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Abstract: Gut microbiota and its metabolites play pivotal roles in host physiology and pathology. 

Short-chain fatty acids (SCFAs), as a group of metabolites, exert positive regulatory effects on energy 

metabolism, hormone secretion, immune inflammation, hypertension, and cancer. The functions of 

SCFAs are related to their activation of transmembrane G protein-coupled receptors and their inhi-

bition of histone acetylation. Though controversial, growing evidence suggests that SCFAs, which 

regulate inflammation, oxidative stress, and fibrosis, have been involved in kidney disease through 

the activation of the gut–kidney axis; however, the molecular relationship among gut microbiota–

derived metabolites, signaling pathways, and kidney disease remains to be elucidated. This review 

will provide an overview of the physiology and functions of SCFAs in kidney disease.
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Introduction
The human intestinal tract harbors a diverse and complex microbial community, which 

plays a pivotal role in health. In recent years, gut microbiota–derived metabolites have 

been shown to influence host physiology and pathology. Changes in these metabolites 

exert major consequences, both harmful and beneficial, to the host’s health. On one 

hand, metabolites – particularly, short-chain fatty acids (SCFAs) – are generally proven 

to promote health.1–3 On the other hand, uremic toxins, including indoles, ammonia, 

and trimethylamine N-oxide, produced by the gut microbiota enhance the develop-

ment and progression of chronic kidney disease (CKD).4–7 An insufficiency in gut 

microbiota–generated SCFAs is also associated with illnesses, including inflammatory 

bowel disease, obesity, type 1 and 2 diabetes mellitus, autism, major depression, colon 

cancer, as well as kidney diseases – the focus of the discussion.8–11 The functions of 

SCFAs are mainly related to their activation of transmembrane G protein-coupled 

receptors (GPCRs) and their inhibition of histone acetylation (HDAC).12 Due to their 

positive effects, therapeutic studies of SCFAs have been carried out both in clinical 

and in animal studies. However, the mechanisms of SCFAs in the gut–kidney axis have 

yet to be fully explored. This review will provide an overview of the physiology and 

functions of gut microbiota–derived SCFAs in kidney disease. Before we outline the 

known roles of SCFAs in renal diseases, we will first review what is known regarding 

the basic functions and systemic roles of SCFAs.

Gut microbiota–derived SCFAs
Definition, production, and transportation of SCFAs
SCFAs are straight-chain saturated fatty acids composed of less than six carbon 

atoms, among which acetate (two carbons), propionate (three carbons), and butyrate 
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(four carbons) are the most abundant in the human intestinal 

tract.13 These SCFAs are the end products of fermentation 

by the microbiota from complex polysaccharides,14 including 

non-digestible dietary fibers like inulin15 and endogenous sub-

strates like epithelial-derived mucus.16 SCFAs not only exist 

in the gut but also could be absorbed in the bloodstream.17 

There are two main mechanisms of SCFA absorption from 

the gut to the circulatory system: anion exchange between 

SCFAs and HCO
3
− across the membrane and diffusive move-

ment promoted by the pH gradient during the diffusion of 

protonated SCFAs.18 When entering the circulatory system, 

SCFAs influence several physiology process as ligands for 

G-protein couple receptors (GPR41, GPR43, GPR109A, and 

olfactory receptor 78) or as epigenetic regulators (HDAC 

inhibitors).2

Multiple factors affect the concentration of SCFAs in the 

gut, including the amount/type of fermentable carbohydrate 

consumption, the composition/diversity of the microbiota, 

and the interactions between microbes and the host. More-

over, mother-to-child transmission is involved in the gut 

microbiota and its metabolites; for instance, the mode of 

delivery (vaginal birth or caesarean section) and feeding 

patterns (breastfed or bottle-fed infants) play a role in the for-

mation of intestinal microbiota and microbial products.19

Receptors and epigenetic regulation 
related to SCFAs
The physiological roles of SCFAs are mainly to act as ligands 

for GPCRs or as inhibitors of HDAC.2,20 GPR41 and GPR43, 

which are the most studied, are shown to be activated by 

SCFAs.21 GPR41 is widely distributed in adipose tissue 

and at low levels in the spleen, lymph nodes, bone marrow, 

peripheral blood mononuclear cells, and blood vessel 

endothelial cells,21 while GPR43 is primarily expressed in 

immune cells, adipocytes, islets, and gastrointestinal tract. 

