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Objectives: Actigraphy is widely used to estimate sleep–wake time, despite limited informa-

tion regarding the comparability of different devices and algorithms. We compared estimates 

of sleep–wake times determined by two wrist actigraphs (GT3X+ versus Actiwatch Spectrum 

[AWS]) to in-home polysomnography (PSG), using two algorithms (Sadeh and Cole–Kripke) 

for the GT3X+ recordings.

Subjects and methods: Participants included a sample of 35 healthy volunteers (13 school 

children and 22 adults, 46% male) from Boston, MA, USA. Twenty-two adults wore the GT3X+ 

and AWS simultaneously for at least five consecutive days and nights. In addition, actigraphy 

and PSG were concurrently measured in 12 of these adults and another 13 children over a single 

night. We used intraclass correlation coefficients (ICCs), epoch-by-epoch comparisons, paired 

t-tests, and Bland–Altman plots to determine the level of agreement between actigraphy and 

PSG, and differences between devices and algorithms.

Results: Each actigraph showed comparable accuracy (0.81–0.86) for sleep–wake estimation 

compared to PSG. When analyzing data from the GT3X+, the Cole–Kripke algorithm was more 

sensitive (0.88–0.96) to detect sleep, but less specific (0.35–0.64) to detect wake than the Sadeh 

algorithm (sensitivity: 0.82–0.91, specificity: 0.47–0.68). Total sleep time measured using the 

GT3X+ with both algorithms was similar to that obtained by PSG (ICC=0.64–0.88). In contrast, 

agreement between the GT3X+ and PSG wake after sleep onset was poor (ICC=0.00–0.10). In 

adults, the GT3X+ using the Cole–Kripke algorithm provided data comparable to the AWS (mean 

bias=3.7±19.7 minutes for total sleep time and 8.0±14.2 minutes for wake after sleep onset).

Conclusion: The two actigraphs provided comparable and accurate data compared to PSG, 

although both poorly identified wake episodes (i.e., had low specificity). Use of actigraphy 

scoring algorithm influenced the mean bias and level of agreement in sleep–wake times esti-

mates. The GT3X+, when analyzed by the Cole–Kripke, but not the Sadeh algorithm, provided 

comparable data to the AWS.

Keywords: validation, actigraphy, polysomnography, scoring algorithm

Introduction
Actigraphy is increasingly used to provide objective measurements of sleep.1–3 A 

PubMed search done in April 2017 revealed 2,503 scientific publications that include 

actigraphy and sleep. Nonetheless, there are limited data that directly assess agreement 

with polysomnography (PSG), and evaluate the extent to which findings change as 

a result of the use of different actigraphs and alternative scoring algorithms and the 

variation across age groups. Such data are timely, given the active use of actigraphs 

in large population-based initiatives, including the UK Biobank. Understanding the 
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comparability of data across studies is important in interpret-

ing and generalizing findings.

The most commonly used algorithms for sleep–wake 

scoring in children, adolescents, and adults have been devel-

oped by Sadeh et al4 and Cole et al5. Sadeh’s (S) algorithm 

was originally validated on a healthy sample of adolescents 

and young adults (age range 10–25 years), whereas Cole–

Kripke’s (CK) algorithm was validated in an adult sample 

(age range 35–65 years). Few studies have validated these 

two scoring algorithms against the gold standard of PSG; 

these studies were limited by not assessing both children and 

adults concurrently,6–9 studying patients referred for PSG,7–9 

using only a single actigraph,6,8,9 and not synchronizing clock 

times for PSG and actigraphy.8

In particular, little research is available that addresses 

the validity of a newer actigraph, the GT3X+ (ActiGraph™; 

ActiGraph, Pensacola, FL, USA), compared to the “gold 

standard” PSG. The GT3X+ is in use in large-scale epide-

miologic studies, such as the National Health and Nutrition 

Examination Survey, the Transdisciplinary Research on 

Energetics initiative, and a prebirth cohort study, Project Viva. 

