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Background: It has been found that health-seeking behavior has a certain impact on influenza 

infection. However, behaviors with/without risk perception on the control of influenza transmis-

sion among age groups have not been well quantified.

Objectives: The purpose of this study was to assess to what extent, under scenarios of with/

without control and preventive/protective behaviors, the age-specific network-driven risk per-

ception influences influenza infection.

Materials and methods: A behavior-influenza model was used to estimate the spread rate of 

age-specific risk perception in response to an influenza outbreak. A network-based information 

model was used to assess the effect of network-driven risk perception information transmission 

on influenza infection. A probabilistic risk model was used to assess the infection risk effect of 

risk perception with a health behavior change.

Results: The age-specific overlapping percentage was estimated to be 40%–43%, 55%–60%, 

and 19%–35% for child, teenage and adult, and elderly age groups, respectively. Individuals 

perceive the preventive behavior to improve risk perception information transmission among 

teenage and adult and elderly age groups, but not in the child age group. The population with 

perceived health behaviors could not effectively decrease the percentage of infection risk in the 

child age group, whereas for the elderly age group, the percentage of decrease in infection risk 

was more significant, with a 97.5th percentile estimate of 97%.

Conclusion: The present integrated behavior-infection model can help health authorities in 

communicating health messages for an intertwined belief network in which health-seeking 

behavior plays a key role in controlling influenza infection.

Keywords: health-seeking behavior, influenza, infection, network-based information model, 

probabilistic risk model

Introduction
It has been found that health-seeking behavior has a certain impact on influenza 

infection.1 Therefore, to facilitate public health decisions about intervention and 

management in controlling the spread of infectious diseases, it is crucial to assess to 

what extent, under scenarios of with/without control and preventive/protective behav-

iors, the age-specific network-driven risk perception influences influenza infection.2 

To control respiratory infectious diseases, the development of vaccination, contact 

tracing, isolation, and the promotion of protective behaviors are the important mea-

sures. Indeed, the effectiveness of control measures fundamentally depends greatly 

on human beliefs on public infection awareness and risk perception for driving the 

change in self-behavior.3
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Risk perception can be referred to as an awareness or 

belief about the potential hazard and/or harm, which plays an 

important role in shaping health-related behaviors to reduc-

ing susceptibility and infectivity.4 Generally, risk perception 

is affected by social factors such as media release by health 

authorities, observation or interaction with relation-specific 

groups, past experiences of similar hazards, habits, and 

culture.5 These factors result in variation in risk perception 

among individuals.

Epidemiological studies have found that variances in risk 

perception can be observed by examining the behavioral 

responses among different age groups. SteelFisher et al6 

indicated that 60% of the adult population said that they did 

not intend to acquire the H1N1 vaccine for themselves. In 

addition, perception of vaccine safety and personal vulner-

ability were the major reasons for vaccine acceptance. Allison 

et al7 indicated that children could use accurate protective 

behavior; for example, they could use hand gel for preventing 

influenza. On the other hand, childhood vaccination is more 

likely to depend on parental decision making. Moreover, 

researchers have suggested assessment of the risk perception 

and behavior across different age groups.8,9

A social network could be an important social structure in 

which people could exchange information about risk-related 

events to spur the health behavior change.10 Scherer and 

Cho11 suggested that individual perceptions could be affected 

by self-perception in the social network. Researchers have 

explored the interactions between epidemic spreading and 

risk perception in the network.12,13 However, the influence 

of risk perception on the risk of infectious disease is con-

troversial, because the perceptual capacity of individuals 

may both create and reduce the disease risks. Therefore, the 

behavior–disease dynamics in the social network structure 

may result in amplification or attenuation of the disease 

outbreak.