GPR43 has a potential role in inflammation and metabolic 

disorders.22–25 More importantly, GPR41 and GPR43 both are 

expressed in the kidney and renal arteries.26 The potencies of 

SCFAs are different, but the rank order has remained gener-

ally consistent among different investigators (Table 1).21,27 

Olfr78 is another key receptor for SCFAs, which is expressed 

on vascular smooth muscle cells, including subset of large 

renal vessels, renal afferent arteriole, and juxtaglomerular 

apparatus, where it participates in the regulation of renin 

secretion in response to SCFAs.26,28 Unlike other receptors, 

Olfr78 is more sensitive to acetate and propionate but not 

to butyrate. In addition, GPR109a is reported to express on 

gut epithelial cells, adipocytes, macrophages, and dendritic 

cells, which only respond to butyrate and not to acetate or 

propionate.29–32 Finally, when it comes to the physiological 

role as HDAC inhibitors, compared to propionate, butyrate 

is more potent in terms of pan-inhibitory activity. SCFAs 

affect the expression of genes with diverse functions by 

inhibiting the activity of HDAC to exhibit anti-tumor, anti-

fibrotic, and anti-inflammatory activities.20,33 Additionally, 

SCFA-mediated inhibition of HDACs might be independent 

of GPCRs and GPR41 is involved in the process.34

The functions of SCFAs
As reported, SCFAs regulate tissue-specific health, as well as 

systemic health, including appetite, gastrointestinal motility, 

colitis, metabolic syndrome, airway disease, and even 

carcinogenesis.35–37 All of these influences are derived from 

the complex functions of SCFAs, including influencing 

Table 1 The expression and major functions of SCFAs receptors

Receptors Ligands Expression Functions

GPR41 
(FFAR3)

C3 . C4 . C2 Colonic, small intestinal epithelium, enteroendocrine, 
enteric neuronal cells, sympathetic ganglia, adipose 
tissue, pancreas, renal smooth muscle cells

Metabolism: regulation of gut hormones; immune: 
epithelia innate immunity, increases Treg generation 
and hematopoiesis of DCs from bone marrow; 
sympathetic activation

GPR43 
(FFAR2)

C2, C3 Colonic, small intestinal epithelium, enteroendocrine L 
cells, adipose tissue, leukocytes (eosinophils, basophils, 
neutrophils, monocytes, dendritic cells), skeletal 
muscle, heart, vascular endothelium in the myometrium

Metabolism: adipocyte development, adipogenesis, 
anti-lipolysis, regulation of gut hormones (secretion of 
PYY and GLP-1); immune: innate immunity and Treg 
differentiation; anti-inflammation; anti-tumor activity

GPR109a C4, niacin Intestinal epithelial cells, adipocytes, dendritic cells, 
macrophages, neutrophils, hepatocytes, epidermis in 
squamous carcinoma

Metabolism: anti-lipolysis, HDL metabolism; immune: 
increases Treg generation and DC trafficking, 
decreases Th17 cells; anti-tumor activity 

Olfr78 C2, C3 Large renal vessels, renal afferent arterioles, extrarenal 
vascular beds, prostate cancer, autonomic nervous 
system cells

Regulation of blood pressure by renin

Abbreviations: DCs, dendritic cells; GLP-1, glucagon-like peptide 1; HDL, high density lipoprotein; PYY, peptide YY; SCFAs, short-chain fatty acids; Treg, regulatory T cells.
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energy metabolism, evoking hormone release, and regulating 

immune inflammation and blood pressure.