Little information is available regarding how the GT3X+ 

device performs in comparison to a device commonly used 

in sleep research, the Actiwatch Spectrum (AWS; Philips/

Respironics, Murrysville, PA, USA).10–12 To the best of our 

knowledge, no study has yet validated the GT3X+ for sleep 

in school children and young teens (age 10–14 years). It is 

very important to conduct actigraphy validation studies in 

pediatric populations, given the significant sleep problems 

that children suffer from and the emerging data from small- 

as well as large-scale research studies.2

Accordingly, in this study, our aims were to: 1) assess the 

accuracy of sleep–wake estimation of the GT3X+ actigraph 

in children in addition to adults; 2) examine the validity of 

GT3X+ with the CK scoring algorithm; and 3) evaluate the 

agreement between sleep parameters from concurrently used 

GT3X+ and AWS wrist actigraph devices. 

Subjects and methods
Study sample
Participants consisted of healthy volunteers, 22 adults and 13 

children (age 10–14 years). We identified volunteers through 

local advertisement at gyms, workplaces, and schools. 

Exclusion criteria included self-reported severe untreated 

diagnosed sleep disorder (e.g., untreated severe sleep apnea), 

serious or acute illness, use of sedating medications, and dis-

abilities that might interfere or restrict mobility. This study 

was conducted in accordance with “The Code of Ethics of 

the World Medical Association” (Declaration of Helsinki), 

and the Institutional Review Board of Brigham and Women’s 

Hospital approved the study. All participants, or legal guard-

ians of the children under the legal age, provided written 

informed consent for this study. In addition, we obtained 

assent from children under 14 years of age.

Actigraphy and sleep diary
We asked all adults and children to wear a GT3X+ device 

on the nondominant wrist for at least 5 days. Participants 

completed a diary using a smartphone app before going to 

bed and upon awakening each morning, in which they noted 

time in bed, time out of bed, nocturnal awakenings, and any 

naps taken. The app was programmed with diary questions 

similar to those used for the consensus sleep diary by Ginger.

io (California Medical P.C., San Francisco, CA, USA).13 All 

logs and participants’ answers were sent to a secure web-

based dashboard. Electronic sleep diaries have been shown 

to provide valid information on sleep patterns.14 To compare 

the GT3X+ with the AWS, adults also wore an AWS concur-

rently on the nondominant wrist. The type of device worn 

nearer to the wrist was randomly determined. Children only 

wore the GT3X+ to minimize burden.

Activity counts for the GT3X+ were collected in 1-minute 

epochs, whereas data for the AWS were collected in 30-s 

epochs, reflecting the default modes of these devices. We 

analyzed GT3X+ data using ActiLife 6 software (Version 

6.13.1, ActiGraph). The software provides the S and CK 

algorithms to score sleep, and we applied each independently 

to derive sleep–wake estimates from the GT3X+ devices. The 

S algorithm was originally validated in adolescents and young 

adults wearing an AMA-32 actigraph (Ambulatory Monitor-

ing, Inc., Ardsley, NY, USA), whereas the CK algorithm 

was validated in adults wearing a Motionlogger Actigraph 

(Ambulatory Monitoring, Inc.). In order to match the output 

of the more sensitive GT3X+ device with the Motionlogger 

Actigraph and AMA-32, the ActiGraph company adapted 

the original S and CK algorithms to the ActiGraph devices 

by performing a side-by-side test using devices from both 

companies worn together (D Judge, ActiGraph, personal 

communication, April, 2016). For the CK algorithm, the 

epoch data were adjusted through scaling the count values 

by 100 and setting scaled values over 300 to 300. For the S 

algorithm, the company changed the original scoring algo-

rithm threshold for “probability of sleep” from ≥0 counts 

to ≥−4 counts. We scored the AWS data using Respironics 

Actiware 5 ( Version 5.59, Philips/Respironics), which is 

the only algorithm provided by this device for analysis. The 
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algorithm has three threshold settings. We used a medium 

threshold of 40 counts per epoch for wake detection with 

the AWS. The medium-threshold setting is thought to give 

the best compromise between detecting sleep and wake in 

terms of sensitivity and specificity compared to PSG.10 We 

manually identified the night-time sleep period based on the 

self-completed Ginger.io smartphone app sleep diaries and 

observation of a sharp decrease/increase in activity.

