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Abstract: Diabetes mellitus type 1 (DM1) is an autoimmune disease in which β-cells of the 

pancreas islet are destroyed by T lymphocytes. Specific T cells are activated by antigen-presenting 

cells, mainly dendritic cells (DCs). It is already known that the regulation of tryptophan pathway 

in DC can be a mechanism of immunomodulation. The enzyme indoleamine 2,3-dioxygenase 

(IDO) is present in many cells, including DC, and participates in the metabolism of the amino 

acid tryptophan. Recent studies suggest the involvement of IDO in the modulation of immune 

response, which became more evident after the in vitro demonstration of IDO production by DC 

and of the ability of these cells to inhibit lymphocyte function through the control of tryptophan 

metabolism. Current studies on immunotherapies describe the use of DC and IDO to control the 

progression of the immune response that triggers DM1. The initial results obtained are promising 

and indicate the possibility of developing therapies for the treatment or prevention of the DM1. 

Clinical trials using these cells in DM1 patients represent an interesting alternative treatment. 

However, clinical trials are still in the initial phase and a robust group of assays is necessary.

Keywords: autoimmunity, immunoregulation, diabetes mellitus type 1, clinical trials, dendritic 

cells, indoleamine, tryptophan, tolerance

Introduction
Diabetes mellitus type 1 (DM1) is an autoimmune disease with massive destruction 

of pancreatic β-cells, with lymphocyte and macrophage infiltrates in the islets of 

Langerhans.1,2 Although already approved therapies to DM1 are available, they are 

still poorly effective in controlling the progression of diabetes. Recent advances in 

the studies of DM intended to develop cellular therapies, such as the regeneration of 

pancreatic β-cells from transplantation of precursor stem cells.3,4 To reverse the immu-

nopathogenesis of the DM1, some authors propose an early vaccination as prophylaxis. 

Also, restoration of immune tolerance to self-antigens in DM1 patients is considered a 

promising therapy.5 In this sense, treatment with immunoregulatory cells specifically 

explores the modulatory capacity of indoleamine 2,3-dioxygenase (IDO).

It is known that the enzyme IDO, expressed in dendritic cells (DCs) and other cells, 

participates in the metabolism of tryptophan (TRP). Recent studies suggest the partici-

pation of IDO in the modulation of the immune response, which became more evident 

after the in vitro demonstration of IDO production by DC and of the ability of these 

cells to inhibit lymphocytes via the TRP pathway.6–10 In this subject, experiments with 

macrophages and human DC expressing IDO have demonstrated that the presence of 

IDO blocks in vitro proliferation of T cells.7 IDO1 is an immunomodulatory molecule 
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with potential effects on various diseases including cancer and 

autoimmunity.11,12 IDO2, as well as IDO1, is implicated in TRP 

catabolism and modulation of immune response. IDO2 seems 

to act in a distinct way from IDO1. However, the specific 

contributions of IDO2 to physiology are still unknown.13

A recent study suggests that IDO1 activity may correlate 

with the pathogenesis of diabetes mellitus type 2 (DM2) since 

it was significantly increased in these patients.14 Reduction 

in IDO1 levels also seems to be related to the pathogenesis 

of DM1,15 since in experimental diabetes, toll-like receptor 

(TLR) 3-deficient mice presented a more robust disease, 

accompanied by the absence of IDO1 induction in pancreatic 

lymph nodes.

However, new mechanisms to control DM1 as well as 

to elucidate the participation of the IDO1 enzyme in the DC 

response are under development. In this context, the study 

of the mechanism of action of IDO1 and its relationship 

with the immunological mechanism can be relevant for the 

future development of vaccines or drugs. Hence, the aim of 

the present review was to describe the participation of DC 

in the control of the immune response on DM1, as well as 

the regulation of the IDO1 enzyme in these cells.