Energy metabolism
Locally, SCFAs (butyrate preferentially) are used as fuel for 

colonocytes and in the maintenance of the epithelium.7 After 

absorption into the bloodstream,17 circulatory SCFAs act as 

a primary substrate for hepatic and adipocyte lipogenesis, as 

well as for intestinal gluconeogenesis, and exhibit a range 

of metabolic effects (Figure 1).38,39 For example, SCFAs 

activate AMP-activated protein kinases (AMPK) in the liver 

and muscle, thereby triggering the activation of peroxisome 

proliferator-activated receptors, and thus stimulating glucose 

uptake and fatty acid oxidation and improving glycemic 

control, at least in murine models.40

Several studies reported the benefits of regulating lipid 

or glucose metabolism by resistant starch, which increased 

SCFAs production41,42 or fecal transplantation of butyrate-

producing bacteria.43,44 Administration of acetate or propionate 

in adipocytes of mice reduced plasma free fatty acid levels 

by enhancing adipogenesis and inhibiting lipolysis via the 

activation of GPR43.38,45–47 In obese hyperinsulinemia fa/fa 

rats, propionate lowered urinary glucose excretion and fasting 

blood glucose levels.48 Amelioration of obesity and its comor-

bidities, as well as insulin resistance, was also observed in 

mice fed with dietary supplementation of acetate.40 Not only in 

an experimental setup, but also in clinical studies, overweight 

adults supplemented with inulin-propionate ester for a longer 

term (which could be metabolized by the microbiota in the 

colon to propionate) showed a significant reduction in weight 

gain via appetite regulation.49 Patients were advised to increase 

their dietary fibers, which increased concentrations of SCFAs 

in the gut and circulatory system; this was associated with the 

reduction of adverse consequences of hyperglycemia.50

Figure 1 Short-chain fatty acids to host appetite and metabolism control. Short-chain fatty acids (SCFAs) produced via microbiota fermentation of non-digestible dietary 
fibers or endogenous substrates can be used as fuel for colonocytes and stimulate intestinal gluconeogenesis, which improves glucose tolerance. Moreover, SCFAs can 
stimulate enteroendocrine L cells to release anorexigenic hormones PYY and GLP-1. These hormones promote satiety and suppress appetite which may promote weight 
loss. GLP-1 increases the production of insulin and decreases the production of glucagon in the pancreas, which then increases the uptake of glucose in muscle and adipose 
tissues. SCFAs can also decrease fatty acid synthesis and promote fatty acid oxidation in the liver. In adipose tissue, SCFAs can increase adipogenesis and inhibit lipolysis, 
thereby decreasing free fatty acids. Meanwhile, SCFAs can promote the secretion of leptin that suppresses appetite.
Abbreviations: GLP-1, glucagon-like peptide 1; GPCRs, G protein-coupled receptors; HDAC, histone acetylation; PYY, peptide YY.
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The benefits of SCFAs on energy metabolism could be 

partially explained by modulating the secretion of hormones 

such as peptide YY (PYY), glucagon-like peptide 1 (GLP-1), 

and leptin by activating GPR41 and GPR43.48,51,52 PYY, a 

gut hormone derived from enteroendocrine cells, could sup-

press postprandial appetite, slow gastrointestinal motility, 

decrease insulin secretion and sensitivity, and increase glu-

cose uptake by SCFAs-stimulated GPR41.38,53–55 In contrast, 

GLP-1 influences peripheral metabolic effects by stimulating 

insulin secretion and increasing glucose tolerance. Further, 

GLP-1 exerts cardioprotective effects and induces beta-cell 

proliferation and plays a major role in decreasing epithelial 

permeability and increasing mucosal antibacterial defenses 

by GPR41 and GPR43 activation.56–60 SCFA-induced leptin 

is involved in regulating appetite and energy metabolism by 

GPCRs activation;45 failure of leptin regulation is connected 

with obesity, hyperphagia, infertility, and immunological 

defects.61 In general, SCFA-activated GPR41 or GPR43 pro-

motes hormone secretion that inhibits gastric emptying and 

food intake and further modulates metabolic functions both 

locally in the gut and distally at peripheral tissues to remain 

systemic in metabolic health. However, a recent study in rats 

showed contradictory results – acetate-induced obesity and 

insulin resistance.62 Also, SCFA concentrations were found 

to be higher in feces of obese humans when compared to 

lean controls.63 This suggests that more studies are required 

to elucidate the true functions of SCFAs in regulating energy 

metabolism.