Polysomnography
For a single night during the actigraphy recording period, 

12 of the 22 enrolled adults and all 13 children underwent 

an unattended overnight PSG at their homes (Somté; Com-

pumedics, Abbotsford, Australia), collecting the following 

channels for sleep staging: electroencephalogram (Fz-Cz, 

C4-M1, Oz-Cz), bilateral electrooculograms, and submen-

tal electromyogram. The Compumedics system has been 

proven to be feasible for children in an unattended setting.15 

Trained research staff went to the homes 1–3 hours before 

usual bedtime to place all sensors. PSG and actigraphs were 

precisely synchronized by initializing all devices on the same 

computer. PSG studies were scored manually by a registered 

polysomnologist, blinded to the actigraphy and all other data, 

using established criteria for sleep staging in 30-s epochs.16 

We identified “lights off ” and “lights on” from information 

recorded by the participant using the Ginger.io smartphone 

app diary. The PSG was considered satisfactory if there were 

at least 5 hours of electroencephalogram that could be staged 

for sleep and sleep efficiency exceeded 80%.

Data analysis
We performed two sets of analyses to assess the agreement 

between actigraphy and PSG: an analysis of sleep summary 

statistics derived from data across the sleep period and an 

epoch-by-epoch analysis. The PSG to actigraphy comparison 

was based on a single concurrent night of monitoring. Total 

sleep time (TST) was calculated as the number of minutes 

scored as sleep between “lights off ” and “lights on”. Wake 

after sleep onset (WASO) was defined as the number of 

minutes scored as WASO during the sleep period, and sleep 

efficiency (SE) as the ratio of TST to the total time between 

“lights off ” and “lights on” and reported as percentage. 

Paired t-tests or Wilcoxon rank-sum tests were used to 

evaluate differences in sleep variables between each device, 

specific for each algorithm, and PSG. We calculated the mean 

differences between actigraphy settings and PSG and its cor-

responding 95% CI. Agreement between PSG and actigraphy 

was also examined using intraclass correlation coefficients 

(ICCs). The Bland–Altman concordance technique was 

applied to examine degree of agreement between the two 

actigraphy devices, GT3X+ and AWS, for TST and WASO. 

For the epoch-by-epoch analysis, we calculated accuracy, 

sensitivity, and specificity. In order to match the 30-s PSG 

sleep epochs with the 1-minute actigraphy epochs from the 

GT3X+, we converted the 1-minute GT3X+ epochs to 30-s 

epochs by dividing into half the GT3X+ epochs. PSG data 

were reduced to binary form (0=wakefulness and 1=any 

sleep state). Accuracy was defined as the total number of 

epochs of sleep defined by PSG that were correctly classified 

by actigraphy divided by the total number of scored epochs 

(true sleep categorized by actigraphy/total scored epochs). 

Sensitivity represents the proportion of epochs identified by 

PSG that were correctly classified as sleep by actigraphy (true 

sleep categorized by actigraphy/sleep categorized by PSG), 

whereas specificity is the proportion of epochs identified 

correctly as wake by the actigraph (true wake categorized 

by actigraphy/wake categorized by PSG). We performed 

separate analyses for children and adults. Analyses were con-

ducted using SAS 9.4 (SAS Institute, Inc., Cary, NC, USA).

Results
Descriptive characteristics of the study sample are shown in 

Table 1. Participants were 22 adults (mean age of 32.3±11.4 

years) and 13 children (mean age of 13.0±1.4 years). The 

sample consisted of 19 females and 16 males, and 46% were 

non-Hispanic white participants. Participants provided a 

mean of 7.3±1.5 nights of valid actigraphy data. Of the initial 

25 overnight PSG studies, 13 adolescent studies and nine 

adult studies were satisfactory, but three adult studies failed 

(two with general technical failure and one with misplaced 

Table 1 Descriptive characteristics of the study population

Children, n=13 Adults, n=22

n n

Male 7 9
Race/ethnicity 

Non-Hispanic white 2 14
Hispanic

Black 2 0
White 9 3

Other 0 5

Mean ± SD, median  
(interquartile range)

