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Abstract: Unlimited growth of cancer cells requires an extensive nutrient supply. To meet 

this demand, cancer cells drastically upregulate glucose uptake and metabolism compared to 

normal cells. This difference has made the blocking of glycolysis a fascinating strategy to treat 

this malignant disease. α-enolase is not only one of the most upregulated glycolytic enzymes in 

cancer cells, but also associates with many cellular processes or conditions important to cancer 

cell survival, such as cell migration, invasion, and hypoxia. Targeting α-enolase could simulta-

neously disturb cancer cells in multiple ways and, therefore, is a good target for anticancer drug 

development. In the current study, more than 22 million chemical structures meeting the criteria 

of Lipinski’s rule of five from the ZINC database were docked to α-enolase by virtual screening. 

Twenty-four chemical structures with docking scores better than that of the enolase substrate, 

2-phosphoglycerate, were further screened by the absorption, distribution, metabolism, excretion, 

and toxicity (ADMET) properties prediction. Four of them were classified as non-mutagenic, 

non-carcinogenic, and capable of oral administration where they showed steady interactions to 

α-enolase that were comparable, even superior, to the currently available inhibitors in molecular 

dynamics (MD) simulation. These compounds may be considered promising leads for further 

development of the α-enolase inhibitors and could help fight cancer metabolically.

Keywords: α-enolase inhibitor, virtual screening, molecular dynamics simulation, glycolysis, 

metabolism

Introduction
A hallmark of cancer cells is their ability for unlimited growth and proliferation. 

To maintain this exceptional competence in cell mass expansion, cancer cells out-

compete normal cells in nutrient uptake by upregulating molecules in nutrient absorp-

tion and utilization to support their needs.1 The drastic difference in nutrient demand 

between cancer cells and normal cells has made blocking the nutrient supply a fasci-

nating and important strategy in cancer treatment and has led to the development and 

application of antiangiogenesis agents to treat different types of cancer.2 Nonetheless, 

cancer cells escape the cytotoxicity of anti-vascular agents by disintegration of tumor 

mass into small pieces to avoid dependence on the nutrient supply from the vascular 

system.3 For this reason, instead of preventing nutrient entry from the outside of the 

cells, restriction of nutrient uptake and utilization from within the cells would be a 

better alternative and the ultimate strategy to deprive cancer cells of nutrients.

To accomplish rapid growth and proliferation, cancer cells preferentially grasp and 

use large quantities of glucose from the surrounding extracellular space. After glu-

cose enters the cells, it is metabolized through glycolysis to provide energy, reducing 

power and various building blocks for downstream anabolic processes. To support the 

heaviest loading metabolic pathway in cancer cells, the expression of many glycolytic 
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enzymes is constantly upregulated. α-Enolase is one of the 

most upregulated glycolytic enzymes in cancer cells,4 and 

has been found to overexpress in types of cancer, including 

nasopharyngeal carcinoma,5 lung,6 breast,7 colon,8 prostate,9 

and so on. It not only serves as the penultimate step in glyco-

lysis, which catalyzes the conversion of 2-phosphoglycerate 

(2-PGA) to phosphoenopyruvate (PEP), but is also involved 

in many important cellular processes in tumorigenesis, such 

as gene transcription,10 and cell migration and invasion.11 

Due to its pivotal roles in the metabolism and tumorigenesis 

of cancer cells, targeting α-enolase could strike cancer cells 

at multiple points simultaneously and is of great interest in 

anticancer drug development. Until today, several α-enolase 

inhibitors with various potencies designed on the basis of sub-

strate or intermediate analogs have been reported, such as the 

D-tartronate semialdehyde phosphate (TSP) with a Ki value 

in the micromolar range, 3-aminoenolpyruvate  phosphate 

(AEP) with a Ki value in the submicromolar range,12 and 

the most potent one, phosphonoacetohydroxamate (PhAH), 

with a Ki value in the picomolar range.13 Very recently, an 

antibiotic, SF-2312, produced by Micromonospora s. was 

identified through a similarity search to the structure of PhAH 

as a potent α-enolase inhibitor with a Ki value in the nano-

molar range.14 However, these inhibitors show either poor 

stability or undesirable pharmacological properties in vivo, 

and none are favorable for further clinical development.12,15 

More effort is required to identify a useful α-enolase inhibi-

tor for therapeutic use.