Most epidemic modeling techniques have used a simple 

epidemic model such as the susceptible–infected–recov-

ered (SIR) model for describing a homogeneous disease 

network. Moreover, the effects the network with human 

responses to disease spreading were studied extensively 

and attracted substantial attention. Funk et al12 used SIR-

based perceptual-influenza model for examining the effects 

of risk perception on behavioral change and susceptibility 

reduction. They also indicated that the effects within a 

disease network can induce health behavioral changes in 

the population. In turn, the influence of risk perception 

could result in a feedback signal to alter the progress of 

the disease dynamics.12,14

Recently, information theoretical approaches have been 

applied to infer the relations in diseases or social networks.15,16 

Zhao et al15 developed a model to quantify the effects of a 

dynamic network, indicating that the behavior responses 

correspond to the entropy derived from different informa-

tion content of the dynamic social network. Greenbaum 

et al17 proposed an information theoretic model to assess 

pandemic risk. They indicated that mutual information was a 

key determinant in minimizing risk of the pandemic threats.

We have previously incorporated the information-the-

oretic framework into a behavior-influenza (BI) transmis-

sion dynamic system to understand the effect of individual 

behavioral change on influenza epidemics.18,19 Here we assess 

that if, how, and to what extent, under different scenarios of 

with/without control and preventive/protective behaviors, 

the age-specific network-driven risk perception influences 

influenza infection.

Materials and methods
Influenza-like illness (ILI)-related 
emergency admission rates
In this study, we analyzed the emergency admission rates 

from the weekly ILI visits, which were obtained from Tai-

wan Centers for Disease Control (TCDC) by sentinel pri-

mary care physicians. The ILI cases were detected through 

the real-time outbreak and Taiwan National Infectious 

Disease Statistics System.21 The definition of an ILI case 

must meet three criteria: 1) fever (ear temperature ≥37.8°C) 

and respiratory tract symptoms (including rhinorrhea, nasal 

congestion, sneezing, sore throat, cough, and dyspnea), 2) 

one of the symptoms of muscle ache, headache, and extreme 

fatigue; and 3) exclusion of simple running nose, tonsillitis, 

and bronchitis.

Data on emergency admission rates for six influenza 

seasons in the period from week 8 of 2007 to week 13 of 

2013 were adopted to test how health-seeking behavior influ-

ences the influenza infection dynamics. Influenza season was 

defined from July 1 (week 26) to June 30 (week 25) of the 

following year in Taiwan. The ILI-related emergency admis-

sion rates were detected by using the ICD-9-CM codes for 

influenza and pneumonia (480–487).

We also estimated the age-specific admission infection 

fraction (IF) for each age group, including child (0–14 years), 

teenage and adult (15–64 years), and elderly (65+ years), for 

different human behaviors or influenza risk perceptions. We 

multiplied the annual mid-year population estimates20 by the 

incidence rate for severe complicated influenza cases per 
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100,000 and then divided the result by the number of ILI 

visits to estimate IF, which is given as21

 
IF

Mid-year population Incidence rate
Number of ILI visitij

ij ij=
×

ss
,	 (1)

where i is the different age groups (child, teenage and adult, 

and elderly) and j is the yearly based time period in the period 

of 2007–2013.

BI model
The concept of the BI model developed in our previous stud-

ies18,19 mainly incorporated the SIR-based perception model12 

into an information-theoretic framework, which was used to 

simulate the information flow of risk perception in response to 

an influenza outbreak. Briefly, the BI model uses six compart-

ments to represent the disease states of susceptible, infected, 

and recovered by dividing the population into a with/without 

perception structure.12 The description of input parameters 

for the BI model is given in Table 1.

Basic reproduction number (R
0
) can be used to quantify 

disease infection severity, defined as the average number 

of secondary cases produced successfully by an infected 

individual in a totally susceptible population.22 Therefore, 

based on the BI model, we can also estimate R
0
 with the 

perception state (Ra0 ) and without perception state (Rd0 ). It
 

can be described as input source information with percep-

tion S
a
 = Ra0 = a / λ , where a is the rate of perception spread 

and l is the rate of perception loss. On the other hand, input 

source information can be described without perception S
d
 

= Rd0 = b / γ  where b is the infection rate describing contact 

between infected and susceptible populations and g is the 

recovery rate from infected to recovered populations.19

We assumed that R
0
 can be treated as the basic reproduc-

tion number resulting from individuals with risk perception 

information (R
0,RPI

) for each age group in the period of 

2007–2013. Thus, R
0,RPI

 can be estimated as:19

Table 1 Symbols, definition, and input values varied in different age groups with respect to the parameters used in the present BI 
model