Immunological mechanisms of type 1 
diabetes mellitus
Current studies demonstrate that DC can participate in the 

regulation of DM1,16 since it is a disorder related to the action 

of autoreactive T cells against pancreatic β-cells.17 CD11c+ 

CD11b+ CD8α- DC activates T lymphocytes that initiate 

the process of insulitis and eliminates pancreatic β-cells.18,19 

Autoantibodies subsequently participate in inflammatory pro-

cess and can be used as markers of immune response.20 It is 

also known that the enzyme IDO, present in DC, participates 

in the immunity by regulating the proliferation of T cells.7

Indoleamine 2,3-dioxygenase and the 
kynurenine pathway
IDO is one of the two enzymes that catalyze the limiting step of 

the degradation of TRP through the kynurenine (Kyn) pathway. 

Studies showed that the tryptophan 2,3-dioxygenase (TDO) 

and IDO enzymes catalyze the conversion of TRP to 

N-formyl kynurenine.21,22 Unlike TDO, expressed only in 

the liver, IDO is found in various organs, tissues, and cell 

types, such as stromal, hematopoietic, tumor, lymphoid, and 

dendritic cells,21,22 and expressed often in tissues with large 

mucosa, such as the gastrointestinal tract and lung.23

IDO is an oxygenase enzyme with a heme group24 com-

posed of two domains – major and minor25 – encoded by two 

closely related genes (IDO1 and IDO2), located on human 

chromosome 8.26,27 In the TRP catabolism, IDO is responsible 

for the oxidative cleavage of double bond present in the 

indol fraction of TRP, resulting in the formation of N-formyl 

kynurenine.25 The kynurenine pathway (Figure 1) is the main 

route of degradation of TRP, since 99% of this ingested 

amino acid is metabolized by this way. The kynurenines gen-

erated include kynurenic acid, 3-hydroxykynurenine, pico-

linic acid, quinolinic acid, and kynurenine itself.25,28,29 IDO 

enzyme is able to inhibit the in vitro proliferation of T cells 

by the catabolism of TRP via kynurenines, participating in 

the modulation of immune response.30

Several studies indicate that the transcription process is 

well controlled after the activation of IDO, with activation of 

genes of inflammatory mediators, such as interferon (IFN)-α, 

IFN-β, and IFN-γ. Among several IDO inducers, lipopolysac-

charide (LPS)-induced IDO expression was found in blood, 

muscle, brain, liver, and lung. LPS administration induces 

increased concentrations of TNF-α, IL-10, and Kyn, and a 

depletion of TRP indicating an elevated activity of IDO.28,31

Although IDO expression is rapidly induced by IFN-γ 

alone or associated with interleukin (IL)-1β, IDO secretion 

also occurs in DC after signaling by transforming growth 

factor beta 1 (TGF-β1), which demonstrates a mediation of 

its regulatory function.7,30,32–34 The mechanism of control of 

IDO expression is not fully understood but post-translational 

modifications are relevant in this process. Also, the induc-

tion of IDO in DC can occur through immunomodula-

tory properties of molecules, that inhibit the pathways of 

T cells activation via T cell receptor (TCR), Cytotoxic 

Figure 1 Kynurenine and serotonin pathway.
Note: Tryptophan participates in serotonin and kynurenine pathways. Data from.25,28–30
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T-lymphocyte-Associated Associated Antigen 4 (CTLA-4), 

Toll like receptors (TLR) and CD40.23,35

The immunoregulatory properties of 
IDO on DC
The role of IDO on immunosuppression was first discussed 