To identify a useful inhibitor for α-enolase, in silico-

based virtual screening is adopted to identify the lead 

compounds for the α-enolase inhibitors from the ZINC 

database – a comprehensive public accessible chemical 

database. Several different methodologies, including contact 

fingerprint analysis, ADMET properties prediction, and MD 

simulation, were used to refine the dock screening results. 

Through this work, comprehensive molecular structure infor-

mation on compounds fitting the catalytic pocket of human 

α-enolase was obtained. The entire workflow combined 

with the results of contact fingerprint, ADMET, and MD 

simulation give not only a direction to further optimization 

of the α-enolase inhibitor but also a template to develop other 

metabolic enzyme blockers to help fight cancer.

Materials and methods
α-Enolase structure preparation
The X-ray crystallographic structure of human α-enolase 

(2PSN) was retrieved from the RCSB Protein Data Bank. 

As the substrate does not co-crystalize with the protein, the 

chain A structure of 2PSN was modeled against chain A 

of three γ-enolase structures – 3UCC, 3UCD, and 3UFA – 

harboring 2-PGA and magnesium in the active site and in 

closed conformation to rebuild the α-enolase structure using 

comparative structure modeling by Modeller.16 The model 

with the lowest Discrete Optimized Protein Energy score 

(DOPE) was chosen for subsequent virtual screening.

Ligand data set selection
The chemical structure library was constructed by selecting 

compounds meeting the modified Lipinski’s rule of five17,18 

(molecular weight range: 55~500 Dalton; hydrogen bond 

donor: 5, hydrogen bond acceptor: 10, octanol–water 

partition coefficient logP: −1~6; polar surface area: 140 Å; 

net charge:−2~2) from the ZINC database (http://zinc.dock-

ing.org/zinc/). All Clean subset 2012-04-26, 2013-01-10, and 

2013-12-18 versions, and combined with a non-redundant 

approved drug dataset (a kind gift by Dr Hongjiang Li, 

Chinese University of Hong Kong) constructed from the 

US (FDA), UK (NHS), EU (EMA), Japanese (NHI), and 

Canadian (HC) authorities to a total number of 3,167.

Molecular docking, virtual screening, and 
contact fingerprint clustering analysis
Molecular docking and screening were undertaken using 

the CUDA supported multithreading screening program, 

idock, in a server hosted by the Chinese University of Hong 

Kong (http://istar.cse.cuhk.edu.hk/idock/).19,20 A grid box 

encompassing the amino acid side chains involved in catalytic 

process, including Glu167, Glu210, Lys343, and Lys394, and 

stabilized substrate and metal cofactors around the catalytic 

pocket, including Ala39, Ser40, His158, Gln166, Arg372, and 

Ser373, were used in the screening. The grid box parameters 

were set to values of 102.724 Å, 97.855 Å, and 23.498 Å for 

the grid box center and 10.000 Å ×13.248 Å ×10.764 Å for 

the box dimensions. For each chemical structure, nine dock-

ing conformations are generated, and the best docking score 

was used to generate its ranking. Chemical structures with 

a good docking score were further analyzed and classified 

according to their contact modes and strengths with amino 

acids of α-enolase using the AuPosSOM 2.1 web interface 

(https://www.biomedicale.univ-paris5.fr/aupossom/).21,22 The 

clustering began with an initial raw training phase, in which 

α began at 0.2 and ended at 0, radius began at 6 Å and ended 

with 1 Å for 1,000 iterations. It was followed by a second 

phase of a more accurate clustering, in which α began at 

0.02 and ended at 0, and radius began at 3 Å and ended with 

1 Å for 10,000 iterations. The weak contact population was 
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filtered at 0.02. The equally populated contact was filtered 

at α equal to 0.1 and β equaling 3.2.

