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Abstract: Although early breast cancer (BC) is highly curable, advanced or metastatic disease 

poses numerous challenges in terms of medical management and treatment decisions and is 

associated with significantly worse prognosis. Among the new targeted agents, anticancer drugs 

exploiting the cell-cycle machinery have shown great potential in preclinical studies. CDK4/6 

inhibitors target the cyclin D/CDK/retinoblastoma signaling pathway, inducing cell-cycle 

arrest, reduced cell viability and tumor shrinking. As the cyclin D/CDK complex is activated 

downstream of estrogen signaling, the combination of CDK4/6 inhibitors with standard endo-

crine therapies represents a rational approach to elicit synergic antitumor activity in hormone 

receptor-positive BC. The results of clinical trials have indeed confirmed the superiority of 

the combination of CDK4/6 inhibitors plus endocrine therapies over endocrine therapy alone. 

Currently approved are three compounds that exhibit similar structural characteristics as well 

as biological and clinical activities. Abemaciclib is the latest CDK4/6 inhibitor approved by 

the US Food and Drug Administration (FDA) in view of the results of the MONARCH 1 and 

2 trials. Further trials are ongoing as other important questions await response. In this review, we 

focus on abemaciclib to examine preclinical and clinical results, describing current therapeutic 

indications, open questions and ongoing clinical trials.

Keywords: CDK4/6 inhibitor, abemaciclib, breast cancer, hormone receptor-positive BC, 

metastatic BC, mBC

Introduction
Breast cancer (BC) is the most common cancer in women worldwide,1 accounting 

for ~30% of all cancers, and the second cause of cancer-related death after lung cancer. 

The American Cancer Society estimated that 252,710 new cases will be diagnosed 

and 40,610 women will die of BC in the US in 2017.2

While the availability of new therapies and treatment combinations has drastically 

improved outcomes and early BC is highly curable, ~20% of women will experience 

local or distant recurrence at some point in time, even after 5–10 years from diagnosis,3,4 

mainly due to acquired pharmacological resistance. Prognosis for these patients is 

worse, and new approaches are needed.

Among novel possible therapeutic targets, proteins involved in the control of 

the cell-cycle machinery have recently attracted a lot of interest, as dysregula-

tion of cellular proliferation is recognized as one of the hallmarks of malignant 

transformation.5,6 Progression through the cell cycle is tightly regulated in mamma-

lian cells by a group of proteins called cyclins, which in turn pair with and activate 

serine–threonine kinases (cyclin-dependent kinases [CDKs]). Specific cyclin/CDK 

heterodimeric complexes regulate transition through the stages of the cell cycle acting 

as checkpoints. One of their targets, the retinoblastoma (Rb) protein, also represents 
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a critical checkpoint regulator in mammalian cells, directly 

controlling progression from Phase G1 to S,7 DNA synthesis 

and irreversible commitment to cellular division at the 

so-called “G1 restriction point”. When hypophosphorylated, 

Rb inhibits progression through the cell cycle by binding to 

and suppressing the activity of the E2F family of transcrip-

tion factors.8 The G1–S cyclin-dependent kinase 4 (CDK4) 

and cyclin-dependent kinase 6 (CDK6) in complexes with 

cyclin D first and the CDK2/cyclin E later promote phospho-

rylation of Rb, thus overriding Rb inhibition of proliferation 

and initiating cellular division (Figure 1).9

Alterations in the cyclin D/CDK/Rb pathway arise in 90% 

of cancers.10 In particular, multiple molecular aberrations 

result in disruption of this pathway in 50%–70% of BCs.11,12 

Overexpression of cyclin D1 is the most frequent alteration, 

found in ~50%–60% of BCs, in particular in luminal B and 

HER2-positive BCs.11,13 Loss of expression of the Rb protein 

occurs in 20%–30% of BCs, mainly in the triple-negative 

BC (TNBC) molecular subtype. Finally, loss of p16, an 

endogenous CDK4 and CDK6 inhibitor, occurs in ~50% of 

invasive BCs.13–15

Considering the relative frequency of genetic aberrations 

of cell-cycle-regulating proteins found in BC, the therapeutic 

potential of targeting this pathway became increasingly clear 

in the past 10 years.