Symbols Definition Age groups

Child Teenage and 
adult

Elderly

Estimated number of ILI visits (per month) 2.4 × 104 
(1.0 × 104)a

2.8 × 104  
(1.1 × 104)a

8.4 × 103  
(1.7 × 103)a

R0,PRI
b Basic reproduction number resulting from individual with the risk perception 

informationc

LN (1.78, 1.08) LN (1.14, 1.04) LN (1.00, 1.01)

ab Perception spread ratec LN (2.72, 1.20) LN (1.37, 1.28) LN (1.12, 1.32)

lb Perception loss ratec LN (0.42, 1.45) LN (0.61, 1.78) LN (1.26, 2.27)

bb Infection rate from infected to susceptiblec LN (0.56, 1.63) LN (0.59, 1.90) LN (0.90, 2.04)

gb Recovery rate of infected without perceptionc LN (0.31, 0.17) LN (0.33, 1.87)

w Rate of infected becoming perceptive 1d

sI
Reduced infectiousness factor as infected individuals carry perceptual disease and 
voluntarily reduce contact number

0–1d

sS,pre
e Reduced susceptibility factor with regard to adopting preventive behaviorc N (0.59, 0.17)

ORSus,pre ORs of perceived susceptibility with regard to adopting preventive behavior N (1.06, 0.13)
ORSev,pre ORs of perceived severity with regard to adopting preventive behavior N (1.81, 0.28)
ORBen,pre ORs of perceived benefits with regard to adopting preventive behavior N (1.93, 0.21)
ORBar,pre ORs of perceived barrier with regard to adopting preventive behavior N (1.38, 0.26)
sS,pro

e Reduced susceptibility factor with regard to adopting protective behaviorc N (0.76, 0.18)
ORSus,pre ORs of perceived susceptibility with regard to adopting protective behavior N (1.39, 0.35)
ORSev,pre ORs of perceived severity with regard to adopting protective behavior N (1.68, 0.45)
ORBen,pre ORs of perceived benefits with regard to adopting protective behavior N (4.34, 1.5)
ORBar,pre ORs of perceived barrier with regard to adopting protective behavior N (1.83, 0.41)
jd Immunity loss rate of recovered with perception 1c

d Immunity loss rate of recovered without perception 0.5c

eg Recovery rate of infected with perception 2c

Notes: aMean (SD). bLN distribution with a gm and a gsd. cEstimated from this study. dData modified from Funk et al.12. eN distribution with mean and standard deviation.
Abbreviations: BI, behavior-influenza; ILI, influenza-like illness; LN, lognormal; OR, odds ratio; SD, standard deviation; gm, geometric mean; gsd, geometric standard 
deviation; N, normal.
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ln IF
=

−( ) −( )
−

.	 (2)

Furthermore, to better characterize perception spread rate 

for different age groups during each year (a
ij
) on the BI 

transmission dynamics, we adopted a
ij
 from an epidemic 

equilibrium structure.12 The equilibrium information flow 

of risk perception from population without perception Rd0e
can be expressed as;12
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where Ra0e  is the basic reproduction number at equilibrium 

with information flow of risk perception from population 

without perception, s
I
 is the reduced infectivity factor from 

infected with perception to susceptible without perception, 

w is the rate of infected becoming with perception, a is the 

perception spread rate, and g
w/o

 is the recovery rate of infected 

without perception.

Moreover, we assumed that people may make the decision 

to change behavior based on R
0,RPI

 in the previous year. Based 

on Equation 3, a can then be rewritten as;

	

a w

s

s

ij
I , i j
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1
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where R ij0,PRI,  
and R i j0 1,PRI, +( )  

are
 
the basic reproduction 

numbers with/without risk perception, respectively, for each 

age group in the period of 2007–2013.