In silico analysis of ADMET properties
The absorption, distribution, metabolism, excretion, and 

toxicity (ADMET) properties of the potential inhibitors 

were predicted in silico using the admetSAR server (http://

metlmmd.ecust.edu.cn:8000/predict/).23

Molecular dynamics simulation
Binding stabilities of these potential α-enolase inhibitors 

are further evaluated by molecular dynamics simulation 

using NAMD and QwikMD.24,25 The structure of the ligand–

enzyme complex with ligand in the best docking pose was 

simulated with CHARMM general force field for protein 

(https://www.charmm.org/charmm/)26 and the SwissParam-

generated ligand force field (http://www.swissparam.ch/).27 

The simulation was done at a salt concentration of 0.15 M 

and under an implicit solvent model. The simulation is 

started with an equilibration simulation from 60 K to 300 K 

for 1.242 ns, and continued with a production simulation for 

50 ns at constant temperature of 300 K. The simulation results 

were saved at a frequency of 2 fs. The MD trajectory gener-

ated in the production simulation was used to calculate the 

root mean-square deviation (RMSD) of the protein backbone, 

and the nonbond interaction energy between the ligand and 

protein using the VMD1.9.3 toolkit.28 In RMSD analysis, 

frame 0 is set as the reference frame, and the structure of 

each frame is aligned to that of frame 0 to measure actual 

structural fluctuations during simulation.

Results
Construction of an α-enolase structure 
model for virtual screening
The only human α-enolase structure (PDB ID: 2PSN) in the 

RCSB protein data bank is an apoenzyme, without being sub-

strate soaked. To check the difference between the catalytic 

pocket of 2PSN and an enolase structure co-crystallized with 

substrate, the chain A structure of the 2PSN was compared 

with the structure of the human neuron-specific enolase 

(γ-enolase), which contains 2-PGA and magnesium in the 

structure, using the UCSF Chimera implanted Matchmaker 

program.29 Although the two human enolases only share 84% 

identity and 92% similarity, the RMSD of the superimposed 

polypeptide backbones, and the five catalytic amino acids 

between the α-enolase and three γ-enolase structures ranged 

from 0.415 to 0.448 Å and from 0.242 to 0.538 Å, respec-

tively. This result indicates the two human enolases not only 

share a high level of conservation in protein structure, but 

also have a rigid architecture of catalytic pocket even in the 

substrate-vacant state. To make the catalytic pocket of 2PSN 

better resemble the conformation in the catalytic process, 

the chain A structure of the 2PSN was fine-tuned against the 

three γ-enolase structures by the homology-based compara-

tive modeling program, Modeller.30 The normalized DOPE 

scores (zDOPE) of the generated models ranged from −1.75 

to −1.93. The model with the lowest zDOPE score, which has 

the lowest free energy and is in the most native-like state, 

was chosen for the subsequent virtual screening. Compared 

to the original 2PSN structure, the structure with the lowest 

zDOPE score has smaller RMSD value to the three γ-enolase 

structures, ranging from 0.204 to 0.243 Å for the polypeptide 

backbone and 0.183 to 0.494 Å for the five catalytic amino 

acids. The structure superposition of the original and the 

Modeller-rebuilt α-enolase structure as well as the γ-enolase 

structure (3UCC) are illustrated in Figure 1.

Virtual screening using molecular docking
A total of 22,326,149 chemical structures meet the criteria 

of modified Lipinsiki’s rule of five from the All Clean subset 

of the ZINC database, and the approved drug data set were 

used in the virtual screening. Due to the upper limit of the 

input number for each run (1 million/run) and to search the 

molecular-weight hot zone of high score hits, a crude and 

rapid screening was undertaken within each 100-Da interval, 

using chemical structures randomly selected by the program 

until the number reached 1 million. Following the rapid 

α

Figure 1 Structural comparison between the humane α-enolase, γ-enolase, and 
rebuilt α-enolase structure models. The rebuilt α-enolase structure (dark red) 
was superimposed against the crystal structure of human α-enolase (subunit A of 
2PSN, turquoise color) and γ-enolase (subunit A of 3UCC, olive drab). The carbon 
skeletons of 2-PGA in each model were labeled with colors according to each 
protein model, and the nitrogen and oxygen atoms are shown in blue and red, 
respectively. This figure was generated using UCSF Chimera.
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survey, it was found that the molecular weight of the hits with 

the idock score less than −5 kcal/mol were less than 300 Da. 