in 1998 when Munn et al demonstrated that when pregnant 

rats were treated with an inhibitor of the IDO enzyme called 

1-methyl tryptophan, maternal lymphocytes initiated a pro-

cess of rejection to the fetus. Subsequently, the studies of 

IDO in immunosuppression extended to regulation of tumors, 

inflammatory, allergic and autoimmune diseases, the enzyme 

being recognized as a regulator of immunity.34,36,37 This regu-

latory action of IDO is possibly due to the combination of 

the effects of TRP degradation and of the accumulation of 

the kynurenine metabolites that act on the hydrocarbon ring 

present at the TCR.17,34

IDO can affect the ability of DC to present antigens and 

stimulate T cells. Also, the catabolism of the TRP is a central 

pathway to this immunosuppressive response. In this sense, 

IDO can induce the depletion of TRP and the accumulation 

of kynurenine metabolites, as exemplified in Figure 2.23,34 The 

T cells activated by DC expressing IDO are able to initiate the 

cell cycle. However, the enzymatic activity of IDO leads to a 

significant decrease of TRP, inducing the cell cycle arrest and 

enhancing T cell apoptosis. IDO1 was described as the first 

rate-limiting enzyme acting on the degradation of TRP since 

the enzyme activity results in the depletion of TRP and inhi-

bition of T lymphocytes.38 The initial step of the kynurenine 

pathway involves the oxidation of TRP. TRP derivatives have 

pleiotropic effects on homeostasis processes. IDO and TDO 

are heme-containing enzymes that catalyze the O
2
-dependent 

oxidation of l-TRP in biological systems. Studies report that 

IDO and TDO react using the same mechanism. For IDO, 

a ferryl species accumulates in the steady state. However, 

there is no evidence for the accumulation of this compound 

during TDO catalysis. Serotonin and melatonin are two 

TRP-derived compounds produced in humans, among others. 

κ

Figure 2 IDO and DC in the regulation of the T cell responses through the degradation of TRP and kynurenine metabolites.
Notes: (A) Depletion of TRP by IDO increases the metabolites of kynurenine and blocks T effector cell proliferation, favoring Treg differentiation. (B) Intracellular events 
in T effector cells in consequence of IDO activity in DCs.
Abbreviations: AHR, aryl hydrocarbon receptor; CTLA-4, cytotoxic T-lymphocyte-associated antigen 4; DCs, dendritic cells; HAA, 3-hydroxyanthranilic acid; 
IDO, indoleamine 2,3-dioxygenase; KRN, kynurenine; MHC, major histocompatibility complex; NF-kB, nuclear factor kappa B; PDK-1, phosphoinositide-dependent kinase 1; 
TCR, T cell receptor; Treg, T regulatory; TRP, tryptophan.
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Also, indole ring breakdown through the “kynurenine shunt” 

produces a number of molecules involved in inflamma-

tion, immune response, excitatory neurotransmission, and 

many other functions, such as l-kynurenine, kynurenic and 

quinolinic acids, or the coenzyme nicotinamide adenine 

dinucleotide (NAD+).39–42

Recent research showed that catabolism of TRP mediated 

by IDO inhibits the immunoregulatory kinase mammalian 

target of rapamycin (mTOR), with the autophagy induction.43 

So, IDO was proposed to control inflammatory responses 

and immune tolerance coordinately by the pathways of 

TRP deficiency and sufficiency, via the integrated stress 

kinases namely general control non-depressible 2 (GCN2) 

and mTOR, respectively.43,44 However, the role of GCN2 in 

immune response and suppression is not clearly established. 

Conflicting data showed that, in lupus-prone mice, activation 

of GCN2 reduced anti-DNA antibodies, implicating GCN2 

signal in limiting autoimmunity.45 However, a recent study 

described that kinase GCN2 is not related to the suppression 

of antitumor response by TRP catabolism.46

Tryptophan catabolites or starvation induce a regulatory 

environment affecting both CD8+ and CD4+ T cells. Recent 

studies showed that TRP catabolites result in GCN2 kinase-

dependent downregulation of the TCR zeta-chain in CD8+ 

T cells in mouse model. Also, TRP catabolism includes the 

emergence of a regulatory phenotype in naive CD4+ CD25− 

T cells via TGF-β induction of the forkhead transcription factor 

Foxp3, capable of controlling diabetogenic T cells.47,48

The metabolites generated by the IDO activity are potent 

inhibitors of T cell activation. Some compounds such as 

3-hydroxyanthranilic acid (3-HAA) are able to block T cells 

by interfering in the nuclear factor kappa B (NF-kB) path-

way via inhibition of phosphoinositide-dependent kinase 1 

(PDK-1), a mediator of NF-kB activation through CD28 

signaling49,50 (Figure 2). Besides that, kynurenine is also 

involved in the generation of T regulatory (Treg) in periphery, 

another important mechanism to control T cell responses. 