Inflammation and immune regulation
Kidney disease is often related to microinflammation and dys-

biosis of immune system. Although the detailed mechanisms 

by which the gut microbiota regulates host health and renal 

health have yet to be elucidated, gut microbiota–generated 

SCFAs, at least partly, mediate inflammatory and immune 

effects (Figure 2).

SCFAs modulate inflammation both in intestinal and in 

extra-intestinal environments via leukocyte recruitment and 

chemokines production. The anti-inflammatory effects of 

SCFAs have been well characterized at both the epithelial 

and immune cell levels. On one hand, SCFAs are involved 

in the expression of adhesion molecules in neutrophils and 

endothelial cells that reduce cell recruitment. On the other 

hand, SCFAs exert anti-inflammatory effects by suppressing 

the production of cytokines such as interleukin (IL)-6, IL-1β, 

tumor necrosis factor-α, and nitric oxide,64–69 and/or by increas-

ing the production of anti-inflammatory cytokine IL-1070 

via stimulation of GPCRs58,71,72 or inhibition of HDAC.73 

Moreover, SCFAs induce IL-10-expressing regulatory 

T cells to reduce inflammation.74–77 SCFAs also stimulate 

the migration of neutrophils by chemotaxis via activation of 

GPR43, which further leads to inflammatory responses.72,78,79 

In clinical investigation and animal models, SCFAs have also 

been demonstrated to possess protective effects on inflam-

matory bowel conditions, allergic airway disease, and CKD, 

due to their inhibitory effects on pro-inflammatory cytokines 

and reactive oxygen species.37,80,81

The generation of SCFAs was also confirmed to influence 

innate immunity and adaptive immunity. For innate immunity, 

low concentrations of butyrate stimulate intestinal epithelial 

cells (goblet cells) to release mucin Muc2, which enhances 

the gut barrier function and heightens the response to patho-

gens and commensal bacteria, while high concentrations of 

butyrate diminish the intestinal barrier function.82 In terms of 

adaptive immune system, it was illustrated that the number of 

colonic Tregs are influenced, or even determined, by the lumi-

nal concentration of SCFAs through GPCRs or epigenetic 

modification-inhibition of HDAC.29,59,74–77,83–85 In general, 

Tregs stimulated by SCFAs always decrease inflammation 

under certain conditions; SCFAs induce Th1 and Th17 lym-

phocytes production35,74 by cellular bioenergetic metabolism 

via the conversion of SCFAs to acetyl-CoA, integration into 

the tricarboxylic acid, and subsequent activation of mTOR.86 

SCFAs also indirectly affect T-cell differentiation patterns by 

exerting a broadly immunosuppressive or tolerogenic effect 

on antigen-presenting cells. For example, SCFAs inhibit the 

development of myeloid dendritic cells (DCs) from their 

progenitors,87 as well as their functional maturation,88,89 which 

then limits their ability to present antigens and cytokines to 

make effector T cells.35 Further, SCFAs act on DCs to sup-

press the expression of T cell–activating molecules such as 

major histocompatibility complex II molecules, costimulatory 

molecules, and cytokines leading to generation of tolerogenic 

T cells rather than inflammatory T cells.35,37 The tolerogenic 

effect of SCFAs on DCs could lower inflammatory responses. 

Although SCFAs mostly regulate the immune system to 

decrease inflammation, the activity of SCFAs in immune 

and epithelial cells may boost inflammatory responses, if not 

properly regulated.35 Thus, the function of SCFAs still seems 

to be inconsistent and complex, and future studies could pro-

vide mechanistic insights into how gut microbiota–derived 

metabolites contribute to immune inflammation.