Age, years 13.0±1.4, 13.0 (2.9) 32.3±11.4, 29.3 (9.7)
Weight, kg 59.9±25.6 72.2±16.7
BMI, kg/m2 24.2±10.6, 20.9 

(16.3)
24.6±4.4, 23.5 (4.7)

Abbreviation: BMI, body mass index.
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leads). A failure rate of about 10% has been described for 

in-home PSG.17

Agreement between sleep summary 
statistics using the actigraphs and PSG
Mean values, mean differences, and ICCs for sleep variables 

comparing PSG with actigraphy for the sample of children 

and adults are presented in Tables 2 and 3. In adults, average 

TST by PSG was 435.6±36.9 minutes. Compared to this, the 

GT3X+ analyzed using the CK algorithm overestimated TST 

by an average of 14 minutes, whereas the GT3X+ analyzed 

using the S algorithm underestimated sleep by an average 

of 14 minutes. In children, the corresponding average TST 

by PSG was 483.4±62.8 minutes. The GT3X+ analyzed 

using the CK algorithm and the GT3X+ analyzed using the 

S algorithm underestimated TST by an average of 18 and 49 

minutes, respectively. The ICC for TST between the GT3X+ 

with the CK algorithm and PSG was 0.81 in adults and 0.88 

in children. The ICC for TST between PSG and the GT3X+ 

using the S algorithm was somewhat lower (ICC=0.64 in 

adults and ICC=0.79 in children).

The mean PSG WASO was 36.9±23.6 minutes in adults 

and 18.1±14.6 minutes in children. For average WASO derived 

from GT3X+, the S algorithm overestimated wake by 21 min-

utes (57%) in adults and by 59 minutes (327%) in children, 

resulting in a 4.5% (adults) and 11.6% (children) lower SE.

The CK algorithm underestimated wake by 1 minute (4%) 

in adults and overestimated wake by 31 minutes (63%) in chil-

dren. This resulted in a 1.3% higher (adults) and 5.8% lower 

(children) SE, respectively. However, there was little overall 

agreement between the GT3X+ and PSG for WASO (CK: 

ICC=0.00 in children and ICC=0.10 in adults; S: ICC=0.00 

in children and ICC=0.00 in adults) or for SE (CK: ICC=0.00 

in children and ICC=0.33 in adults; S: ICC=0.00 in children 

and ICC=0.13 in adults).

Compared to PSG, TST, WASO, and SE derived from 

AWS differed by 9 minutes, 7 minutes, and 2%, respec-

tively. The ICCs between PSG and AWS were high for TST 

(ICC=0.84) and low for WASO (ICC=0.00) and SE (0.18).

Device agreement analysis
We constructed Bland–Altman plots to visualize the level of 

agreement between GT3X+ and AWS for TST and WASO 

in 22 adults. The mean biases were estimated at −81.9±19.7 

minutes (TST) and 34.2±18.0 minutes (WASO) for the S 

algorithm and 3.7±19.7 minutes (TST) and 8.0±14.2 min-

utes (WASO) for the CK algorithm, compared to the AWS 

(Figure 1).

Epoch-by-epoch agreement analysis
Sensitivity, specificity, and accuracy of epoch-by-epoch 

comparisons between the actigraphy and PSG data in the 

adolescent and adult samples are shown in Table 4. Overall 

sensitivity (i.e., ability to accurately identify sleep) was 

high for all actigraphs and algorithms, ranging from 0.82 to 

0.88 in children and from 0.91 to 0.96 in adults. However, 

specificity values (i.e., ability to accurately identify wake) 

were moderate to low, ranging from 0.64 to 0.68 in children 

and from 0.34 to 0.47 in adults. The GT3X+ with the CK 

algorithm was not only more sensitive (0.96 in adults, 0.88 

in children), but also less specific (0.35 in adults, 0.64 in 

children), compared to the GT3X+ with the S algorithm.

