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Abstract: Candida albicans and the emerging non-albicans Candida spp. have significant 

clinical relevance among many patient populations. Current treatment guidelines include 

fluconazole as a primary therapeutic option for the treatment of these infections, but it is only 

fungistatic against Candida spp. and both inherent and acquired resistance to fluconazole have 

been reported. Such mechanisms of resistance include increased drug efflux, alteration or increase 

in the drug target, and development of compensatory pathways for producing the target sterol, 

ergosterol. While many mechanisms of resistance observed in C. albicans are also found in 

the non-albicans species, there are also important and unexpected differences between species. 

Furthermore, mechanisms of fluconazole resistance in emerging Candida spp., including the 

global health threat Candida auris, are largely unknown. In order to preserve the utility of one 

of our fundamental antifungal drugs, fluconazole, it is essential that we fully appreciate the 

manner by which Candida spp. manifest resistance to it.
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Introduction to Candida infections
Candida spp. exist as commensals of the skin, mouth, and gastrointestinal tract. Their 

growth and spread is kept in check by coexisting microbial flora, intact epithelial bar-

riers, and defenses of the innate immune system. While Candida spp. are normal flora 

of the human body, they also possess the ability to transition to pathogens that cause a 

wide spectrum of conditions, ranging from superficial infections of the hair and nails 

to life-threatening systemic infections.1 In fact, Candida account for approximately 

75–88% of all fungal infections in the US.2–4 Additionally, in both adult and pediatric 

populations, the presence of candidemia results in an increase in mortality and hospi-

tal length of stay, culminating in an annual attributable cost of $1.7 billion in the US 

alone, making Candida not only a clinical concern but an economic concern as well.5,6

The epidemiology of Candida infections has been in flux in recent decades, most 

likely due to our own medical practices. Risk factors for infection with Candida are 

similar to those of fungal infections in general and vary in cause, but are generally 

due to medical intervention or health status of the patient. Risk factors fall into three 

distinct categories: factors that promote colonization of Candida, factors that suppress 

the immune response to Candida, and factors that provide a direct route for Candida 

infection.7 Historically, 92–95% of all cases of Candida infection are a result of the five 

most common species: Candida albicans, Candida glabrata, Candida parapsilosis, 

Candida tropicalis, and Candida krusei. And while this still holds true, there has been 

Correspondence: Elizabeth L Berkow
Fungal Service Team, Mycotic Diseases 
Branch, Centers for Disease Control and 
Prevention, 1600 Clifton Road, Mailstop 
G-11, Atlanta, GA 30329, USA
Tel +1 404 639 2459
Fax +1 404 315 2376
Email kuu4@cdc.gov

Journal name: Infection and Drug Resistance 
Article Designation: Review
Year: 2017
Volume: 10
Running head verso: Berkow and Lockhart
Running head recto: Fluconazole resistance in Candida spp.
DOI: http://dx.doi.org/10.2147/IDR.S118892

In
fe

ct
io

n 
an

d 
D

ru
g 

R
es

is
ta

nc
e 

do
w

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.d
ov

ep
re

ss
.c

om
/

F
or

 p
er

so
na

l u
se

 o
nl

y.

http://www.dovepress.com/permissions.php
www.dovepress.com
www.dovepress.com
www.dovepress.com
https://www.facebook.com/DoveMedicalPress/
https://www.linkedin.com/company/dove-medical-press
https://twitter.com/dovepress
https://www.youtube.com/user/dovepress


Infection and Drug Resistance  2017:10submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

238

Berkow and Lockhart

a shift in the species distribution among Candida infections. 

In past decades, C. albicans comprised >50% of all candi-

demia. However, the non-albicans Candida (NCAC) species 

are being encountered more frequently as human pathogens 

and, in some cases, NCAC species are more frequently iso-

lated than C. albicans. In the US, C. glabrata is the second 

most common Candida spp., followed by C. tropicalis and 

C. parapsilosis.8 This rise in the NCAC species is possibly 

due to their inherently high levels of antifungal drug resis-

tance (discussed later), but it is important to consider that 

improvements to laboratory detection and identification may 

simply provide more specific identification than in the past 

and account for emergence of less common species.