In addition, SCFAs exhibit apparent impacts on cell dif-

ferentiation, oxidative DNA damage, and apoptosis death 

through autophagy.18,90–92 SCFAs could modulate blood 

pressure by regulating renin release and peripheral resistance 
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via Olfr78 and Gpr41 expressed on the afferent arteriole 

(juxtaglomerular apparatus) and smooth-muscle cells of the 

small resistance vessels.93–95 So, the functions of SCFAs in 

most parts are contradictory; it is now becoming clear that 

gut microbiota–derived metabolites play a central role in 

host physiology.96

SCFAs in kidney diseases
In recent years, considerable studies have explored a new and 

exciting area: the interaction between the gut microbiome and 

kidney disease, and have reported that alteration of intestinal 

microbiota in CKD is an important indicator of impaired 

renal function and progression of CKD.97 Kidney disease is 

often related to malnutrition, hypertension or hypotension, 

microinflammation, dysbiosis of immune system, and 

multiple oxidative stress, which could be reversed by SCFAs 

(Figure 3). Furthermore, growing evidence has highlighted 

that SCFAs exhibited positive effects on kidney disease in 

both experimental animals and patients.

Clinical investigations of gut 
microbiota–derived SFCAs
Recently, multiple studies focusing on microbiota in CKD 

or end-stage renal disease (ESRD) patients have reported a 

Figure 2 Regulation of short-chain fatty acids to host inflammation and immune. SCFAs can stimulate intestinal epithelial cells to release Muc2, which enhance the gut barrier 
function and heighten the response to pathogens and commensal bacteria. Moreover, SCFAs can reduce the recruitment of neutrophils under certain condition, with an 
increase in the levels of TGF-β, IL-10 and a decrease in the levels of IL-6, IL-1β, NO, and TNF-α to inhibit inflammation. Meanwhile, SCFAs promote T-cell production of 
IL-10 and Treg to prevent inflammatory responses. On the other hand, SCFAs act on DCs to limit the expression of T cell-activating molecules such as MHC II molecules and 
costimulatory molecules, leading to the generation of tolerogenic T cells rather than inflammatory T cells. The tolerogenic effect of SCFAs on DCs can lower inflammatory 
responses. However, the direct effect of SCFAs on T cells enhances the generation of Th1 and Th17 cells to boost immunity to fight pathogens, which means that activation 
of SCFAs for immune cells and epithelial cells may increase inflammatory responses, if not properly regulated.
Abbreviations: DCs, dendritic cells; FAs, short-chain fatty acids; GPCRs, G protein-coupled receptors; HDAC, histone acetylation; NO, nitrous oxide; TGF-β, transforming 
growth factor-β; TNF-α, tumor necrosis factor-α.
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correlation between dysbiosis and CKD.7,98 Compared with 

control groups, patients with CKD or ESRD have altered 

microbiota99 with increased bacteria that possessed urease, 

uricase, p-cresol-, and indole-forming enzymes and reduced 

bacteria that possessed SCFA-forming enzymes.100 Uremic 

toxicities produced by microbiota could not only worsen 

the intestinal environment and alter its composition, but 

also affect cardiovascular disease progression and mortality 

in patients with CKD and ESRD.101–105 For treatment of 

these toxicities, dietary fiber supplementation in a group of 

chronic hemodialysis patients was reported to reduce serum 

concentration of indoxyl sulfate and p-cresol sulfate,106 and 

the use of indoxyl sulfate–binding agent, AST-120, in pre-

dialysis CKD patients also improved uremic symptoms, 

enhanced 5-year survival rate, and potentially delayed the 

onset of uremia.107,108 Compared to gut microbiota–generated 

toxicities, there were few studies that focused on SCFAs in 

CKD/ESRD patients, and most studies were related to dietary 

management. For instance, in ESRD patients, reduced dietary 

fiber intake was associated with a reduction in the population 

of butyrate-forming bacteria,100 and after improving dietary 

management, colonic-CKD pathology ameliorated.109 On the 

whole, these observations suggest the potentially beneficial 

effects of fiber-rich diets on CKD progression. However, 

despite indirect positive effects of SCFAs on remission of 

CKD/ESRD, direct effects on kidney diseases are still in the 

experimental stage and require further study.

Experimental studies of SFCAs in animals
In recent decades, a small but growing number of animal 

experiments focusing on SCFAs in kidney disease have been 

reported using different models. However, these are mainly 

divided into two parts: acute kidney injury (AKI) and CKD 

(Table 2).

