 1, and 39.2% for nivolumab in year 

2. Figure 4A–D provides model outcomes to illustrate event 

probabilities over a lifetime time horizon. With the partitioned 

approaches, nivolumab demonstrated long-term survival ben-

efits in a subset of patients (21.2%), in contrast to dacarbazine, 

where survival beyond 15 years was minimal (≤1.0%). 

Trial endpoints: immune-response Markov 
model
The Markov model’s OS estimates for nivolumab of 73.8% 

and 58.6% and for dacarbazine of 51.5% and 28.8% at years 

1 and 2 were similar to those of the PSM-based approaches. 

In common with the PSM-based approaches, modeled OS 

in each year for nivolumab and in year 2 for dacarbazine 

were comparable with the trial results (Table 1). In contrast, 

modeled PFS estimates diverged markedly from those of 

the PSM approaches and from the trial results. While PFS 

estimates given by the model were 69.8% and 55.5% in years 

1 and 2 for nivolumab and 48.6% in year 1 for dacarbazine, 

the corresponding trial results showed PFS of 44.3% and 

39.2% for nivolumab, and 7.7% for dacarbazine. Whereas 

PFS estimates generated by models 1–3 were within 10% of 

the trial estimates, model 4 overestimated year 1 and year 2 

PFS for nivolumab by nearly 60% and over 40%, respectively. 

LYs and QALYs: PSM-based approaches
LY and QALY outcomes for each model are presented in 

Table 3. All the PSM-based approaches generated increasing 

increments in overall benefit (for nivolumab) with longer 

time horizons. The PSM frameworks (models 1–3) each gave 

the same overall LY outcomes, ranging from a gain in favor 

of nivolumab of 2.12 LYs over a 10-year time horizon to a 

gain of 5.13 LYs over a lifetime. Overall life expectancy for 

those receiving nivolumab was estimated at 3.9 years and 7.1 

years for 10-year and lifetime time horizons, respectively. 

The incremental LY gains for nivolumab versus dacarbazine 

under the PSM approaches were reflective of the long-term 

survival of ~20% with nivolumab (Figure 4).

In model 1, the incremental QALY gain with nivolumab 

ranged from 1.68 QALYs to 3.99 QALYs as the time hori-

zon increased from 10 years to the lifetime. Corresponding 

ranges for model 2 were 2.02–4.44 QALYs and, for model 3, 

2.02–4.43 QALYs, thus doubling the gain by moving from the 

10-year to a lifetime time horizon. Across the three models, 

overall quality adjusted life expectancy ranged between 2.83 

and 3.01 QALYs under a 10-year time horizon and from 5.3 

to 5.68 QALYs at a lifetime time horizon.
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Figure 4 (Continued)

LYs and QALYs: immune-response 
Markov model
At a 10-year time horizon, estimates of life expectancy 

with nivolumab (3.78 LYs) under model 4 were comparable 

with the corresponding estimate in models 1–3 (3.9 LYs). 

However, at subsequent time horizons, life expectancy was 

estimated to be lower than in models 1–3, markedly so 

over the lifetime (5.35 vs 7.1 LYs). As life expectancy with 

dacarbazine did not differ substantially from that estimated 

in models 1–3 at any time horizon, the incremental LY 
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Figure 4 Survival model plots for the (A) conventional PSM, (B) conventional PSM with additional health state to differentiate levels of response, (C) conventional PSM 
with additional health states to differentiate levels of response and progression types, (D) immune-response-based Markov model.
Abbreviations: PSM, partitioned survival model; I-O, immuno-oncology.
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gains with nivolumab were lower in model 4 (eg, 3.54 LYs 

over the lifetime compared with 5.13 LYs in models 1–3). 

QALYs showed a similar pattern, the incremental gain being 

estimated at 3.03 QALYs over the lifetime for nivolumab 

compared with 4.43 QALYs under model 3. Model 4 there-

fore provided a more conservative estimate of the long-term 

effect of nivolumab in comparison with models 1–3. 

Assumptions and limitations
Interpretation of these findings should take into consid-

eration a number of assumptions relied on by the Markov 

model which were not applicable to the PSM approaches. In 

particular, the transition probabilities on which the model is 

based were calculated as averages over the period for which 

BOR observations were available and assumed to be constant 

over this time period. Under the simpler formulation of health 

states, estimates of time progression-free or with progression 

are drawn directly from the OS and PFS curves. As a result, 

the Markov model may offer a set of health states which give 

a clinically more appropriate description of disease evolution 

and treatment response but, in this case, failed to represent the 

trajectory of progression as accurately as the simpler models. 

The analysis reported here could be refined with longer 

follow-up and a closer alignment between the trial data and 

the concepts which the definitions of immune response are 

intended to capture. Alternatively, a multistate model with 

event history analysis which takes account of the timing of 

events could be used to estimate transition probabilities on a 

continuous time basis. This would overcome the limitations 

of the Markov model’s discrete time approach but presup-

poses access to patient-level data which may not always be 

available. In addition, the approach can be problematic given 

limited patient numbers.

Contrasting results from applying a PSM, Markov model, 

and a continuous time multistate model to a common dataset 

have been reported by Williams et al.41 Their example is not, 

however, directly comparable as some of the differences in 

QALY results reported here will be a result of the wider range 

of utilities facilitated by the more granular descriptions of 

health states. It should also be noted that the pros and cons of 

different approaches may depend on the precise therapeutic 

regimen investigated; further research is needed to explore 

the applicability of the models presented here in drugs with 

different mechanisms of action. 