Network-based information model
To assess the effect of network-driven risk perception 

information transmission on influenza infection, we applied 

an information theoretic model referred to as the multiple 

access channel (MAC) that is used to capture a signal R
0
 

transmitting through multiple channels to the responses I
1
, 

I
2
, …, I

n
. We considered the network-driven risk perception 

information model (NM) with information bottleneck (IB).19 

The maximum mutual risk perception information (MI
max

) 

resulting from the NM can be estimated as;23

	

MINM
IB IB

I I R nn e
R

R I
1 0 2

2

2 2
1
2

1 0

0

, , ; log…( ) = +
+






















→ →

s

s s  , (5)

where n
e
 is the effective information from contact numbers 

of individuals, sR0
2  is the variance of the R

0
 signal distribu-

tion, sIB→I
2  is the variance introduced in each access channel 

through the IB to response I, and the sR0

2
→IB  is the variance 

introduced to the IB. The ratio s s sR R I0 0
2 2 2/ → →+( )IB IB  is the 

signal-to-noise ratio.23

On the other hand, the NM model with a negative feed-

back was considered to explore the effect of perceived dif-

ferent health behaviors on reducing susceptibility.19 Here, 

we used the correlation coefficient (r) and the overlapping 

percentage (I
O
) to associate R

0
 and I from the published data 

(Table S1) to calculate s s sR R I0 0
2 2 2/ → →+( )I IB B  in Equation 5. 

We estimated the r based on the relationship between viral 

titer-based I and viral tier-based R
0
 corresponding to with/

without perceived different health behaviors. Briefly, we 

selected published papers (Table S1) where health behaviors 

treated with vaccinations and antiviral drugs for different 

subtypes of influenza were included. Two protective behav-

iors (i.e., perceived of carrying the disease to vaccine and 

antiviral taking) were adopted in a state of greater alert. The 

value of r can be used to associate the amount of observed 

variability that is attributable to the overall biological vari-

ability and experimental noise.

On the other hand, I
O
 describes the age-specific over-

lapping percentage between the infected population with/

without perception adjusted by the fractions of initial 

infected population with perceptual state over those without 

perceptual state. Here, we used three perceptual scenarios to 

assess our model with the initial infected population ratios 

of <1, =1, and >1. The I
O
 can then be estimated as algebraic 

manipulation of probability density functions (pdfs) of S
a
 

and S
d
 as;19

I S S S S S SO a d a d a dpdf pdf pdf pdf pdf pdf= ( ) ∩ ( ) ( ) + ( ) − ( ) + ( ) / .
 

  
I S S S S S SO a d a d a dpdf pdf pdf pdf pdf pdf= ( ) ∩ ( ) ( ) + ( ) − ( ) + ( ) / . 	 (6)

Thus, followed by the information-theoretic theorem with 

known values of r, I
O
, and sR0

2 , the  s sR I0
2 2

→ →+( )IB IB  can be 

computed as  1 2 2
0

−( ) × ×r sR IO.23 Therefore, the NM model 

with a negative feedback in Equation 5 can be rewritten as;

	

MINM I I R
n

In
e

i
1 0 2 2

1
2

1
1

, , ; log
( )

…( ) = × +
− ×






r O
,	 (7)
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where i represents the individuals perceived with/without 

health behaviors.

We further incorporated the estimated probability dis-

tributions of the model parameter with age-specific initial 

population sizes in the period of 2007–2013 (Table 2) and a 

into the BI model, to estimate the age-specific overlapping 

percentages.

Behavior change modeling
To parameterize the reduced susceptibility factor with 

regard to adopting preventive behaviors, including using 

masks, avoiding visiting crowded places, and hand washing24 

(s
S,pre

), and protective behaviors of vaccination26 (s
S,pro

), we 

applied a standard logistic regression-based equation for 

mathematically expressing the components of the health-

behavior model (HBM). The HBM-based health behavior 

with the standard logistic regression-based equation has been 

applied to estimate with/without preventive/protective health 

behaviors in respiratory infectious diseases such as severe 

acute respiratory syndrome (SARS), influenza,24–26 and other 

diseases.27–29 The estimates are equivalent to the decisions of 

rational individuals with influenza knowledge.