AKI
Regarding AKI, researchers have expanded the role of acetate 

to explain the gut–kidney connection in several animal 

models, including ischemia-reperfusion injury, contrast-

induced nephropathy (CIN), and gentamicin-induced neph-

rotoxicity. Though various mechanisms were reported, most 

of these studies suggest that decreasing inflammation and 

enhancing antioxidant activity by SCFAs may result in the 

improvement of renal function.

In the ischemia-reperfusion injury model, treatment with 

acetate or acetate-producing bacteria could reduce kidney 

injury.2 The key mechanism of action of SCFAs against 

kidney injury was suggested to be the reduction of inflamma-

tory cytokines and chemokines locally and systemically, as 

well as the inhibition of production of reactive oxygen species 

(ROS), apoptosis, and chromatin modification.2 It is also 

interesting to note that in the ischemia-reperfusion models 

of other tissues, SCFAs1 or SCFA-producing bacteria110 

have been shown to exhibit protective effects, implying that 

the underlying mechanism may be common across tissues. 

Figure 3 Regulation of short-chain fatty acids to improve kidney function SCFAs can decrease the disruption of epithelial tight junction. After getting absorbed in blood, 
SCFAs can suppress oxidation stress by increasing superoxide dismutase, catalase, and reduced glutathione, and by decreasing nitric oxide (NO) and reactive oxygen 
species (ROS), which can lead to the decline of renal fibrosis and amelioration of tubular damage. In addition, SCFAs can also inhibit apoptosis by promoting autophagy and 
suppressing inflammation by regulating immune system, thereby decreasing serum creatine as well as blood urea nitrogen to improve renal function. Regulation of SCFAs 
on blood pressure and plasma glucose may help to ameliorate renal function in chronic kidney diseases. However, SCFAs can also increase Th17 and Th1 cells to promote 
acetate- or C2-induced renal disease (C2RD) under certain condition, as the negative outcomes of SCFAs on kidney.
Abbreviation: SCFAs, short-chain fatty acids.
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CIN is another form of AKI with exposure contrasting that 

of the media. A study showed that sodium butyrate protected 

against kidney injury by inhibiting inflammatory and oxida-

tive tubular damage, with nuclear factor-κB signal pathway 

playing key roles in the development of CIN.111 However, the 

study did not exclude other potential mechanisms by which 

SCFAs may take part in inflammatory response, such as 

inhibition of HDAC, given that the regulatory mechanisms 

of SCFAs are extremely complex.

The effect of acute and chronic treatment of sodium 

butyrate in gentamicin-induced nephrotoxicity was also 

assessed. In an animal experimental model, kidney injury was 

attenuated by long-term oral administration of sodium 

butyrate via enhanced renal antioxidant enzymes activity, 

which promoted the expression of prohibitin protein112 and 

increased the levels of superoxide dismutase, catalase activity, 

and reduced glutathione.33 Another drug-induced nephropa-

thy, paracetamol-induced nephrotoxicity, was reported to 

be protected by ethyl acetate extract of Zingiber zerumbet 

rhizome. This process was also probably mediated by its 

antioxidant properties.113

Taking into account all of these recent studies, they have 

almost included all main types of AKI experimental models 

and have shown the positive effects of acetate or butyrate to 

Table 2 Applications of SCFAs in animal models of kidney injury

Diseases Administration Effect of SCFAs on disease models References

AKI
Ischemia 
reperfusion injury

C2, C3, and C4
C2-producing 
bacteria

Improve renal function
Decrease local and systemic inflammation, oxidative cellular stress, cell 
infiltration/activation
Decrease apoptosis and increase autophagy
Decrease HDACs activity
Modulate chromatin modification enzymes

2

Contrast-induced 
nephrotoxicity

C4 Improve renal function
Decrease kidney IL-6 and lipid peroxidation
Decrease kidney NF-κB and plκBα

111

Gentamicin-induced 
nephrotoxicity

C4 Improve renal function
Improve body weight and food and water intake
Increase superoxide dismutase, catalase, and reduced glutathione
Increase inducible prohibitin

112

Ureteritis and 
hydronephrosis

C2, C3, and C4 All major SCFAs have acetate- or C2-induced renal disease (C2RD) activity
Develop inflammatory responses and hyperplasia leading to ureteral 
obstruction
Increase inflammatory Th17 and Th1 cells
Gpr41-/- and Gpr43-/- mice also develop C2RD