The first generation of CDK4 and CDK6 inhibi-

tors (ie, flavopiridol) underwent clinical testing with 

generally disappointing results. In fact, due to the lack 

of selectivity for the target, these pan-CDK inhibitors 

showed an unfavorable safety profile, with a range of drug-

mediated, dose-limiting side effects.16–18 Moreover, the 

intravenous route and the schedule of administration added 

complexity to the treatment regimens impacting on patient 

compliance. Flavopiridol, the most studied compound of 

this group, showed scarce activity as a single agent and only 

moderate activity in combination with chemotherapy.18

The second generation of CDK inhibitors, even though 

designed to be more selective, was limited by severe 

toxicities. Dinaciclib induced severe adverse events in 60% 

and 74% of patients in a Phase I and a Phase II clinical trial, 

respectively, while its effectiveness remained limited.19,20

The next generation of CDK inhibitors, besides the 

advantage of the oral route of administration, showed a much 

higher selectivity, specifically targeting CDK4 and CDK6.21,22 

Three compounds, palbociclib (PD 0332991; Pfizer, Inc.), 

ribociclib (LEE011; Novartis International AG) and abe-

maciclib (LY2835219; Eli Lilly and Company), underwent 

preclinical and clinical testing and are currently approved 

for the treatment of advanced and/or metastatic hormone 

receptor-positive/HER2-neu-negative BC (HR+/HER2−).

This review focuses on abemaciclib in HR+/HER2− BC, 

examining preclinical and clinical results, current therapeutic 

indications and ongoing clinical trials.

Abemaciclib: mode of action and 
preclinical results
LY2835219 (abemaciclib) was identified via compound and 

biochemical screening by scientists at Eli Lilly and Company 

Research Laboratories and selected for its biological activ-

ity and highly selective inhibition of the complexes CDK4/

cyclin D1 (IC
50

  =2  nmol/L) and CDK6/cyclin D1 (IC
50

 

=10  nmol/L), with no activity against other CDK/cyclin 

complexes or cell-cycle-related kinases within the nanomolar 

ranges, except for inhibition of CDK9 at IC
50

 at least five 

times higher (Figure 2).23 The compound was shown to act 

as a competitive inhibitor of the ATP-binding domain of the 

CDK4 and CDK6 and to be 14 times more potent against 

CDK4 than against CDK6.24 In comparison to palbociclib 

and ribociclib, abemaciclib shows higher selectivity for the 

Figure 1 Mode of action of CDK4/6 inhibitors.
Notes: Palbociclib, ribociclib and abemaciclib inhibit the complex CDK4/cyclin D1, 
responsible for the phosphorylation and inhibition of the Rb tumor-suppressor 
gene’s product. When Rb is phosphorylated, the cell proceeds from G1 to Phase S 
of the cell cycle, replicating DNA and preparing for mitosis.
Abbreviation: Rb, retinoblastoma. Figure 2 Chemical structure of LY2835219/abemaciclib.
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complex CDK4/cyclin D1, with IC
50

 values five times lower 

than those of the two other compounds (Table 1).

Inhibition of phosphorylation of Rb protein resulted in 

G1 cell-cycle arrest in both in vitro and in vivo experiments 

on multiple cancer cell lines from colorectal, lung, glioblas-

toma and blood cancers. When tested on tumor xenografts 

in nude mice, LY2835219 elicited potent dose-dependent 

antitumor activity, comparable to that of PD0332991 

(palbociclib), inducing ~70% of tumor volume regression, 

and was well tolerated when administered on a continuous 

schedule. The authors also tested the compound in vivo in 

combination with gemcitabine, reporting a synergic effect 

of the combination on Calu-6 lung subcutaneous xenografts 

and a greater antitumor activity in comparison to the single 

treatments in the absence of enhanced toxicity.23

Besides the cell-cycle dependent activity, Goel et al26 

recently showed that abemaciclib is able to boost antitumor 

immunity by potentiating tumor antigen presentation and 

selectively suppressing proliferation of regulatory T (T
reg

) 

cells at the same time. In this very elegant work, abemaciclib 

was shown to upregulate expression of type III interferons 

and interferon-stimulated genes/transcription factors, such 

as STAT1, STAT2, IRF2, IRF6, IRF9 and NLRC5, in the 

tumors of a transgenic mouse model of BC. At the same 

time, the CDK4/6 inhibitor reduced the number of T
reg

 cells 

in the spleen and lymph nodes of both tumor-bearing and 

tumor-free wild-type mice (tumor-independent effect). When 

these cells were isolated and cultured in vitro, addition of 

abemaciclib slowed down their proliferation without affect-

ing CD8+ or CD4+ T cells. The same effect was observed in 

vivo in abemaciclib-treated tumors.

Ultimately, all these effects induced cytotoxic T cell- 

mediated killing of tumor cells which, as suggested in the 

study, could be further increased with the addition of anti- 

immune checkpoint therapies. The authors were able to dem-

onstrate that the antitumor activity of abemaciclib is dependent 

on the presence of intratumoral cytotoxic T lymphocytes.