Based on this observation, a complete and comprehensive 

docking screening was carried out within the range between 

55 and 300 Da. At the end of screening, 87 chemical struc-

tures were found having idock scores less than −6.5 kcal/mol, 

including 24 with scores less than −7 kcal/mol. Among the 

87 chemical structures, four pairs are in different tautomric 

or ionization states of the same compounds. ZINC12428227/

ZINC06523895, ZINC12428226/ZINC05567035, and 

ZINC32599190/ZINC05282317 are three pairs that belong 

to this category among the top 24 hits with scores less 

than −7 kcal/mol. The structures of many compounds with 

idock scores less than −7 kcal/mol contain five-member 

ring structures, such as oxadiazole, trizaole, and isoxazole 

(Figure 2). Glycerol 3-phosphate and malic acid are the only 

two compounds from the approved drug data set and their 

idock scores are −6.63 and −6.59 kcal/mol, respectively. 

The idock scores for the α-enolase substrate, 2-PGA and 

PEP, are −7.09 and −6.63 kcal/mol respectively, and that 

of the four known α-enolase inhibitors, AEP, TSP, PhAH, 

and SF-2312, are −8.01, −7.01, −7.06, and −8.63 kcal/mol, 

respectively. Although, the idock scores for the four known 

enolase inhibitors do not correlate well with the previously 

reported inhibitory potency, the Ki value, their high rank-

ing orders and a low RMSD value (1.246 Å) between the 

2-PGA conformations in the modeled crystal structure and 

the docking pose indicate the screening results are reliable 

and promising for further evaluation.

Enzyme/inhibitor contact fingerprint 
analysis
To further analyze these candidates, the 87 selected chemi-

cal structures are further classified according to their contact 

fingerprints to α-enolase using the AuPosSOM 2.1, which 

calculates the strengths and interaction modes of the contact – 

functional moieties between the ligand and protein (Figure 3). 

Two enolase substrates, 2-PGA and PEP, and four known 

α-enolase inhibitors, AEP, TSP, PhAH, and SF-2312, were 

included in the analysis as the internal control of contact 

references to differentiate the contact modes. It can be 

found that all the candidates share similar binding modes 

Figure 2 The structures of the top 24 α-enolase inhibitor candidates with idock scores less than −7 kcal/mol. These chemical structures are grouped according to their 
common ring and side-chain structures. The structures in blue, green, orange, or purple areas contain 1,2,4-oxadiazole, 1,2,3-oxadiazole, isoxazole, or a six-member ring 
in the structures, respectively. Others contain imidazole, triazole, or tetrazole structures. The enolase substrates and known inhibitors are shown with dashed and solid-
line rectangles, respectively. The names of chemical structures in different tautomric or ionization states of the same compounds are labeled in green and have double-
headed arrows between them. The names of compounds that passed the ADMET prediction are labeled in red. Structures of these compounds were drawn by ACDLabs 
ChemSketch (http://www.acdlabs.com/resources/freeware/chemsketch/).
Abbreviation: ADMET, absorption, distribution, metabolism, excretion, and toxicity.
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with α-enolase, but with different extents of interactions to 

the amino acids involved in the catalytic process. Group 0, 

which includes 2-PGA and known α-enolase inhibitors, has 

the most intense and strongest interactions. More detail about 

contact modes between 2-PGA, AEP, PhAH, SF-2312, and 

chemical structures with the lowest docking scores of each 

contact group and α-enolase are illustrated in Figure  S1. 

Since these chemical structures show strong interactions 

with amino acid residues involved in the α-enolase catalytic 

process, chemical structures with idock scores approximately 

equal to or less than that of 2-PGA are retained for down-

stream evaluation.

Prediction of ADMET properties
To eliminate compounds with unfavorable properties, 

which could potentially make experimental animals suffer 

in downstream preclinical tests or lead to early termina-

tion of clinical trial, the top 24 hits with idock score less 

than −7 kcal/mol were further evaluated for their ADMET 

properties, predicted by the admetSAR web server. (Table S1). 