The global picture of candidemia has been recently 

expanded further with the emergence of the multidrug-

resistant species Candida auris. Originally recognized in 

2009 from an ear canal specimen in Japan, C. auris has since 

been reported from many countries including South Korea, 

South Africa, Kenya, India, Pakistan, Colombia, Venezuela, 

the UK, and the US.9–14 Further complicating our understand-

ing of this newly emerging species are difficulties in identifi-

cation – several identification platforms misidentify C. auris 

as other species of Candida – and difficulties in eradicating 

this organism from health care facilities.15,16

Fluconazole
One of the most commonly prescribed antifungal drugs for 

Candida infections is fluconazole, a triazole antifungal.17 

The azoles function by inhibiting the cytochrome P450 

enzyme lanosterol demethylase (14α-demethylase), encoded 

by ERG11, in the ergosterol biosynthesis pathway. More 

specifically, the free nitrogen atom of the azole ring binds 

an iron atom within the heme group of the enzyme.18 This 

prevents the activation of oxygen and in turn the demethyl-

ation of lanosterol, which inhibits the process of ergosterol 

biosynthesis.19 As ergosterol is an essential component of 

fungal cell membranes, this inhibition is toxic; methylated 

sterols accumulate in the fungal cellular membrane, and cell 

growth is arrested.20

Fluconazole is fungistatic rather than fungicidal, so 

treatment provides the opportunity for acquired resistance 

to develop in the presence of this antifungal. In the US, 

C. albicans has a low incidence of fluconazole resistance, 

approximately 0.5–2%. C. tropicalis, C. parapsilosis, and 

C. glabrata, on the other hand, have higher rates at 4–9%, 

2–6%, and 11–13%, respectively.21,22 The emerging yeast 

C. auris can exhibit a rate of resistance to fluconazole as 

high as 93%.23 Alternatively, without prior introduction of 

the antifungal, fluconazole resistance may also be innate, as 

is seen with C. krusei.24,25 Understanding the mechanisms 

underlying fluconazole resistance is a crucial part of manag-

ing our limited antifungal repertoire and keeping fluconazole 

a possible option to treat many Candida infections.

Molecular mechanisms of 
fluconazole resistance
The development of fluconazole resistance in Candida spp. 

has been well characterized in C. albicans. As the epidemiol-

ogy of candidemia shifts to include more instances of NCAC 

species, it has become crucial to characterize fluconazole 

resistance in these species as well. Several mechanisms have 

been noted to involve genes of the ergosterol biosynthesis 

pathway; others involve drug transporters, changes in ploidy, 

and loss of heterozygosity (LOH; Table 1).

Increased drug target
Many C. albicans clinical isolates overexpress ERG11, the 

gene encoding the target of the azoles. In many cases, the 

level of overexpression is minimal or else observed in combi-

nation with other resistance mutations, making it difficult to 

Table 1 Summary of molecular mechanisms of fluconazole resistance in Candida spp.

Mechanism Gene(s) involveda Regulator(s) involveda Species

Drug target overexpression ERG11 UPC2 Candida albicans, Candida parapsilosis, Candida 
tropicalis

Drug target alteration ERG11 C. albicans, C. parapsilosis, C. tropicalis, Candida auris
Bypass pathways ERG3 C. albicans, C. tropicalis
Efflux pump overexpression

ABC transporters CDR1, CDR2, SNQ2, ABC1 TAC1, PDR1 C. albicans, Candida glabrata, C. parapsilosis, Candida 
krusei

MFS transporters MDR1, TPO3 MRR1 C. albicans, C. parapsilosis, C. tropicalis, C. glabrata
Aneuploidy/loss of heterozygosity ERG11 UPC2, TAC1 C. albicans

Note: aGenes and regulators that have been directly linked to the resistant phenotype in clinical isolates.
Abbreviations: ABC, ATP-binding cassette; MFS, major facilitator superfamily.
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assess the direct impact of such overexpression on the resis-

tant phenotype. Studies have shown that this overexpression 

often involves Upc2p, a zinc cluster transcription factor that 

is induced upon ergosterol depletion.26 Mutations in Upc2p 

provide gain of function (GOF) for this regulator, resulting in 

constitutive transcriptional activity and increased production 

of Erg11p.27–29 One large study of C. albicans evaluated the 

impact of various Upc2p mutations on ERG11 expression as 

well as on the fluconazole-resistant phenotype. It identified 

several mutations that were associated with increased ERG11 

expression as well as increased ergosterol production.30 This 

increased production of the azole target dilutes the activity 

of the fluconazole and results in resistance.