In addition, the authors confirmed previous reports’ 

finding that LY2835219/abemaciclib acts by promoting 

cellular senescence phenotypes in BC cells, as shown by the 

presence of marked hypermethylation and accumulation of 

endogenous beta-galactosidase.24,26

More specific to LY2835219 in comparison to other 

CDK4 and CDK6 inhibitors is the ability to cross the blood–

brain barrier, with concentrations of the drug in the cerebro-

spinal fluid comparable to the ones in plasma.27–31

Experiments in vitro and in vivo on mouse xenografts 

models of glioblastoma showed that palbociclib can also 

cross the blood–brain barrier,32 but subsequent clinical studies 

have provided inconsistent results.33

In view of these findings, abemaciclib is being tested 

in the clinic and holds promise in primary brain tumors 

(NCT03220646, NCT02981940) and in brain metastases from 

breast or other cancers (Bachelot et al. Poster presentation at 

2017 San Antonio Breast Cancer Symposium; December 6–9, 

2017; San Antonio, TX. Abstract P1-17-03).30,31

Abemaciclib in clinical trials
Phase I
Based on the very promising results obtained in preclinical 

studies, abemaciclib entered clinical development. In Phase I 

studies, abemaciclib, alone and in combination with ful-

vestrant or other antihormone therapies, showed favorable 

pharmacokinetic and toxicity profiles in patients with hormone-

positive metastatic breast cancer (mBC), with most common 

grade 3 treatment-related side effects being diarrhea, neutro-

penia, nausea and fatigue. No febrile neutropenia or grade 4 

events were reported.34–36 Single-agent abemaciclib was well 

tolerated when given on a continuous schedule to patients 

with different cancers, and fatigue was the dose-limiting side 

effect in a more recent Phase I study.30 In all the trials, the drug 

showed antitumor activity in multiple tumor types, including 

BC, and in often heavily pretreated patients, with an objective 

response rate (ORR) of 26% in hormone-refractory estrogen 

receptor positive (ER+) mBC when given as single therapy30 

and disease control rates ranging from 70% in all tumor types 

to 81% in HR+ patients.34 The most encouraging results were 

obtained in the group of HR+ mBC patients treated with the 

combination of abemaciclib and fulvestrant, which elicited 

62% of confirmed partial responses (PRs) in patients who 

had received on average four prior systemic therapies.35

Phase II
These results prompted the launch of a Phase II trial, 

MONARCH 1, to evaluate the antitumor activity of abemaciclib 

Table 1 CDK4/6 inhibitors’ selectivity

Palbociclib Ribociclib Abemaciclib

IC50 for CDK/cyclin complexes (nmol/L)
CDK4/cyclin D1 11 10 2
CDK6/cyclin D1 16 39 10
CDK1/cyclin B .10,000 .10,000 1,627±666
CDK2/cyclin A/E .70,000 .10,000 504±298
CDK5/p25 .40,000 .10,000 355
CDK9/cyclin T1 NR NR 57±42

Notes: Data are presented as average of independent determinations ± SD. Data 
from Gelbert et al23 and Tripathy et al.25 For number of repeats and other information, 
please see cited references..

Abbreviation: NR, not reported.
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as a single agent in patients with refractory HR+/HER2– 

mBC who received prior chemotherapy after progression 

on endocrine therapies.37 This single-arm study enrolled 132 

hormone receptor-positive mBC patients who had progressed 

on endocrine therapy and already received multiple systemic 

therapies (average of three prior systemic regimens). Abe-

maciclib was orally administered, at a dose of 200 mg twice 

daily, on a continuous schedule, until disease progression or 

unacceptable toxicity. The primary end point of the study was 

ORR, calculated as the total number of complete response 

(CR) or PR divided by the total number of patients; second-

ary end points were clinical benefit rate, progression-free 

survival (PFS) and overall survival (OS).

Worth noting was that 90.2% of patients had visceral 

disease and 50.8% had more than three sites of metastases.

Single-agent abemaciclib induced PRs (measured by 

RECIST criteria v 1.1) in 26 (19.7%) of the total 132 patients 

enrolled. No CRs were detected, with an ORR of 19.7% 

(95% CI: 13.3–27.5). The clinical benefit rate was 42.4%. 

Median PFS was 6 months (95% CI: 4.2–7.5), and median 

OS was 17.7 months (95% CI: 16–not reached). At the final 

analysis, at 18 months, median OS was 22.3 months (95% 

CI: 17.7–not reached).