In the absorption property analysis, all 24 hits are predicted to 

have good absorption by the intestine (HIA+, if HIA 30%), 

but only 10 of them are Caco-2+ (Papp 8×10−6 cm/s), which 

suggests that compounds with good absorption by the gastro-

intestinal tract after oral uptake are retained for downstream 

analysis. After entering the circulation, distribution should 

occur uniformly to every tissue and organ to ensure better 

treatment efficiency. In the distribution property analysis, 

the 10 chemical structures are predicted to have good abil-

ity to penetrate the blood–brain barrier (BBB+), which is 

important when the lesion is within the brain. Moreover, their 

good distribution is supported as they are predicted as non-

substrates or non-inhibitors of P-glycoprotein (ABCB1) and 

renal organic cationic transporter (OCT2/SLC22A2), which 

facilitate efflux of xenobiotics from the cells. After entering 

the cells, keeping a drug at a sustainable level would ensure 

better target inhibition. Xenobiotic compounds entering cells 

are generally metabolized by cytochrome P450 enzymes 

(CYP450), which determine the concentration of the drug 

within cells. The analysis shows that the 10 chosen chemi-

cal structures are either non-substrates or non-inhibitors of 

CYP2D6, CYP2C9, CYP2C19, and CYP3A4, and seven of 

these are even predicted as CYP1A2 inhibitors. These results 

indicate that these candidates could be metabolized slowly and 

are able to stay within cells long enough to inhibit α-enolase 

activity. To ensure the safety and avoid potential adverse 

Figure 3 Contact fingerprints of the 87 candidates of α-enolase inhibitors with idock score less than −6.5 kcal/mol analyzed by AuPosSOM. These candidates were classified 
into eight groups according to their binding modes and strengths. Each column corresponds to the contact with the atoms of α-enolase, and each row defines the contact 
fingerprint to α-enolase of each chemical structure. The color scale located in the right side tells the strength of the contact. The substrates and known α-enolase inhibitors 
were included in the analysis as the reference of contact, and are labeled with orange and green color, respectively. The four candidates that have good predictive ADMET 
properties are labeled in red.
Abbreviation: ADMET, absorption, distribution, metabolism, excretion, and toxicity.
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effects after intake, the toxicity profiles of the 10 candidates 

are calculated from five different models. All of these chemical 

structures are predicted to be noncarcinogenic (Carc_I 

model),31 without cardiotoxicity (hERG model I and II),32,33 

and with low acute oral toxicity (class III, LD50 value between 

500 and 5,000 mg/kg). Unfortunately, three of them are clas-

sified as dangerous (TD50 10 mg/kg/day) and one falls 

within the warning category (TD50 10 mg/kg/day) based 

on the Carcinogenicity test model (Carc3_I model). Six of 

them are predicted to be mutagens based on the AMES test 

model.34 These unfavorable candidates are eliminated from 

the candidate list. At the end of the entire ADMET evaluation 

screening, four compounds, ZINC1304634, ZINC16124623, 

ZINC1702762, and ZINC72415103, passed the test and were 

elected for subsequent evaluation.

Molecular dynamics simulation
To evaluate the stabilities of α-enolase–ligand complexes 

under dynamic conditions, we conducted a molecular dynamics 

simulation using a protocol described in material and methods. 

The stability of the complex was determined by the RMSD 

of protein backbone using the 50 ns trajectory data and com-

pared with the four known α-enolase inhibitors. All of these 

compounds finished the 50 ns simulation, except TSP, which 

was dislodged from the docked site of the α-enolase catalytic 

pocket at 7 ns (data not shown). This result probably echoes the 

inhibitory potency of the weak α-enolase inhibitor. Values of 

the protein backbone RMSD of AEP, PhAH, SF-2312, and the 

four candidates of the α-enolase inhibitors enzyme complex are 

shown in Figure 4A together with the average backbone RMSD 

values range from 2.24 Å to 2.96 Å, in which ZINC1304634- 

and AEP- enzyme complex delineate the lower and upper 

limits, respectively. This result indicates the four candidates of 

the α-enolase inhibitor bind to the α-enolase and induce struc-

tural fluctuations comparable to that of three known enolase 

inhibitors. To better compare the binding stabilities of these 

compounds to α-enolase, the nonbond interaction energies com-

posed of electrostatics and Van der Waals forces between each 

Figure 4 The root mean square deviation (RMSD) values of the α-enolase protein backbone (A) and the nonbond interaction energies (B) between α-enolase and ligand 
in the complexes between 0 and 50 ns.
Abbreviations: AEP, 3-aminoenolpyruvate phosphate; PhAH, phosphonoacetohydroxamate; RMSD, root mean-square deviation.
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inhibitor and α-enolase were calculated. Interaction energies 