Here, s
s
 can be expressed in terms of odds ratios (ORs) 

depending on health behaviors perceived to be associated 

with each HBM variable.26 s
s
 is represented as a function of 

measured states, which are based on the HBM by using the 

standard logistic regression-based equation. s
s
 can also be 

regarded as a predictor of behavior decision on the course 

of the epidemic.

s
s
 can be rewritten as;26

ss
x x x x

=
× × × ×

+
OR OR OR OR OR
OR
0 Sus Sev Ben Bar

Sus Sev Ben Bar( ) ( ) ( ) ( )
1 00 × × × ×( ) ( ) ( ) ( )

,
OR OR OR ORSus Sev Ben Bar

Sus Sev Ben Barx x x x

� (8)

where s
s
 is the probability of the HBM-based health 

behaviors (such as preventive behavior, s
s,pre

, and protective 

behavior, s
s,pro

) and x is a binary variable with a value of 1 

indicating a “high” state and a value of 0 indicating a “low” 

state. OR
0
 is a calibration factor when all HBM variables 

are in a “low” state. s
s
 represents that an individual engages 

in a particular behavior, and it could be calculated from 

Equation 8. s
s
 ≥0.5 indicates that an individual engages in a 

specific health behavior.

R0 perception-based probabilistic risk 
assessment
To develop a probabilistic risk model, a dose–response 

model describing the relationship between transmission 

potential quantified by signal R
0
 and the total proportion of 

the infected population (I) has to be constructed. In a previous 

study,18 we have successfully employed the joint probability 

distribution to assess the risk profile. It can be expressed 

mathematically as;

	 R I P R P I R( ) ( ) ( | )= ×0 0 ,� (9)

where R(I) is the cumulative distribution function describing 

the probabilistic infection risk in a susceptible population at 

specific R
0
 signal, P(R

0
) is the probability distribution of R

0
 

signal (the prior probability), and P(I|R
0
) is the conditional 

response distribution describing the dose–response relation-

ship between I and R
0
. The exceedance risk profile can be 

obtained by 1 - R(I).

In view of Equation 2, we can relate P(I, R
0
) to R(I) in 

Equation 9. Thus, the mutual information in R
0
-I risk percep-

tion model can be written as;18

MI( ; ) ( , ) log
( | )

( )

( ) log
exp( . .

,
I R P I R

P I R
P I

R I

I R
0 0 2

0

2

0

1 1 63 1

=

=
− −

∑

666 0

0

R
P II R

)
( ),





∑ .� (10)

These interdependences between belief of risk perception 

and infection risk can then be expressed as a mechanism of 

interpersonal influence described in Equation 10.

Results
Data description and parameterization
In Table 1, the numbers of ILI visits were 2.4 × 104 ± 1 × 

104 (mean ± standard deviation [SD]), 2.8 × 104 ± 1.1 × 

104, and 8.4 × 103 ± 1.7 × 103 per month for child, teenage 

and adult, and elderly age groups, respectively. Figure 1 

shows the ILI-related emergency admission rates and IF 

among the three age groups, child (0–14 years), teenage 

Table 2 Percentage of decrease in infection risk at incremental 
maximum mutual risk perception information (∆MI)

Behavior measure ∆MI Child Teenage 
and adult

Elderly

Without control 1 5 (0.3–14) 11 (0.6–35) 30 (1.5–83)
2 7 (0.3–79) 11 (0.5–85) 57 (5.1–97)

Preventive behavior 1 3 (0.2–7) 10 (0.5–31) 26 (1.4–75)
2 3 (0.5–31) 12 (0.5–86) 52 (4–97)

Protective behavior 1 2 (0.2–6) 10 (0.6–32) 27 (1.4–78)
2 2 (0.3–18) 12 (0.5–86) 59 (6–97)

Notes: Values are presented as mean (minimum–maximum).
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and adult (15–64 years), and elderly (65+ years), in Tai-

wan. During the study period (2007–2013), the ILI-related 

emergency admission rates were estimated to be 16.8 ± 7.3 

(mean ± SD), 1.2 ± 0.8, and 3.5 ± 1.3 per 10,000 popula-

tion for child, teenage and adult, and elderly age groups, 

respectively. Overall, the ILI-related emergency admis-

sion rate was the highest in the child age group (6.4–67.3 

per 10,000 population, minimum–maximum), whereas 

the lowest one was observed in the teenage and adult age 

group (0.4–8.8 per 10,000 population; Figure 1A). On the 

other hand, the highest ILI-related emergency admission 

IF was in the child age group (0.7 ± 0.1%), followed by 

teenage and adult (0.2 ± 0.1%) and elderly (0.03 ± 0.01%) 

age groups (Figure 1B).