Serious adverse events (SAEs) were reported in 32 

(24.2%) patients, and grade 5 events, all deemed not related 

to the drug, occurred in three patients. Diarrhea was the most 

frequent adverse event, reported by 119 (90.2%) patients, 

most often grade 1 (41.7%) or grade 2 (28.8%) and most 

frequently during the first cycle of treatment. Grade 3 diarrhea 

was observed in 26 (19.7%) patients. Duration of episodes 

was generally limited, and loperamide was administered 

in 60.6% of patients. The majority of patients did not need 

abemaciclib dose reduction or discontinuation (72.3%), 

and only one patient permanently ceased treatment because 

of this adverse event. Other common adverse events were 

fatigue, nausea and decreased appetite, in accordance with 

previous reports.

All grades neutropenia was observed in 87.7% of patients. 

Grade 3 neutropenia occurred in 22.3% of patients, whereas 

4.6% of patients had a grade 4 event. One patient had 

febrile neutropenia in the follow-up period and after discon-

tinuation of the drug, during successive chemotherapy.

A dose reduction of abemaciclib due to adverse events 

other than diarrhea was necessary in 65 (49.2%) patients.

Phase III
The favorable pharmacokinetics and the strong evidence 

of an antitumor effect prompted the initiation of Phase III 

clinical trials.

MONARCH 2 compared the combination of abemaci-

clib and fulvestrant to fulvestrant alone in patients with 

HR+/HER2− advanced BC, which had progressed on endo-

crine therapy.38 In this international double-blind Phase III 

trial, 669 women were randomized to receive fulvestrant 

plus placebo or fulvestrant plus abemaciclib. Patients 

received abemaciclib or placebo twice daily on a continuous 

schedule of 28-day cycles. When the study began, patients 

in the abemaciclib arm were receiving 200 mg twice daily. 

After a safety data review and the analysis of dose-reduction 

rates among patients, the original dose was reduced to 150 mg 

for all patients, new and already enrolled. The trial’s primary 

end point was investigator-assessed PFS, and the secondary 

end points were OS, ORR and duration, clinical benefit 

rate, quality of life and safety.

The combination of abemaciclib and fulvestrant dem-

onstrated superiority to treatment with fulvestrant alone 

in this group of patients: median PFS in the combination 

group was 16.4 months in comparison to 9.3 months of the 

fulvestrant-alone group (hazard ratio [HR] 0.553; 95% CI: 

0449–0.681; p,0.001). ORR in patients with measurable 

disease was 48.1% (95% CI: 42.6–53.6) in the abemaciclib 

plus fulvestrant group versus 21.3% (95% CI: 15.1–27.6) 

in the fulvestrant-alone group (p,0.001). The median dura-

tion of response was not reached in the abemaciclib plus 

fulvestrant group at the time of the analysis. CR occurred 

in 11 (3.5%) patients with measurable disease. No CR was 

achieved in the fulvestrant-alone group.

The most common adverse events of any grade were 

diarrhea, neutropenia, nausea, fatigue and abdominal pain. 

Only 1.4% of the patients on abemaciclib experienced febrile 

neutropenia. Of these, one febrile neutropenia occurred 

53 days after discontinuation of investigational drug, when 

the patient had already started chemotherapy. Grade 1 or 2 

diarrhea occurred in 73% of patients on abemaciclib plus 

fulvestrant versus 24.2% of the patients on fulvestrant 

alone. Grade 3 diarrhea occurred in 13.4% of patients on 

the combination therapy versus 0.4% of those on fulvestrant 

alone. The majority of patients who experienced diarrhea did 

not require dose adjustments or discontinuation (70.1%), 

and only 2.9% of patients discontinued abemaciclib due to 

this side effect.

Thromboembolic events were the most frequently 

reported SAEs, occurring in 2% of the abemaciclib group 

patients versus 0.4% of the fulvestrant-alone group patients. 

None of these episodes resulted in death.38

In view of these results, on the September 28, 2017, the 

US Food and Drug Administration (FDA) granted approval 

for abemaciclib in combination with fulvestrant in patients 
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with HR+/HER2− advanced BC or mBC who progressed 

following endocrine therapy. On the same date, and on the 

basis of the MONARCH-1 trial results,39 abemaciclib also 

gained FDA approval as a single-agent therapy in patients 

with HR+/HER2− mBC who experienced disease progression 

following endocrine therapies and prior chemotherapy.