The significance of increased ERG11 expression in 

fluconazole-resistant NCAC is varied. While overexpression 

of ERG11 has been observed in several resistant C. parap-

silosis isolates, these isolates also harbored additional resis-

tance mechanisms which likely participated in their resistant 

phenotype.31,32 Moreover, when UPC2 was sequenced in such 

isolates, a single heterozygous mutation was identified in a 

single isolate – the remaining isolates contained no UPC2 

mutation – indicating that the overexpression of ERG11 was 

UPC2-independent, a finding that has been observed in some 

C. albicans isolates as well.28,32 Likewise, several studies have 

identified higher expression of ERG11 in fluconazole-resistant 

clinical isolates of C. tropicalis as compared to fluconazole-

susceptible isolates.33 However, sequencing of UPC2 revealed 

mutations that were present in both resistant and susceptible 

isolates. Further characterization of the cause(s) of increased 

ERG11 expression is needed in these NCAC species.

Unlike in other species of Candida, ERG11 does not 

appear to play a major role in fluconazole resistance in 

C. glabrata, and there are only two clinical isolates reported 

to display overexpression of ERG11.34,35 The contribution of 

this overexpression to fluconazole resistance in these isolates 

is unclear. The same is true for C. krusei; a single report 

of increased ERG11 expression observed in four clinical 

isolates can be found in the literature.36 The role of ERG11 

overexpression in fluconazole resistance in C. auris is cur-

rently unknown.

Alteration in drug target
Point mutations in the coding region of the ERG11 gene 

impact susceptibility to fluconazole. These mutations lead 

to amino acid substitutions which alter the structure of the 

protein and render binding of the azoles less efficient.37,38 This 

reduced binding affinity decreases azole susceptibility. Over 

140 substitutions have been described in C. albicans ERG11, 

indicating that this enzyme is highly permissive for structural 

changes.39 Rather than being found dispersed throughout the 

coding region, the majority of ERG11 amino acid substitu-

tions fall into distinct “hot spot” regions within the protein: 

amino acids 105–165, 266–287, and 405–488.40 A handful of 

these substitutions have been conclusively linked to resistance 

(Table 2).39,41–46 One large study performed allelic transfer 

to determine the impact of 10 specific substitutions found 

in clinical isolates of C. albicans on fluconazole resistance. 

Protein modeling studies suggested that substitutions impact 

fluconazole-susceptibility cluster in the predicted enzyme 

catalytic site, a fungus-specific external loop, or a heme-

interaction surface site.47 More commonly, substitutions are 

not conclusively linked to a resistant phenotype but, instead, 

are observed in isolates which are azole resistant but not in 

isolates that are azole susceptible.39,48 This is suggestive but 

not confirmatory of causing resistance.

Studies in NCAC indicate far lower variability in ERG11 

sequence. A single amino acid substitution, Y132F, either 

alone or in combination with an R398I substitution, has been 

observed exclusively in fluconazole-resistant clinical isolates 

of C. parapsilosis and not in susceptible isolates.31,32,49 The 

point mutation Y132F has also been noted in a single resistant 

isolate of C. tropicalis.50 Additionally, a single C. tropicalis 

isolate which contained a truncated Erg11p resulting from a 

deletion mutation and led to high-level fluconazole resistance 

was identified.51 A single instance of an ERG11 mutation has 

been reported in C. glabrata; a clinical isolate containing a 

missense mutation produced no membrane ergosterol and 

had high resistance to fluconazole.52

Table 2 ERG11 amino acid substitutions linked to fluconazole 
resistance in clinical isolates of Candida albicans