Discussion
Although the GT3X+ and similar actigraph devices are 

increasingly used across a range of research, there is a paucity 

of research that addresses the comparability of information 

from these devices to other actigraphs, or validity as com-

pared to PSG. Specifically, the validity of the GT3X+ in 

children using the CK algorithm has not yet been examined. 

To address this gap, we evaluated the accuracy of the wrist-

placed GT3X+ to detect sleep–wake epochs and summary 

statistics compared to overnight concurrent PSG, using both 

the S and CK sleep algorithms in healthy children and adults. 

Table 2 mean ± SD/median (interquartile range) values for PSG 
and actigraphy of total sleep time, wake after sleep onset, and 
sleep efficiency

Children, n=13 Adults, n=9

Total sleep time, minutes
PSG 483.4 ± 62.8 435.6 ± 36.9
GT3X+: Sadeh 434.8 ± 55.9* 421.6 ± 48.5
GT3X+: Cole–Kripke 465.2 ± 56.6 449.7 ± 39.5
Actiwatch Spectrum: 
medium threshold

NA 444.6 ± 53.7

Wake after sleep onset, minutes

PSG 18.1 ± 14.6, 14.0 (15.0) 36.9 ± 23.6
GT3X+: Sadeh 77.3 ± 37.5, 70.0 (72.0)** 58.1 ± 6.7
GT3X+: Cole–Kripke 49.1 ± 27.3, 45.0 (38.0)** 35.6 ± 9.5
Actiwatch Spectrum: 
medium threshold

NA 30.2 ± 7.0

Sleep efficiency, %

PSG 95.2 ± 3.5, 95.1 (2.8) 90.4 ± 4.3
GT3X+: Sadeh 83.6 ± 6.7, 84.0 (14.1)** 85.9 ± 6.4
GT3X+: Cole–Kripke 89.3 ± 4.7, 89.3 (6.4)** 91.6 ± 2.5
Actiwatch Spectrum: 
medium threshold

NA 92.4 ± 2.1

Notes: Comparison versus PSG, *p<0.05, **p<0.01.
Abbreviations: NA, not applicable; PSG, polysomnography.
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We also examined the agreement between the GT3X+ and 

AWS over at least five nights of monitoring in adults. Each 

actigraphy device had comparable moderate to high accuracy 

compared to PSG. Consistent with previous studies, the 

specificity for both actigraphs and algorithms to detect wake-

fulness within sleep periods was moderate to low.1 Overall, 

the CK algorithm was more sensitive, but less specific than 

the S algorithm. For both algorithms, sleep misclassification 

was higher in children, whereas wake misclassification was 

higher in adults. Both the S and CK algorithms overestimated 

wake and underestimated sleep in children. A different pic-

ture emerged for the CK algorithm and the AWS in adults: 

Table 3 Mean differences and intraclass correlation coefficients between PSG and actigraphy

Children, n=13 Adults, n=9

Mean difference (95% CI) ICC Mean difference (95% CI) ICC

TST – GT3X+: Sadeh (minutes) −48.6 (−96.7 to −0.5) 0.79 −14.0 (−57.1 to 29.1) 0.64

TST – GT3X+: Cole–Kripke (minutes) −18.2 (−66.5 to 30.2) 0.88 14.1 (−24.1 to 52.3) 0.81
TST – Actiwatch Spectrum: medium threshold (minutes) NA NA 9.1 (−37.0 to 55.1) 0.84

WASO – GT3X+: Sadeh (minutes) 59.2 (35.5–83.0) 0.00 21.2 (−0.7 to 43.1) 0.00

WASO – GT3X+: Cole–Kripke (minutes) 31.0 (13.0–49.0) 0.00 −1.4 (−20.1 to 17.4) 0.10
WASO – Actiwatch Spectrum: medium threshold (minutes) NA NA −6.8 (−25.2 to 11.6) 0.00

SE – GT3X+: Sadeh (%) −11.6 (−15.9 to −7.3) 0.00 −4.5 (−9.9 to 1.0) 0.13

SE – GT3X+: Cole–Kripke (%) −5.8 (−9.2 to −2.4) 0.00 1.3 (−2.2 to 4.8) 0.33
SE – Actiwatch Spectrum: medium threshold (%) NA NA 2.0 (−1.4 to 5.4) 0.18

Abbreviations: ICC, intraclass correlation coefficient; NA, not applicable; PSG, polysomnography; SE, sleep efficiency; TST, total sleep time; WASO, wake after sleep onset.