Discussion
Selection of health states
The three-state PSM distinguishing between PP, PsP, and 

death mirrors the outcomes of PFS and OS reported in clini-

cal trials and is frequently used as the basis for estimating the 

cost-effectiveness of cancer therapies. Many researchers are 

contending with the issue of converting these data (to assess 

additional benefit of a new therapy to the existing therapies in 

place) into information which can be considered alongside the 

costs of new therapies (particularly drug prices) in health care 

decision making. Decisions about the use of new drugs are 

frequently based on the cost per QALY, although other ways 

of combining survival and quality of life have been proposed 

in the context of cancer treatment.1,6 In the case of I-O therapy, 

all models have limitations given patient outcomes character-

ized by atypical patterns of survival and disease dynamics. 

Observed patterns of response in I-O suggest that the 

conventional three-state model is likely to provide an unduly 

restrictive representation of the disease course and therapeutic 

mechanism of action. The issue has been addressed in this 

study by adding new health states intended to capture I-O 

treatment response, initially with two extensions to the basic 

PSM. The first introduces a new PP state while the second 

supplements this with a new PsP state. The final model 

defines a set of health states specifically targeted at concepts 

of immune response, with movements between states allowed 

according to a set of transition probabilities (Markov model). 

Health states that are specific to I-O, namely immune 

response and post-immune progression, have clinical 

validity, and allow modeling of the “resting” patient with 

the potential for sustained benefit (improved survival and 

quality of life) and reduced costs. I-O-specific states can be 

accessed only through a transformative health state (immune 

response) which is not applicable to conventional therapies. 

An illustration is the evidence that treatment-free survival is 

possible with some patients who have received ipilimumab.15 

The emergence of new evidence regarding responses to I-O 

therapy will influence the desired number and categorization 

of health states in the theoretical model to maintain clinical 

validity. In practice, there may be a trade-off between the 

value of the additional data they provide, and the degree of 

uncertainty introduced by data limitations or the assumptions 

required to support them. 

The current study illustrates not only the gains but also 

the potential pitfalls in introducing increased sophistication 

into the model’s health states. The two extensions of the PSM 

provide a better overview of QALYs for those responding and 

not responding to treatment (giving increased QALY gains 

with I-O therapy due to the time spent in PP with response) 

and produced estimates of OS and PFS comparable with the 

basic PSM and trial data. 

The developments represented by the Markov model are 

that it explicitly captures patients moving from one state to 
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another in a way which is not possible with the PSM-based 

approaches, and that it provides further granularity of health 

state descriptions. However, the finding that its estimates of 

1- and 2-year PFS were not in line with the PSM-based mod-

els and with the underlying data has revealed the limitations 

of the standard Markov approach which, in this case, was 

outperformed by the simpler variants of the PSM. Never-

theless, the Markov modeling approach has the potential to 

be more informative in the future with improvements in the 

understanding of I-O and in data sources. The implications 

for additional data collection and appropriate reporting if the 

potential for such models is to be fully exploited are worthy 

of further exploration. 

Selection of model structure
Drawing on the literature cited26 and discussion at a workshop 

of the Scientific Steering Committee (Vienna, October 2016) 

which oversaw this work, a high-level algorithm to guide the 

selection of the appropriate cost-effectiveness model structure 

when evaluating I-O therapy has been proposed (Figure 5). 

The selection of model structure should be based on a 

number of drivers of structural fit with the data. Population 

heterogeneity and predictability/heterogeneity of response 

to treatment (a factor particularly emphasized in Figure 5) 

need to be considered alongside complexity of the health 

states encountered (which will be greater in I-O than with 

other forms of therapy) and the contingency of events on 

prior patient events or treatment pathways.

In practice, the selection of the most appropriate model 

structure to estimate the cost-effectiveness of I-O therapies 

will tend, in most cases, to center on a choice between a 

patient-level simulation and a partitioned Markov in terms 

of goodness of structural fit. The level of complexity of 

the model will need to be informed not only by theoreti-

cal models of disease processes, in the same way that the 

choice of survival function when modeling PFS and OS 

will ideally benefit from a clinical understanding of disease 

processes, but also by empirical testing. As has previously 

been observed, the choice between a simpler and more 

complex model should depend on a consideration of both; 

a decision to opt for a simplified model “is an empirical 

issue, the answer to which is unknown without undertaking 

a more complex model.”26

Ultimately, a model should be judged on its ability 

to mirror accurately the short- and long-term clinical 

outcomes observed in trials and real-world data sources. 

Choice of model should be informed both by the amount 

and value of the information generated to support appropri-

ate decision making and by the level of uncertainty within 

the outputs. Sensitivity to assumptions can help to identify 

data that need to be collected (rather than influencing 

choice of structure).

Conclusion
Extending the standard three-state model to a four- or five-

state structure (separating PP or both PP and PsP into two) 

can better reflect patients’ experience of disease during I-O 

therapy and potentially provide more transparent account-

ing of the source of treatment benefits. Going further to 

add specific I-O-relevant health states (independent of the 

Figure 5 Proposed model selection algorithm.
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underlying model framework) can be a useful tool to establish 

better coherence with clinical data and may deliver important 

information from a decision maker perspective. However, the 

compromises involved in implementing these states through 

a conventional Markov approach may result in a loss of 

accuracy in modeling the underlying data. Further research 

is needed to understand the appropriate number of disease 

states, underlying patient quality of life and resource use 

associated with those states, their validity across other tumor 

types, and the usefulness of other modeling approaches.
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