Perception spread rate and overlapping 
responses
To model the BI model, the age-specific perception spread 

rate (a) has to be determined (Equation 4). We first calcu-

lated age-specific R
0
,
PRI 

based on the age-specific ILI-related 

admission IF. Our results indicated that lognormal (LN) 

distribution with a geometric mean (gm) and a geometric 

standard deviation (gsd), LN (gm, gsd), was the most suitable 

fitted model for R
0
,
PRI

 distributions of LN (1.78, 1.08), LN 

(1.14, 1.04), and LN (1.00, 1.01) for child, teenage and adult, 

and elderly, age groups, respectively (Table 1).

Figure 2 demonstrates age-specific overlapping per-

centage (I
O
) between infected population with/without 

perception adjusted by fractions of initial infected popu-

lation with perceptual state over those without perceptual 

state. We used three different scenarios of initial infected 

population fraction: I+/I- < 1 (Figure 2A–C), I+/I- = 1 

(Figure 2D–F), and I+/I- > 1 (Figure 2G–I). We showed that 

I+/I- > 1 results in the lowest estimates of I
O
 in child and 

elderly age groups (Figure 2G and I), whereas for teenage 

and adult age groups, the estimate was the highest in the 

case of I+/I- = 1 (Figure 2E). Generally, I
O
 estimates range 

from 40% to 43%, 55% to 60%, and 19% to 35% for child, 

teenage and adult, and elderly age groups, respectively 

(Figure  2). Thus, we used I
O
 based on justified initial 

infected population fraction to further examine the MI
max

 

among each age group.
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Figure 1 ILI-related emergency admission rates and IF among the three age groups, child (0–14 years), teenage and adult (15–64 years), and elderly (>65 years), in Taiwan.
Note: (A) ILI-related emergency admission rate, and (B) ILI-related emergency admission IF.
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Estimates of mutual risk perception 
information
Generally, the individual with risk perceptual status is more 

likely to have the communicable belief among the population. 

In the case of effective information from contact numbers 

of individuals (n
e 
= 1; Figure 3A), when I+/I- < 1 and I+/I- = 

1, the MI
max

 was <1 bit. On the other hand, when I+/I- > 1, as 

the perceptual information increased in the population, MI
max

 

was >1 bit, indicating that the network-based information 

reflected cooperativity.

Our results showed that MI
max

–n
e 

profile featured a 

smooth shape (Figure 3B). In the elderly group, as the 

strength of n
e 

increased, MI
max

–n
e 

profile experienced a 

nearly smooth curve. On the other hand, in the child and 

elderly groups, when n
e
 was >6, MI

max
 was >1  bit. Our 

results indicated that MI
max 

ranged from 0.4 to 1.2 bits, 0.5 

to 1.4 bits, and 1.2 to 2.4 bits for child, teenage and adult, 

and elderly age groups, respectively, given n
e 
ranging from 

1 to 6 (Figure 3B).

To explore the impact of n
e
-varying perceived health 

behavior information on MI
max

, we estimated correlation 

coefficient (r) based on the relationship between viral titer-

based I and viral tier-based R
0
 corresponding to, with and 

without, perceived different health behaviors. The resulting 

estimates were r
w 

= 0.7 and r
w/o 

= 0.4 (Figure S1).

We further used Equation 7 to calculate MI
max 

based 

on overlapping percentage (I
O
) and r affected by n

e
. The 

results indicated that MI
max

 ranged from 0.9 to 1.9  bits, 

1.0 to 2.1 bits, and 1.2 to 2.4 bits for without control, and 

preventive, and protective behaviors in the child age group, 

respectively (Figure 4A). For the teenage and adult age group, 

MI
max

 ranged from 1.1 to 1.5 bits, 0.8 to 1.9 bits, and 3.5 to 

4.8 bits for without control, and preventive, and protective 

behaviors, respectively (Figure 4B). Our results showed that 

individuals perceived the health behaviors to increase MI
max

 

among child, and teenage and adult, age groups (Figure 4A 

and B, respectively). Our results also revealed that individuals 

perceived the preventive behavior to improve risk perception 
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information transmission among the teenage and adult age 

group (Figure 4B), and the elderly age group (Figure 4C), 

but not in the child age group.