between these compounds and α-enolase are contributed mostly 

by electrostatics interactions (data not shown), and the average 

nonbond energies between α-enolase and AEP, PhAH, and 

SF-2312 are −126.84, −183.62, and −73.90 kcal/mol, respec-

tively. The four candidates, ZINC1304634, ZINC16124623, 

ZINC1702762, and ZINC72415103, have comparable nonbond 

energies to that of the AEP, PhAH, and SF-2312, and have 

values of −118.22, −168.36, −112.10, and −264.83 kcal/mol, 

respectively (Figure 4B). This result indicates the four com-

pounds are promising candidates for downstream in vitro 

testing.

Cross-inhibition prediction
Reducing the occurrence of off-target interactions is impor-

tant to manipulate the target enzyme activity precisely and 

reduce side effects. To evaluate the specificity of the four 

candidates of the α-enolase inhibitor, they are docked to the 

catalytic pockets of the other two enolase isoforms, β-enolase 

(PDB ID:2XSX, subunit A) and γ-enolase (PDB ID:3UCC, 

subunit A), using idock. The grid boxes for the β-enolase and 

γ-enolase structures were cloned from the α-enolase docking 

work by superimposing the protein structures and transform-

ing the grid box center and dimensions of the α-enolase 

structure into those of β-enolase and γ-enolase, respectively. 

The docking results are shown in Table 1. It can be found 

that the idock values for the 2-PGA are smaller than PEP for 

each of the three enolase isoforms. This result may partially 

reflect the preferential favoring of the forward reaction for all 

enolase isoforms. Despite the fact that catalytic pockets of the 

enolase isoforms are almost identical, they seem to respond 

differently to the known enolase inhibitors due to β-enolase 

having the highest idock scores for two known α-enolase 

inhibitors. This result would imply that finding an isoform-

specific enolase inhibitor is possible, because the score of 

PhAH for β-enolase is comparably higher than that of α- and 

γ-enolase. On the other hand, the possibility of a pan-enolase 

inhibitor can also be envisaged from the result of the recently 

discovered enolase inhibitory antibiotic, SF-2312, which has 

the lowest idock scores for the three enolase isoforms. The 

four candidates of α-enolase inhibitors show some degree of 

selectivity as the idock scores of these candidates for α- and 

γ-enolase are comparably lower than β-enolase, but the cross-

inhibition to other enolase isoforms is expected.

Conclusion
In silico drug screening from the commercially available 

molecular entities provides a feasible and promising route for 

researchers to solve health problems by ameliorating reliance 

on structure creation by synthesis. The current study harnesses 

computer-based virtual screening to identify inhibitors of 

human α-enolase, which are needed for cancer treatment. From 

more than 22 million chemical structures, and through a series 

of rational refinement steps, including contact fingerprint, 

ADMET properties and MD simulation, we identified four 

compounds, ZINC1304634, ZINC16124623, ZINC1702762, 

and ZINC72415103, as good candidates for further testing. 

It is hoped further optimizations of these compounds would 

eventually lead to an effective α-enolase inhibitor for clini-

cal use. The entire workflow to identify the human α-enolase 

inhibitors in this work could also become a template for other 

researchers to discover inhibitors of their targets.
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Supplementary materials

Figure S1 Contact mode analysis. The functional moieties involving in the contacts between (A) 2-PGA, (B) 3 enolase inhibitors, AEP, PhAH, and SF-2312, (C) compound 
structures with the lowest idock scores of each contact group, and α-enolase and their relative distances are analyzed and illustrated by LigPolt+. Carbon, oxygen, nitrogen, 
and fluoride molecules are marked as white, red, blue, and green circles, respectively. Covalent bonds in ligands and amino acid residues of α-enolase are labeled in purple and 
orange solid lines, respectively. The light blue dot lines label the distance (in angstroms) of hydrogen bonds formed between the functional moieties of ligands and α-enolase. 
Hydrophobic interactions between ligands and α-enolase are depicted by the name of involving amino acid residues, which are labeled with dark green with dark red eyelashes 
pointing to the involved functional moiety of ligands. Tautomers of the same compound are labeled in green.
Abbreviations: AEP, 3-aminoenolpyruvate phosphate; PGA, phosphoglycerate; PhAH, phosphonoacetohydroxamate.
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Table S1 ADMET properties of potential α-enolase inhibitors with idock scores less than −7 kcal/mol