117

CKD
Diabetic 
nephropathy

C4 Improve renal function
Decrease plasma glucose
Decrease fibrosis and collagen deposition
Decrease apoptosis
Decrease HDACs activity
Decrease activation of NF-κB and DNA damage 

115

Chronic kidney 
disease 

High-fiber diet Improve renal function
Decrease inflammation
Decrease oxidative stress
Decrease disruption of colonic epithelial tight junction
Decrease nuclear factor erythroid 2-related factor 2 (Nrf2)
Decrease activation of NF-κB

80

DOCA-salt 
hypertensive

High-fiber diet 
C2 

Decrease systolic blood pressure and diastolic blood pressure, cardiac 
fibrosis and left ventricular hypertrophy
Decrease renal fibrosis
Downregulate cardiac and renal Egr1
Downregulate renin–angiotensin system in the kidney and MAPK signaling 
in the heart

116

Normal C2, C3, and C4 C4 decreases pro-inflammatory cytokine
C3/C4 increase Treg cells

75

Abbreviations: AKI, acute kidney injury; CKD, chronic kidney disease; HDAC, histone acetylation; IL, interleukin; MAPK, mitogen-activated protein kinase; NF-κB, nuclear 
factor-κB; SCFAs, short-chain fatty acids.
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improve renal function. Although the results are exciting, 

they are still not sufficient to drop the veil of SCFAs, and 

the underlying mechanism still remains unclear; therefore, 

more studies are that focus on SCFAs are needed.

CKD
Supposing that SCFAs play a significant role in AKI, it 

might be of interest to define their role in the development 

and progression of CKD. Increasing dietary fiber in CKD 

rats showed similar results to clinical research, with signifi-

cantly improved intestinal epithelial tight junctions, reduced 

oxidative stress and inflammation, and less severe renal 

dysfunction.80 Besides increasing SCFAs in uremic rats could 

improve kidney function, and neutralizing bacteria-derived 

uremic toxin indoxyl sulfate inside the gut could also delay 

the progression of CKD and cardiovascular disease.114 The 

direct effects of SCFAs on kidney disease have been studied 

in juvenile diabetic rats by administering butyrate post-

treatment; the results showed that SCFAs not only decreased 

plasma glucose, creatinine, and urea but also improved renal 

histological alterations (including fibrosis and collagen depo-

sition), apoptosis, and DNA damage.115 Supplementation of 

acetate was reported to attenuate glomerular and tubuloint-

erstitial fibrosis in the DOCA-salt mice.116

However, there are still several negative outcomes of 

SCFAs on kidney injury. After chronically increasing oral 

doses of SCFAs to higher than physiological levels in mice, 

Th1 and Th17 cells were observed to generate in the ure-

teropelvic junction and proximal part of the ureter, which 

induced inflammation and led to kidney hydronephrosis, 

hereafter called acetate- or C2-induced renal disease 

(C2RD).117 It was indicated that C2RD was not conducted 

by GPR41/GPR43,117 but the underlying mechanism is still 

not clear. However, SCFAs were confirmed to play a dual 

role in the inflammation system depending on the stimulus 

concentration in kidney disease, consistent with the afore-

mentioned inflammation of SCFAs. Besides C2RD, mice fed 

a high-fiber diet had increased gut butyrate and were more 

susceptible to infection with Escherichia coli,118 as well as 

enhanced Gb3 levels in the gut and kidney, which resulted 

in severe kidney damage.119

Despite growing interest in SCFAs, many problems 

involving chronic kidney injury have not yet been answered 

and are still disputed. Unlike the positive effects of SCFAs on 

AKI models that have been observed, the influence of SCFAs 

on CKD seems to be more controversial. This enhances the 

importance of SCFAs concentrations when testing the benefits 

of SCFAs in kidney disease and encourages further studies 

to identify the pharmacological concentration. Importantly, 

the benefits of SCFAs on diabetic nephropathy, the leading 

cause of ESRD worldwide, should be paid more attention 

to, because of the positive effects of SCFAs on regulation of 

energy metabolism and immune inflammation.