Amino acid substitution Hot spot Reference

A61V 38
A114S I 39
F126L I 40
Y132F, Y132H I 38–41,43
K143E, K143R, K143Q I 38,39,42,43
F145L I 43
Y257H 39
N435V III 39
S405F III 34,38,40,43
D446E III 43
G448E III 39,43
F449S, F449V III 38,40,43
G450E III 43
G464S III 36,38,40,43
R467K III 37
I471T III 41
D502E 39
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A chief mechanism underlying innate fluconazole resis-

tance in C. krusei is a reduced susceptibility of Erg11p.53–55 

This has not been concluded from changes in gene sequence 

but from the observation that a relatively high concentration 

of drug is required to inhibit the synthesis of ergosterol with 

C. krusei Erg11p compared to other fungal species. Other 

studies have detected point mutations in ERG11 and linked 

them to reduced susceptibility, but these studies are in rela-

tion to azoles other than fluconazole.56,57

As with many topics in C. auris, much is unknown concern-

ing the contribution of ERG11 point mutations to fluconazole 

resistance. However, one recent study determined that a col-

lection of C. auris isolates with elevated minimum inhibitory 

concentration (MIC) values to fluconazole carried point 

mutations which had been previously shown to impact drug 

resistance in other Candida spp.: Y132F, K143R, and F126T. 

These mutations were present in geographically distinct clades, 

with the isolates within a particular region having the same 

mutation. Isolates which did not carry one of these ERG11 

mutations had lower MIC values to the azole drug class. All 

of this information culminates in the conclusion that the point 

mutations in the target protein play a role in the fluconazole-

resistant phenotype of these isolates.23

Alterations in sterol biosynthesis
The development of bypass pathways within sterol biosyn-

thesis may also occur and result in resistance to fluconazole. 

Considered an infrequent mechanism of resistance, this 

primarily results from loss-of-function mutations in ERG3. 

This inactivation of the enzyme Δ5,6-sterol desaturase permits 

the cell to bypass production of toxic methylated sterols in 

the presence of the azoles and minimizes the effect of fluco-

nazole on the cell.58,59 This has been experimentally induced 

in the laboratory as well as observed in clinical isolates of 

C. albicans and, to a lesser extent, C. tropicalis.51,60–63

Increased drug efflux
In addition to mechanisms involving the ergosterol bio-

synthesis pathway, efflux of antifungal drug via transport 

proteins is found in a wide array of fungi. This results in a 

failure of the drug to accumulate intracellularly, resulting in 

resistance. In Candida spp., there are two main classes of 

efflux proteins – the major facilitator superfamily (MFS) class 

and the ATP-binding cassette (ABC) family. Each function 

to translocate compounds across the fungal cell membrane, 

and constitutive upregulation of members of each of these 

families can mediate resistance to fluconazole.

ABC transport proteins have a broad substrate specific-

ity and rely on the hydrolysis of ATP for energy.64 Of the 

28 individual ABC proteins predicted in C. albicans, two 

are well characterized and definitively linked to fluconazole 

resistance – the highly homologous Candida drug resistance 

1 (Cdr1p) and Candida drug resistance 2 (Cdr2p).65,66 Only 

CDR1 is expressed at detectable levels under standard con-

ditions in susceptible isolates, and its deletion can lead to 

hypersusceptibility. CDR2 is not usually expressed, and its 

deletion will not impact susceptibility in a drug-susceptible 

isolate.67–69 Many fluconazole-resistant isolates overexpress 

CDR1 and CDR2, and deletion of one or both genes results 

in reduction of this resistance.66 Constitutive upregulation of 

both CDR1 and CDR2 results from GOF mutations in the 

transcriptional regulator, TAC1. Currently, 19 different point 

mutations have been confirmed as GOF in TAC1; there are 

many candidate mutations still awaiting investigation.70,71

Homologous ABC transporters have also been iden-

tified in and linked to fluconazole resistance in NCAC 

species, including CgCdr1p, CgCdr2p, and CgSnq2p in 

C. glabrata (with corresponding transcriptional regulator, 

CgPdr1p), CpCdr1p in C. parapsilosis, and CkAbc1p in 

C. krusei.32,72–76 Increased expression of CtCDR1 has been 

detected in fluconazole-resistant isolates, although it is 

noteworthy that these isolates were passage-derived in the 

laboratory as opposed to clinically derived.77 Evaluation 

of clinical isolates of C. tropicalis has not reliably demon-

strated this resistance mechanism.33,78 To date, there has been 

no investigation of the role of efflux pumps in fluconazole 

resistance in C. auris.