Infection risk and change assessment
Our results indicated that there was 50% probability for 

exceeding the infected fraction of population (I); 0.73, 0.23, 

and 0.34 for child (Figure 5A), teenage and adult (Figure 

5B), and elderly (Figure 5C) age groups, respectively, in the 

condition of without perceived health behaviors. However, 

there was a 50% probability for reducing the infected fraction 

of population within the ranges of 0.004–0.20 for preventive 

behavior and 0.007–0.10 for protective behavior (Figure 5).

The age-specific ∆MI with respect to with/without health 

behaviors was estimated based on Equations 7 and 10. We 

found that, for instance, without any control information 

released, the median percentages of decrease in infection 

risk with ∆MIs = 1 and 2 for elderly were 30 (1.5–83) and 57 

(5.1–97), respectively, whereas the child age group had the 

lowest estimates of 5 (0.3–14) and 7 (0.3–79), respectively 

(Figure 6A).

On the other hand, ∆MI estimates at incremental MI 

changes with perceived health behaviors were 2%–3%, 

10%–12%, and 26%–59% for child, teenage and adult, and 

elderly age groups, respectively (Figure 6B and C). The popu-

lation with perceived health behaviors could not effectively 

decrease the percentage of infection risk in the child group, 

whereas for the elderly age group, the percentage of infection 

risk decreased more significantly with a 97.5th percentile 

estimate of 97% (Figure 6B and C).

Discussion
Our results indicated that children may be preferable to adopt 

the protective behaviors. Allison et al7 indicated that the use 

of hand gel for hygiene was a feasible strategy in elementary 

schools to prevent influenza spread. Our results implicate that 

children could use the accurate knowledge about the protective 

behavior to prevent influenza infection effectively.
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Our results found that the perceived protective behaviors 

enhanced the MI
max

 in adults, whereas the perceived vaccina-

tion behavior might not. A meta-analysis of eligible studies 

also confirmed that raising risk perception from low to high 

would have a potential effect on vaccination behavior of 

adults.30 We suggest that future studies should detect the 

differences among the health behaviors in adults.

Schneeberg et al31 indicated that the vaccination rate for 

seasonal influenza was consistently low among the elderly 

population in Canada. Walter et al32 indicated that the elderly 

population failed to obtain information about vaccine per-

ception from the Internet directly. It was also found that face 

mask wearing was easily performed by older adults in Hong 

Kong.25 Elderly people also appeared to be more active in 

conducting preventive measures.33

In this article, we incorporated the probability-based 

HBM with regard to specific health behaviors into an SIR-

based epidemiological model. The HBM was used to examine 

individual’s perceptual dimensions such as perceived suscep-

tibility, severity, benefits, and barriers. However, the HBM has 

led to somewhat controversial issues in exploring the health 

behaviors such as for vaccination programs.34,35 The HBM 

presents a rational point of view that assumes the perceiver 

to be uninfluenced by the emotion, on describing the human 
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response to an epidemic.9,26 Our study, however, establishes 

a more robust mechanistic framework on modeling the influ-

ence of network-driven risk perception on influenza infection.

To our knowledge, we have conducted the first step on 

exploring the effects of risk perception in a population, on 

the spread of epidemics. We believe that our present meth-

odology provides an innovative approach that integrates 

an epidemiology model with the information theory. We 

examined three scenarios for describing different age-

specific populations to overcome susceptibility risk due to 

less accurate knowledge of influenza. We found that noise 

effect, which reflects as overlapping percentages about the 

uncertainty of accurate knowledge of influenza, can reduce 

risk perception information transfer on the network through 

the epidemic transmission. For example, previous studies 

found that participants had misconceptions between seasonal 

vaccine and pandemic strain.36,37

The effect of overlapping response may have resulted 

from the public health campaigns. For example, people were 

recommended to acquire the seasonal vaccine in pandemics. 