Furthermore, in September 2017, results of the 

MONARCH 3 trial of abemaciclib in combination with 

a nonsteroidal aromatase inhibitor (letrozole or anastro-

zole) were presented at the European Society for Medical 

Oncology (ESMO) 2017 Congress in Madrid40 and published 

immediately after.41

This randomized Phase III study compared abemaciclib 

or placebo in combination with a nonsteroidal aromatase 

inhibitor in postmenopausal patients with advanced 

HR+/HER2− BC who had no previous systemic therapies. 

The trial enrolled 493 patients. Abemaciclib was given at 

the standard dose of 150 mg twice daily (on a continuous 

schedule), while anastrozole and letrozole were given at 1 and 

2.5 mg daily, respectively. The primary objective of the trial 

was investigator-assessed PFS, and secondary objectives 

were evaluation of response and safety assessment.

Addition of abemaciclib to nonsteroidal aromatase 

inhibitors significantly prolonged PFS with an observed 

HR of 0.54 (95% CI: 0.41–0.72; p,0.000021), while the 

median PFS was not reached in the abemaciclib arm at 

interim analysis against 14.7  months in the placebo arm. 

Independent central review reached similar results (HR 0.51; 

95% CI: 0.36–0.72).

ORR was 48.2% (95% CI: 42.8%–53.6%) in the 

patients receiving abemaciclib versus 34.5% (95% CI: 

27.3%–41.8%) in the placebo-assigned patients (p,0.002). 

In patients with measurable disease, ORR was 59.2% (95% 

CI: 53.3%–65.1%) with abemaciclib and 43.8% (95% CI: 

35.3%–52.4%) with placebo (p,0.004). Clinical benefit was 

achieved by 78% (95% CI: 73.6%–82.5%) of the patients 

on abemaciclib and 71.5% (95% CI: 64.6%–78.4%) of the 

ones on placebo. Although all patients’ subgroups benefited 

from the addition of abemaciclib to endocrine therapy, it is 

worth noting that patients with better prognostic factors, such 

as prolonged treatment-free interval, bone-only secondary 

disease and no liver metastases, responded well to endo-

crine therapy alone. On the other hand, patients with shorter 

treatment-free interval or who presented liver metastases at 

baseline recorded higher benefit rate with abemaciclib.

The safety assessment demonstrated consistent results 

with previous abemaciclib trials: the most frequent all-grade 

adverse events in the investigational arm were diarrhea 

(81.3%), neutropenia (41.3%), fatigue (40.1%) and nausea 

(38.5%). The vast majority of diarrhea events were grade 1 

and 2 and occurred during the first cycle of therapy. Grade 3 

diarrhea was reported in 9.5% of cases. SAEs occurred in 

27.5% of patients treated with abemaciclib and in 14.9% of 

patients treated with placebo. The most common SAE was 

lung infection, occurring in 2.8% of patients on abemaciclib 

versus none of the patients on placebo.

Other ongoing Phase III studies are currently looking 

at the combination of abemaciclib and standard endocrine 

therapies in patients with early stage, high risk, node positive 

HR+/HER2− BC (NCT03155997, MONARCH E), as well 

as in postmenopausal patients with locoregionally recurrent 

or metastatic HR+/HER2− BC (NCT02763566, MONARCH 

plus; Table 2).

Abemaciclib is also being tested in other BC molecular 

subtypes, including HER2-positive BC and TNBC 

(NCT02675231, NCT03130439; Table 2).

Discussion
Numerous studies have highlighted the strong direct link 

existing between estrogen signaling pathway and the cell 

cycle.

Estrogen stimulation induces cell-cycle progression 

from G1 to S phase42 and increases cellular proliferation via 

upregulation of downstream cyclin D1 and CDK4/6, as well 

as C-MYC and cyclin E/CDK2.43 On the other hand, estrogen 

inhibition therapy, with aromatase inhibitors, tamoxifen 

and fulvestrant, induces cell-cycle arrest and consequently 

decreases cell viability.44,45

Moreover, Rb gene-negative breast tumors are resistant to 

tamoxifen in xenograft models and in the clinical setting,46,47 

proving that disruption of the Rb signaling pathway is indeed 

implicated in the cancer-inducing effects of estrogens.

Selective CDK4/6 inhibitors have shown impressive 

results in combination with antihormone therapies in advanced 

BC, leading to FDA approval of three compounds, palboci-

clib, ribociclib and most recently abemaciclib. The main rep-

resentative and the first of the anti-CDK4/6 family obtaining 

approval for first-line therapy in ER-positive advanced BC 

and mBC was palbociclib, in combination with letrozole and 

fulvestrant, respectively. In the PALOMA-1/TRIO-18 trial, 

the combination of palbociclib plus letrozole significantly 

increased the PFS from 7.5 months to 26.1 months (HR 0.37; 

p,0.001) in post-menopausal women with advanced BC.48 

Subsequently, palbociclib was tested in combination with 

fulvestrant in comparison to fulvestrant alone in patients 

with HR+/HER2− BC who progressed or relapsed after 

endocrine therapy (PALOMA 3 trial).49,50 The combination of 

palbociclib with fulvestrant granted longer PFS and a better 
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quality of life in comparison to fulvestrant alone in these 

patients, irrespective of menopausal status. Median PFS was 

9.2 months with palbociclib–fulvestrant versus 3.8 months 

with placebo–fulvestrant (HR 0.42; p,0.001).