Compared to the ABC family of transporters, members of 

the MFS class have a more narrow range of substrate specific-

ity and are powered by electrochemical proton-motive force.79 

There are approximately 95 MFS transport proteins predicted 

in the C. albicans genome.80 Only one, Mdr1p, has been 

linked to fluconazole resistance; overexpression of MDR1 

has been observed in resistant C. albicans clinical isolates, 

and deletion of MDR1 from overexpressing isolates reduces 

resistance.66,81 Regulation of Mdr1p expression is controlled 

by the transcription factor Mrr1p, and point mutations within 

this factor induce overexpression of its target gene.82 There 

are currently 15 different Mrr1p GOF mutations reported in 

C. albicans.83

MFS transporters play only a minor role in flucon-

azole resistance in the NCAC species. Loss of MDR1 in 

fluconazole-resistant C. parapsilosis isolates results in only 

a modest decrease in resistance.32 Likewise, no significant 

difference in expression of MDR1 has been observed in 

C. tropicalis fluconazole-resistant isolates as compared to 

fluconazole-susceptible.33 Recently, an MFS transporter 

in C. glabrata, Tpo3p, was shown to impact fluconazole 
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susceptibility (upon deletion of this transporter, resistance 

to fluconazole decreased).84 Meaningful homologs of Mdr1p 

have not been identified in C. krusei or C. auris.

Aneuploidy and other chromosomal 
abnormalities
Additional mechanisms of fluconazole resistance that involve 

gene amplification have also been identified. Aneuploidy 

may develop in laboratory strains or clinical isolates of 

C. albicans following routine culture and genetic manipula-

tion. Such alterations in gene copy number provide a means 

for genetic variation without impairment of cell growth.85,86 

One study analyzed gene copy number in clinical isolates 

of C. albicans and determined that aneuploid chromosomes 

were seven times more common in fluconazole-resistant 

isolates as compared to fluconazole susceptible. They also 

reported specifically isochromosome formation of chromo-

some 5 (chr5) to be associated with fluconazole resistance 

in C. albicans. Increases or reductions in resistance could 

be tied, respectively, with gain or loss of this chr5 isochro-

mosome, as duplication of this segment accords additional 

copies of ERG11, its transcriptional regulator UPC2, as well 

as efflux pump regulator, TAC1.87

LOH of specific genomic regions is also implicated in 

fluconazole resistance. It is most commonly associated with 

genes involved in resistance mechanisms, including ERG11, 

TAC1, and MRR1, with point mutations arising in the het-

erozygous state, and evolving to homozygosity. Instances of 

this mechanism occurring in sequentially collected clinical 

isolates of C. albicans have been reported.87,88

There is little information regarding chromosomal abnor-

malities in the NCAC species. Ploidy changes do occur in C. 

tropicalis.89 One report showed that in response to fluconazole 

exposure, an intermediate trimera morphology associated 

with gene duplication forms in several NCAC including C. 

parapsilosis, C. tropicalis, and C. glabrata.90 Other reports 

observe fluconazole resistance in the presence of chromo-

somal abnormalities in both C. glabrata and C. krusei in the 

form of increased copy number of ERG11 and the formation 

of segmental aneuploidies.76,91,92 The causal link between 

these findings and fluconazole resistance however has not 

been demonstrated in the NCAC.

Additional considerations in 
fluconazole resistance
Beyond the traditionally recognized mechanisms of resistance 

against fluconazole, much is still unknown. Well-understood 

molecular mechanisms do not always completely account for 

the high-level resistance observed in many clinical isolates, 

and this highlights the importance of continued investigation. 