Zinc ID idock score HIA Caco-2 BBB P-gp(S/I) RenalOCT CYP InP hERG(I/II) AMES Carcinogen AOT Carcinogencity

12428226# −8.32 + + + n/n - low(1A2+) w/non + - III D
5567035# −8.29 + + + n/n - low(1A2+) w/non + - III D
12428227* −8.00 + - + n/n - low w/non + - III NR
967421 −8.00 + + + n/n - low(1A2+) w/non + - III NR
6523895* −7.78 + - + n/n - low w/non + - III NR
3163100 −7.52 + + + n/n - low(1A2+) w/non + - III NR
14980359 −7.51 + - + n/n - low w/non - - III NR
4343380 −7.47 + - + n/n - low w/non - - III NR
32599190& −7.43 - - + n/n - low w/non - - III NR
5282317& −7.39 + - + n/n - low w/non + - III NR
4257961 −7.36 + - + n/n - low w/non + - III NR
1304634 −7.34 + + + n/n - low(1A2+) w/non - - III NR
1666582 −7.26 + - + n/n - low(1A2+) w/non + - III NR
2258900 −7.23 + - + n/n - low w/non + - III NR
4344073 −7.22 + + + n/n - low(1A2+) w/non + - III D
6854842 −7.21 + - + n/n - low w/non + - III NR
16124623 −7.21 + + + n/n - low w/non - - III NR
1063089 −7.20 + + + n/n - low w/non + - III W
1601705 −7.13 + - + n/n - low w/non + - III W
6667673 −7.11 + - + n/n - low w/non - - III NR
1295964 −7.10 + - + n/n - low w/non - - III NR
71605889 −7.04 + - + n/n - low w/non - - III NR
1702762 −7.03 + + + n/n - low w/non - - III NR
72415103 −7.00 + + + n/n - low(1A2+) w/non - - III NR

Notes: Tautomers are labeled with asterisks (*), and different ionization states of the same compounds are labeled either with pounds (#) or ampersands (&). Idock score, 
kcal/mol, the binding affinity between ligand and enzyme; HIA, the probability of absorption by human intestine, HIA 30% is defined as HIA+; Caco-2, Caco-2 permeability 
value (Papp) 8×10−6 cm/s is denoted as high permeability (+), otherwise is poor permeability (−); BBB, the probability of penetrating the blood–brain barrier; P-gp(S/I), 
P-glycoprotein substrate or inhibitor. The probability of being a substrate or an inhibitor for P-glycoprotein. The n means that the chance is low; CYP InP, cytochrome P450 
inhibitory promiscuity. The probability of inhibiting cytochrome P450 isozymes, CYP450 1A2, 2C9, 2C19, 2D6, and 3A4; hERG(I/II), the probability of inhibiting human ether-
a-go-go-related genes, which was predicted by two models (I/II). In model I, if a compound has a pIC50 6.0 mol/L, it is denoted as strong inhibitor (s), otherwise as weak 
inhibitor (w). In model II, if a compound has an IC50 50 μM, it is classified as an inhibitor, and otherwise as a non-inhibitor (non); AMES, The probability of being as mutagen; 
Carcinogen, the probability of being as carcinogen; AOT, compound in class III has LD50 value between 500 and 5,000 mg/kg. Carcinogenicity (three-class), Carcinogenic 
compounds with TD50 (tumorigenic dose rate 50) 10 mg/kg body wt/day were assigned as Danger (D), those with TD50 10 mg/kg body wt/day were assigned as Warning 
(W), and non-carcinogenic chemicals were assigned as Non-required (NR). The names of compounds that passed the ADMET evaluation are labeled in bold.
Abbreviations: ADMET, absorption, distribution, metabolism, excretion, and toxicity; AOT, acute oral toxicity.
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