Experimental studies of SFCAs in 
kidney cells
Researchers have explored not only the in vivo effects of 

SCFAs but also their mechanism of action on kidney cells 

(Table 3). When glomerular mesangial cells (GMCs) are 

induced by high glucose and lipopolysaccharide (LPS), 

Table 3 Applications of SCFAs in different kidney cells

Diseases Cell types Cell administration Effects References

AKI induced 
by IRI

BM-DCs
HK-2 cells

C2, C3, and C4 Decrease BM-DCs activation, APC function, NF-kB 
activation and nitric oxide production, ROS production
Inhibit HIF-1α translocation to the nucleus, lactate 
production, and VEGF expression under hypoxia

2

Ureteritis and 
hydronephrosis

Renal T cells C2, C3, C4 Rapamycin decreases T cells 117

Diabetic 
nephropathy

GMCs C2, C3, C4
GPR43 agonist

Inhibit GMCs proliferation
Decrease inflammation
Decrease ROS and oxidative stress
Decrease ICAM-1

121

Normal HK-2 cells Dietary supplementation 
with gum arabic 
(SUPERGUM)

C4 decreases TGF-β1 generation and 
TGF-β1-dependent signaling

122

Normal CD4+ T cells
CD11c+ DCs
Foxp3 induction

C4 Decrease pro-inflammatory cytokine
Increase Treg induction

75

Normal Porcine kidney cells C4 Upregulate WT1 expression 127

Abbreviations: APC, antigen presenting cells; BM-DCs, bone marrow dendritic cells; GMCs, glomerular mesangial cells; HIF-1α, hypoxia inducible factor-1α; HK-2 cells, 
epithelial kidney cell line; ICAM-1, intercellular adhesion molecule-1; ROS, reactive oxygen species; SCFAs, short-chain fatty acids; TGF-β1, transforming growth factor-β1; 
VEGF, vascular endothelial cell growth factor; WT1, Wilms tumor 1.
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the pharmacological concentrations of SCFAs accompanied 

with GPR43 agonist diminish renal inflammation by decreas-

ing MCP-1 and IL-1β. Inflammation and oxidative stress 

are inseparably linked, as each causes and strengthens the 

other, which could cause glomerulosclerosis, tubular atrophy, 

and fibrosis.120 Therefore, besides decreasing inflammation, 

SCFAs inhibit ROS generation induced by high glucose and 

LPS in GMCs121 and HK-2 human kidney epithelial cells 

after hypoxia.2 In addition to GMCs, elevated concentration 

of butyrate in proximal tubular epithelial cells was described 

to prevent TGF-β1 generation,122 which is involved in renal 

fibrosis, and its antagonistic action has been proposed as a 

potential therapeutic target.123–125 In porcine kidney fibroblast, 

WT1, involved in cell proliferation and development, was 

markedly enhanced along with an increase in sodium butyrate 

levels and by prolonging the treatment.126,127

These investigations of SCFAs on kidney resident cells 

(glomerular cells and tubular cells), which concentrate on 

inflammation, ROS, and fibrosis, are in agreement with the 

findings from animal experiments and provide more potential 

pathways to understand the mechanisms. However, future 

studies are still required to focus more on the interaction 

among SCFAs-associated molecular patterns and metabo-

lism, inflammation, and immune system in order to clarify 

the molecular mechanisms behind kidney injury in the 

pathogenesis of kidney disease.

Conclusion
In summary, the function of gut microbiota–derived SCFAs 

in kidney disease has become an exciting area in recent 

years. SCFAs play extensive roles in host physiology, such 

as regulation of energy metabolism, immune inflammation, 

and blood pressure by recognizing their receptors and inhibit-

ing HDACs. However, the entire field of SCFAs in kidney 

disease is still in its infancy. It has now been reported that the 

main beneficial effects of SCFAs on kidney function were by 

decreasing inflammation and enhancing antioxidant activity. 

Nevertheless, there are still few related studies, and all the 

concerned studies are either preliminary or controversial. 

Thus, in coming years, more explorations will be needed 

to better understand these pathways and their potential 

implications.
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