Figure 1 Bland–Altman plots of GT3X+ and AWS in 22 adults for (A) total sleep time: GT3X+: CK versus AWS, (B) WASO: GT3X+: CK versus AWS, (C) total sleep 
time: GT3X+: Sadeh versus AWS, and (D) WASO: GT3X+: Sadeh versus AWS. The dotted line indicates the mean of the differences or bias, and the dashed lines indicate 
the lower and upper 95% limits of agreement.
Abbreviations: AWS, Actiwatch Spectrum; CK, Cole–Kripke; WASO, wake after sleep onset.
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as compared to PSG, sleep was slightly overestimated and 

wake underestimated. When used with the CK algorithm, 

the GT3X+ presented data comparable to the AWS in adults.

So far, only two previous studies have investigated the 

performance of the wrist-placed GT3X+ compared to PSG 

and to our knowledge, ours is the first study in school children 

and young teens.10,12 Cellini et al compared the GT3X+ with 

the S algorithm against PSG-recorded naps in 30 healthy 

young adults and found that the GT3X+ overestimated SE 

(by 14.5%) and TST (by 8.8 minutes) and underestimated 

WASO (by 5.9 minutes). In contrast, we found that the S 

algorithm underestimated sleep and overestimated wake both 

in children and adults. This is likely explained by the fact that 

Cellini et al recorded naps and not overnight sleep.10 Naps 

and overnight sleep differ in length, and the amount of deep 

sleep and rapid eye movement sleep, which can be associated 

with different movements.18

Slater et al evaluated the GT3X+ with the S algorithm 

in 108 young adults and compared it to an overnight PSG.12 

The authors reported similar values for TST and SE (mean 

differences of <1 minutes and <2%, respectively), whereas 

WASO was systematically overestimated by about 16 min-

utes, resulting in a high sensitivity of 0.90 and a moderate 

specificity of 0.60. Our results are in line with these findings 

by showing a significant overestimation of WASO using the 

GT3X+ with the S algorithm in both children and adults.

To the best of our knowledge, ours is the first study 

also to evaluate the GT3X+ with the CK scoring algorithm 

against PSG. Overall, there was stronger agreement with 

PSG using the CK algorithm, but the specificity in detecting 

wakefulness was better for the S algorithm. These results 

are consistent with four other studies that evaluated various 

actigraph models produced by Ambulatory Monitoring, Inc. 

Meltzer et al examined the S and CK scoring algorithms 

in 115 youths, aged 3–18 years, wearing the Motionlogger 

Sleep Watch compared to PSG. The researchers found that 

the S algorithms underestimated TST and SE by clinically 

meaningful amounts (23.6 minutes and 4.4%, respectively), 

whereas the corresponding differences for the CK algorithm 

were only 2.4 minutes and 0.4%.7 The authors reported high 

sensitivities of 0.89 and 0.92 and moderate specificities of 

0.73 and 0.65 for the S and CK algorithms, respectively. Kim 

et al also compared both the S and CK algorithms with PSG 

using the Action-W actigraph in patients with sleep apnea. 

The intraclass correlation analysis for TST estimated by PSG 

and actigraphy revealed that the CK algorithm performed bet-

ter than the S algorithm (CK, ICC=0.39 and S, ICC=0.27).8 

However, their ICCs for TST were much lower than ours. 