Ribociclib’s approval by the FDA for first-line treatment 

of postmenopausal women with HR+/HER2− advanced 

BC or mBC is based on the results from the Phase III 

MONALEESA-2 trial.51 The trial enrolled 668 postmeno-

pausal women with HR+/HER2− advanced BC or mBC 

who received no prior systemic therapy for their disease. 

The combination of ribociclib plus letrozole reduced the risk 

of progression (or death) by 44% over letrozole alone (with 

median PFS not reached in the combination arm [95% CI: 

19.3  months–not reached] versus 14.7  months [95% CI: 

13.0–16.5  months] in the letrozole alone arm; HR 0.556 

[95% CI: 0.429–0.720]; p,0.0001). The 24-month second 

interim analysis confirmed the superiority of the combination, 

with PFS rates of 54.7% for ribociclib plus letrozole versus 

35.9% for letrozole alone.52

Abemaciclib was the last CDK4/6 inhibitor approved by 

the FDA in combination with fulvestrant for the treatment of 

HR+/HER2− advanced BC or mBC, which has progressed 

with endocrine therapy. Notably, on the basis of the results of 

the MONARCH 1 trial,39 abemaciclib also obtained approval 

as a single-agent therapy in patients with HR+/HER2− mBC 

who experienced disease progression following endocrine 

therapy and prior chemotherapy.

While all three CDK4/6 inhibitors exhibit the same 

mechanism of action, inhibiting the ATP-binding domain of 

the kinases, there are some structural and biochemical dif-

ferences between the compounds (reviewed in Chen et al53), 

which account for differences in clinical activity.

While single-agent palbociclib and ribociclib showed 

only minimal antitumor activity,54–56 abemaciclib showed 

clinical benefit in heavily pretreated patient populations with 

metastatic HR+/HER2− BC who experienced progression 

with previous treatments37,39 and has thus been approved 

with this indication. Even though MONARCH 1 was a small 

Phase II study, the results indicate that abemaciclib can be 

used in endocrine-resistant metastatic tumors. In this patient 

group, the only remaining choice is chemotherapy, with very 

low response rates and median PFS of 3–4 months. On this 

Table 2 Current investigational clinical trials with abemaciclib (excluding MONARCH 1, 2 and 3)

Trial ID Phase Tumor type Population Therapies Primary outcome

NCT03155997/
MONARCH E

III HR+/HER2− BC High risk, node positive, 
early stage

Abemaciclib ± standard endocrine 
therapy

IDFS

NCT02779751 I HR+/HER2− BC mBC Abemaciclib ± pembrolizumab SAEs
NCT02747004 II HR+/HER2− BC Previously treated mBC Abemaciclib ± tamoxifen PFS
NCT02831530/
ABC-POP

II HR+/HER2− BC Neoadjuvant early BC Abemaciclib Antiproliferative 
response

NCT02763566/
MONARCH Plus

III HR+/HER2− BC Postmenopausal women 
with locoregional 
recurrence or mBC

Abemaciclib ± NSAIs
Abemaciclib ± fulvestrant

PFS

NCT02308020 II Brain metastases 
secondary to 
HR+/HER2± BC

mBC Abemaciclib CR or PR: OIRR

NCT02675231/
monarcHER

II HR+/HER2+ BC Locally advanced BC or 
mBC. Two previous lines 
of anti-HER2 therapy

Abemaciclib + trastuzumab ± fulvestrant PFS

NCT02057133 I HR+/HER2− BC mBC Abemaciclib + letrozole or anastrozole 
or tamoxifen or exemestane 
and/or everolimus or trastuzumab or 
LY3023414 or fulvestrant

SAEs

NCT03099174 I HR+/HER2− BC Advanced BC or mBC Abemaciclib + xentuzumab ± endocrine 
therapy