This may lead to a feedback mechanism between behavior 

change and disease dynamics. Future work should carefully 

consider the effects of this noise on specific age groups. 

Moreover, each intervention should be carefully investigated 

to the extent possible during an epidemic.

This study has several limitations. The estimation of 

information flow of risk perception in age groups depended 

on the ILI data. Indeed, the human response to influenza 

varied with time and hence is not possible to detect in real-

time situations. Moreover, perceptual states in specific age 

groups may be affected by the severity levels of disease, 

the amount of accurate information about influenza, and 

other health-related leaflets. Therefore, we suggest that the 

health authorities could reinforce health monitoring by using 

information technology and then linking it to the real-time 

epidemiological surveillance systems.

A further limitation of our study is that we did not con-

sider the influential factors on risk perception in an epidemic 

model. Hence, future research should explicitly consider a 

number of additional influential factors on risk perception 

within an epidemic modeling, including disease prevalence, 

network effects, and government and media health messages.

The findings of our study have an implication for public 

health. Risk communication might be more effective if health 

authorities focus on a variety of information communication 

channels for conveying health behavior messages. More-

over, our findings concerning perception of different health 

behaviors show substantial differences among age groups. 

We found that perceived protective behaviors (e.g., covering 

mouth, coughing hand washing) could reduce the infec-

tion risk for all age groups. This suggests that such crucial 

information for control measures would allow for targeting 

resources to designing and implementing the education plans 

concerning perception of healthy behaviors that are least 

perceived in the health behaviors.

Conclusion
We developed an integrated mathematical model by incorporat-

ing the epidemiological transmission dynamics, the informa-

tion flow of human responses, and an information theoretic 

model to assess the effects of network-driven risk perception 

on influenza infection risk. The simulated human responses 

with perceived health behaviors could decrease the risk of 

infection among different age groups. We demonstrated that the 

risk perception among populations changed with the effective 

information varying with the contact numbers of individual. 

We conclude that the present integrated BI model can help 

public health authorities on communicating health messages 

for an intertwined belief network in which health-seeking 

behavior plays a key role in controlling influenza infection.
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Supplementary materials

Table S1 Dose and number of volunteers of cold-recombinant vaccine and neuraminidase inhibitors in experimental human influenza 
for seasonal  influenza virus subtype

Strain Dose (logTCID50) Number of volunteers Reference

(tested/infected) % of volunteers infected

A(H1N1)
Texas/1/85a 4.5 8/7 86 Sears et al1

4.5 9/8 89
5.5 18/12 67

Taxas/36/91b 6 16/14 88 Hayden et al2,c

6 16/14 88
6 64/54 84 Gubareva et al3,c

5.9 18/15 83 Barroso et al4,d

5.9 18/16 89
5.9 18/16 89

A(H3N2)
Victoria/3/75a 3.4 14/10 71 Magnussen et al5e

Bethesda/1/85a 7.5 22/14 64 Sears et al1

6.5 10/4 40
5.5 12/6 50
4.5 11/1 9

Alaska/6/77a 7.5 24/20 83 Clements et al6

6.5 15/11 73
5.5 15/8 53
4.5 12/3 25

Beth/1/85b 7.15 20/16 80 Reuman et al7,f

7.15 20/12 60
7.15 19/13 68

Type B
Texas/1/84a 7.6 29/29 100 Keitel et al8

6.6 14/11 79
5.6 8/3 38
4.6 8/3 38

Ann Arbor/1/86a 7.5 21/11 66 Clements et al9

6.5 6/6 50
5.5 9/2 18
4.5 8/3 27

Yamagata/16/88b 7 25/17 68 Walker et al10,g

7 19/17 89 Hayden et al11,c

7 20/16 80
6.45 17/13 76 Barroso et al4,d

6.45 17/16 94
6.45 18/15 83

Notes: aCold-recombinant vaccine in experimental human influenza. bNeuraminidase inhibitors used as antiviral drugs in experimental human influenza. cOseltamivir (oral); 
dPeramivir (intranasal). eRibavirin (oral). fAmantadine (capsule). gZanamivir (intranasal).
Abbreviation: TCID50, the 50% cell culture infectious dose.
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