These studies, including ours, show that the CK algorithm 

is more accurate not only in adults but also in children, 

which is striking since the CK was originally validated in an 

adult sample. Kim et al also performed a subgroup analysis 

revealing that actigraphy was more reliable in patients with 

less severe sleep apnea.8 Several other studies have shown 

that actigraphy misclassifies sleep and wake in patients with 

sleep apnea, in particular, tending to underestimate sleep.9,19,20 

de Souza et al assessed the Mini Motionlogger Actigraphy 

in 21 healthy volunteers and also reported a slightly higher 

sensitivity (0.97 versus 0.99) and lower specificity (0.44 

versus 0.34) for the S compared to the CK algorithm, when 

assessing epoch-by-epoch agreement data with PSG in 21 

adult volunteers.6 In an earlier study, Johnson et al found high 

agreement for TST estimation when comparing the S versus 

CK algorithms (i.e., ICC of 0.98) with the Octagonal Sleep 

Watch 2.01 in a sample of 181 adolescents participating in 

the Cleveland TeenZzz Study.9 There is always a trade-off 

between sensitivity and specificity, and further analysis in 

exploring the effect of sleep algorithm thresholds might, 

therefore, be useful.

We also evaluated the agreement between sleep para meters 

from concurrently used GT3X+ and AWS devices over 1 week 

of recording. In adults, the GT3X+ with the CK algorithm 

provided data that was comparable to the ASW with average 

differences in sleep and wake time of 5 minutes. In contrast, 

larger differences were observed between the GT3X+ ana-

lyzed with the S and the AWS (23 minutes for TST and 28 

minutes for WASO). Of note, the difference in WASO between 

the two devices increased with increasing WASO, meaning 

that the comparability decreases with more wake.

Our study has a number of significant strengths, includ-

ing inclusion of both children and adults, performance of 

Table 4 Sensitivity, specificity, and accuracy of epoch-by-epoch 
comparisons with PSG

Children, n=13 Adults, n=9

GT3X+: Sadeh
Sensitivity 0.82 0.91
Specificity 0.68 0.47
Accuracy 0.81 0.83
GT3X+: Cole–Kripke
Sensitivity 0.88 0.96
Specificity 0.64 0.35
Accuracy 0.86 0.85
Actiwatch Spectrum: medium threshold
Sensitivity NA 0.95
Specificity NA 0.34
Accuracy NA 0.84

Abbreviations: NA, not applicable; PSG, polysomnography.
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a side-by-side comparison of two devices with PSG, use 

of rigorous statistical testing, and assessments conducted 

under free-living conditions. We assessed agreement using 

both summary variables and epoch-by-epoch measurements. 

However, the study also has several limitations. Our sample 

size was small (13 children and nine adults for aims 1 and 

2, and 22 adults for aim 3) and we only performed a single 

night of PSG. But PSG was performed on the same night as 

actigraphy, directly informing on sleep–wake agreement. We 

used an alternative electroencephalography montage, equally 

acceptable for use, which often results in “cleaner” electro-

encephalography signals.21 The sample consisted of healthy 

volunteers, and therefore, the results cannot be generalized to 

patients with sleep disorders or other comorbidities. Future 

research should, therefore, repeat this validation study in 

populations with sleep disorders such as obstructive sleep 

apnea or insomnia.

Conclusion
In conclusion, our study suggests that the GT3X+, a device 

of increasing use in a wide variety of research settings in 

children and adults, is a valid device to estimate TST, WASO, 

and SE in school children and adults. However, the poor 

specificity suggests that actigraphy should be used more 

cautiously in studies where periods of wake detection are 

important. For example, evaluation of wake time will be 

underestimated, which can reduce clinical utility in disorders 

such as insomnia, where there is interest in identifying wake 

periods. For both the S and CK algorithms, sensitivity tended 

to be higher in adults, while specificity tended to be higher 

in children. When analyzing data from the GT3X+, the CK 

algorithm tended to be more sensitive (0.88–0.96) to detect 

sleep, but less specific (0.35–0.64) to detect wake than the 

S algorithm (sensitivity: 0.82–0.91, specificity: 0.47–0.68). 

The GT3X+ data analyzed using the CK algorithm provided 

comparable sleep/wake estimation compared to the AWS, 

suggesting that information derived from each device pro-

vides similar data in healthy adults. 
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