MTD, DLT, CR and PR as 
per RECIST version 1.1

NCT02791334/PACT I HR+/HER2− BC Advanced refractory BC Abemaciclib + LY3300054 DLT
NCT02784795 I HR+/HER2− BC 

and TNBC
Notch pathway-related 
alterations

Abemaciclib + LY3039478 MTD

NCT01655225 I HR+/HER2− BC Locally advanced BC or 
mBC

Abemaciclib + LY3023414 + letrozole Recommended dose

NCT03130439 II TNBC Rb-positive, triple 
negative metastatic BC

Abemaciclib ORR

Abbreviations: BC, breast cancer; IDFS, invasive disease-free survival; mBC, metastatic breast cancer; SAE, serious adverse event; PFS, progression-free survival; CR, 
complete response; PR, partial response; OIRR, objective intracranial response rate; MTD, maximum tolerated dose; DLT, dose-limiting toxicity; Rb, retinoblastoma; NSAI, 
non-steroidal aromatase inhibitor.
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trial, patients on abemaciclib, 90% of whom had visceral 

metastases and .50% had three or more sites of metastasis, 

showed a longer PFS (6 months) and a clinical benefit rate 

of 42.4%.

The reason behind the antitumor activity of abemaci-

clib in monotherapy is not completely understood. The 

administration schedule of abemaciclib is continuous, in 

contrast with that of both palbociclib and ribociclib, which 

is given consecutively for 21 days, followed by a 7 days 

break to control the dose-limiting myelosuppressive effect 

of these compounds. Preclinical studies in vitro and in vivo 

have shown that short-term inhibition of CDK4/6 in tumor 

cells causes a rebound effect with increased cellular pro-

liferation when the inhibition is withdrawn.23,57 This effect 

could explain the efficacy of continuously dosed abemaci-

clib as monotherapy in comparison to intermittently dosed 

palbociclib and ribociclib.

In addition, the safety profile of the three drugs is quite 

different. The dose-limiting toxicity (DLT) with palbociclib 

and ribociclib is neutropenia, while that with abemaciclib is 

fatigue. Grade 3 neutropenia is generally a relatively rare 

event with abemaciclib but occurs in up to 65% of the patients 

treated with palbociclib58 and 59.3% of the patients treated 

with ribociclib.51 On the other hand, gastrointestinal on-target 

effects, such as diarrhea, nausea and abdominal pain, are the 

most frequent toxicities reported with abemaciclib.

Abemaciclib is a 14 times more potent inhibitor of the 

CDK4/cyclin D1 complex24 than CDK6/cyclin D1/2/3. While 

activation of CDK4 is involved in breast tumorigenesis via 

cyclin D1 overexpression or genetic aberrations, CDK6 is 

important for hematopoiesis and differentiation of blood 

cells.59,60 Inhibition of CDK6 by palbociclib and ribociclib is 

responsible for the myelosuppression reported in the majority 

of patients using these drugs, which ultimately explains the 

intermittent regimen of administration.

Scientists are actively trying to elucidate the mechanisms 

behind non-hematological toxicities of abemaciclib. Besides 

CDK4 and CDK6, the ability, exclusive to abemaciclib, to 

target CDK9, a broadly expressed CDK regulating gene 

transcription, embryogenesis and cellular proliferation, may 

account for the specific toxicity profile and gastrointestinal 

adverse events.61

Furthermore, abemaciclib has shown a regular distribu-

tion across multiple systems, including the cerebrospinal 

fluid, with concentrations of drug comparable to those 

found in plasma.62 This finding has sparked interest for its 

use in treating primary and secondary brain tumors, and 

these indications are currently being investigated in clinical 

trials (NCT02308020, NCT02981940, NCT03220646, 

NCT02644460) with encouraging preliminary results.31 

Palbociclib, on the other hand, has provided contrasting 

results in this setting,33 and further clinical studies are ongo-

ing (NCT02774681, NCT02255461, NCT02255461).

Given the importance of PI3K signaling pathway’s 

genetic alterations in the pathogenesis of ER+/HER2− BC, 

abemaciclib is currently being investigated in doublet 

and triplet combinations with dual PI3K/mTOR inhibi-

tors plus or minus hormonal therapies (NCT02057133, 

NCT01655225).

Furthermore, in view of the recent pivotal report on the 

immune-boosting antitumor activity of abemaciclib,26 ran-

domized trials testing the combination of the anti-CDK4/6 

inhibitor with approved immunotherapies such as pembroli-

zumab (NCT02779751) and the novel anti PD-L1 antibody 

LY3300054 (PACT/NCT02791334) hold great promise.

Finally, following evidence that HER2 positive breast 

tumors resistant to trastuzumab are driven by cyclin D1 

overexpression,63 abemaciclib is currently being investigated 

in ER+/HER2+ advanced BC in combination with trastu-

zumab and fulvestrant in patients who progressed on previ-

ous anti-HER2 therapies (at least two lines) (monarcHER/

NCT02675231).