There are instances of ERG11 overexpression in several Can-

dida spp. that cannot be linked to activating mutations within 

their transcriptional regulator, UPC2 – pointing to additional, 

unknown regulators of this key gene.30,32,33 It is also likely 

that alternate regulators of drug efflux pumps, such CaCAP1 

and CaFCR1, can regulate the transport of drug from the cell 

but may be underappreciated or overlooked in studies which 

focus on the most commonly described regulators.93–95 Addi-

tionally, signal transduction pathways that promote response 

in Candida spp. to the stress imposed by fluconazole also 

likely play a role in fluconazole resistance, but the contribu-

tions of these pathways are not yet completely defined.96,97

Deficient drug import should be an additional consid-

eration. Fluconazole uptake into the fungal cell is required 

for the drug to reach its target protein, Erg11p. The most 

comprehensive investigation into this process used biochemi-

cal analyses to determine that fluconazole is imported by 

facilitated diffusion mediated by an unknown transporter, 

at least in C. albicans and C. krusei.98 While this import is 

inadequately understood, it is certainly relevant to a discus-

sion on resistance. It is possible that a mutation in a putative 

import transporter could impair the cell’s ability to uptake 

this antifungal and generate resistance.

Several studies have reported fluconazole-resistant iso-

lates which simultaneously overexpress CDR1 and MDR1 

and/or have multiple changes to genes involved in ergos-

terol biosynthesis.44,99–101 In fact, it is quite uncommon to 

find an isolate with high-level resistance attributable to a 

single mechanism (the exception being PDR1 mutation in 

C. glabrata).102 Most often, it is the combination of multiple 

mechanisms, acquired stepwise over time, that give rise to 

high-level resistance. This is observed clinically in patients 

undergoing long-term fluconazole treatment. In vitro, this 

additive effect of multiple mechanisms has been illustrated 

by the progressive introduction of point mutations in ERG11, 

MRR1, TAC1, and UPC2 in an otherwise drug-susceptible 

C. albicans and by the dissection of individual mutations 

appearing in a resistant clinical isolate of C. albicans.103,104 

Moreover, the functional importance of individual muta-

tions varies in terms of impact on resistance. For example, 

the change in fluconazole MIC imparted by CaErg11p point 

mutation K143R is higher than that of F449V.47

The expense paid by the cell for acquiring resistance muta-

tions under antifungal stress is a fitness cost. This cost, result-

ing from altered membrane sterol content, structural changes 

in 14α-demethylase, or disregulated gene expression, may 
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result in a competitive disadvantage against other, more “fit” 

organisms within the host in the absence of the drug. Multiple 

analyses demonstrate this to be accurate in both in vitro and 

in vivo models of Candida infection, although in vitro growth 

conditions do impact fitness assays.62,63,103,105,106 As a result, 

compensatory mechanisms arise which work to alleviate the 

fitness cost of such developed resistance.107,108 The methods 

by which Candida spp. develop compensatory mechanisms 

to alleviate the fitness cost of resistance is another area for 

consideration, but it is beyond the scope of this manuscript.

Finally, as the landscape of candidemia expands to include 

newly emerging species (C. auris for example), detecting 

resistance in these species will be of paramount importance. 

It could be hypothesized that mechanisms present in the 

extensively studied C. albicans would be operative in these 

species as well, but recent investigation into many NCAC 

species, C. glabrata for example, has shown that this may not 

tell the whole story. Moving forward, it will be essential to 

use a methodical approach of next-generation sequencing and 

global transcriptional analysis to identify the determinants of 

fluconazole resistance in newly emerging species.

Conclusion
The emergence of drug resistance can be considered an 

inevitable consequence of the selective pressures imposed 

by antifungal drugs. In the past two decades, several genes 

and mutations which increase resistance to fluconazole in 

clinical isolates, primarily in C. albicans, have been eluci-

dated. In order to preserve the utility of fluconazole, a central 

antifungal option, it is important that we fully appreciate the 

manner by which all Candida spp. exhibit resistance to it.
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