A parallel comparison of the three CDK4/6 inhibitors 

currently approved for therapy in advanced and metastatic 

HR+/HER2− BC could potentially help defining better 

therapeutic indications but is still lacking.

In addition, as acquired resistance to CDK4/6 inhibitors 

occurs, the question of whether a CDK4/6 can be substituted 

with another after progression is important and open. In fact, 

given the biological and clinical differences between the 

compounds, it may be hypothesized that the mechanisms 

of pharmacological resistance to one compound differ from 

the mechanisms of resistance to others. If this is the case, 

sequential therapy with CDK4/6 inhibitors could still be of 

benefit, perhaps in combination with other targeted therapies 

in selected patient subsets.

The identification of specific biomarkers could also 

help selecting subgroups of patients who are more likely to 

respond to one CDK4/6 inhibitor rather than the others.

HR+/HER2− advanced BC unmet 
needs
In the last 20  years, enormous progress in translational 

research has resulted in the development of numerous 

targeted therapies for the treatment of HR+/HER2− BC. 

Even in the presence of such armamentarium of new drugs, 

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Drug Design, Development and Therapy 2018:12submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

328

Corona and Generali

clinical results have been somehow disappointing, specifi-

cally in the metastatic setting, major setbacks being occur-

rence of pharmacological resistance and lack of reliable 

biomarkers of response to treatment.

Before the advent of CDK4/6 inhibitors, the only remain-

ing option for patients who progressed on endocrine thera-

pies was chemotherapy, with response rates in the order of 

10%–20% only.

Development of acquired resistance to endocrine and 

targeted therapies represents a major issue in the management 

of advanced and metastatic ER+ BC. Personalized medicine 

implies knowledge of the single tumor mutational land-

scape. While the advent of liquid biopsies and the analysis 

of secondary lesions via solid tumor biopsy will certainly 

facilitate identification of newly occurring mutations, sub-

clonal heterogeneity within both primary and secondary 

lesions may limit efficacy of targeted therapies.

To tackle this intrinsic heterogeneity, next-generation 

sequencing offers the possibility to characterize the whole 

genotype of the tumor, identifying the mutations cells are 

addicted to.

In this context, multiple reports have highlighted the 

importance of a combinatorial therapeutic approach to 

overcome occurrence of pharmacological resistance by 

targeting multiple signaling pathways at the same time,64–66 

and the design of clinical trials is, in fact, moving in this 

direction. On the other hand, even when sequential therapies 

are used, liquid biopsies would allow a “real-time” analysis 

of the tumor’s mutational landscape, with the possibility of 

adjusting therapies accordingly, as resistance occurs.67

Besides the phenomenon of acquired resistance, the lack 

of reliable predictive biomarkers for selection of the patients 

most likely to respond to targeted therapies represents another 

important limitation to applying precision medicine.

For instance, while amplification of cyclin D1 was initially 

evaluated as a biomarker for stratification of patients treated 

with CDK4/6 inhibitors, it failed to show any meaningful 

correlation with response in clinical trials.48

CDK4/6 inhibitors require functional Rb protein to exert 

their antitumor activity. Loss of Rb is a marker of resistance 

to treatment, but the majority of HR+ BCs are Rb proficient.11 

Acquired pharmacological resistance to palbociclib occurs via 

loss of Rb and amplification of cyclin E1,68 and the combina-

tion of a CDK4/6 inhibitor and a CDK2 inhibitor may repre-

sent a strategy to overcome resistance to CDK4/6 inhibitors.

Conclusion
The approval of abemaciclib adds another option to the 

armamentarium of effective CDK4/6 inhibitors currently 

available. The latest agent, such as palbociclib and ribociclib, 

responds to a pressing unmet need of patients with hormone 

receptor positive, HER2-negative mBC patients who have 

progressed on endocrine therapies, offering a more effective 

option than chemotherapy. More specifically than the other 

CDK4/6 inhibitors, abemaciclib seems to obtain the best 

results in heavily pretreated patients with visceral disease 

and worse prognosis.

Furthermore, the ability to cross the blood–brain barrier 

and the potential synergism between abemaciclib and targeted 

immunotherapies represent interesting aspects and offer pos-

sibilities for more effective multiple combination therapies.

Important questions about the correct use of CDK4/6 

inhibitors, potential biomarkers of response and mecha-

nisms of acquired resistance are still open and may be 

addressed in the future by specifically designed randomized 

clinical trials.
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