In lymph nodes, IDO controls conversion of Foxp3+ Tregs 

to T helper (Th) 17 cells.51 In this way, TRP metabolites are 

able to ligate to aryl hydrocarbon receptor (AHR), a cyto-

plasmic transcription factor, favoring differentiation of naive 

T cells to Tregs but not to Th17 cells.52 However, literature 

suggests that other signaling pathways are also relevant, like 

the CTLA-4/B7 signaling and the major histocompatibility 

complex (MHC)–TCR interaction.23,53

Related to IDO therapeutic potential, synergistic 

treatment with TGF-β can result in a burst of regulatory 

kynurenines that contribute to establishing a state of 

“infectious tolerance”. TGF-β activates the tolerogenic 

pathway of TRP catabolism – mediated by IDO.54 IDO can 

be associated with the pathogenesis of persistent infections, 

and Treg cells might play an important role in the direct 

control of innate immune responses. According to an infec-

tious tolerance model, Treg cells inhibit neutrophil function 

and promote their apoptosis by the induction of suppressor 

cell populations. LPS-activated Treg cells induce IL-10 and 

TGF-β1 secretion, inhibit IL-6 production, and also induce 

the expression of heme oxygenase-1 (HO-1) and the suppres-

sor of cytokine signaling 3 molecule (SOCS3).55,56

Tregs induce IDO expression in DCs and tolerogenic 

DC induce conversion of naive T cells to Tregs. Both 

myeloid-derived suppressor cells (MDSCs) subset and 

tolerogenic DCs can control self-reactive immune responses 

by promoting the expansion of Treg population. MDSCs 

require direct contact with activated T cells, which leads to 

the production of IDO.57

A recent report showed that high-dose IL-4 inhibits the 

CD103+ DC differentiation by inducing high levels of IDO. 

Interestingly, IL-4 diminished IDO expression in DCs in a 

dose-dependent manner. DCs generated under low concentra-

tions of IL-4 favored Treg cells differentiation, which depend 

on IDO produced by CD103+ DCs.58

Therapy with tolerogenic DC in diabetes 
mellitus
The conventional DM therapies basically include medications 

to control glucose and insulin levels. However, with the wide 

knowledge on cell biology, immunology, and biotechnology, 

cell therapy has been gaining prominence.59 It can be used 

in the treatment of infections, autoimmune diseases, cancer, 

metabolic diseases, and tissue degeneration.59,60 Also, cell 

therapy is becoming the alternative treatment of DM1 and 

several studies approach this theme in different ways.61

Studies demonstrate the possibility of development of 

in vitro insulin-producing cells with characteristics similar 

to pancreatic β-cells, using embryonic stem cells as source. 

Replacement of pancreatic β-cells has already been consid-

ered as an alternative to treat DM1.62 Jalili et al prolonged 

islet allograft survival by preventing immune response. They 

induced a local immunosuppressive activity by stable IDO 

induction in bystander fibroblasts.63 Also, administration 

of endovenous anti-CD3 monoclonal antibodies in patients 

newly diagnosed with DM1 results in the reduction of circu-

lating lymphocytes as well as C-peptide, insulin, and glycated 

hemoglobin (HbAL1c) values.64,65 In addition, experiments 

combining transplantation of autologous hematopoietic stem 
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cell and immunosuppression protocol based on endovenous 

cyclophosphamide and anticytoplasmic globulin restarted 

the immune system without autoreactive memory to the 

regenerated pancreatic β-cells. A high percentage of patients 

obtained insulin independence, without mortality or new 

toxic effects.66–68

Among therapies, DC therapies can be highlighted for 

autoimmune diseases such as DM1, since these cells par-

ticipate in the pathogenesis of this disease.69,70 DC therapies 

are evaluated for the treatment of infectious diseases, tumor, 

autoimmune diseases, transplants, and allergies.50,69,70 In this 

context, it is known that plasmacytoid type DC (pDC), that 

participate in the immune response and the generation of 

tolerance, can act in the DM1 in the control of the regulatory 

and pathogenic T cells.17,34

In order to develop therapies for DM1 using tolerogenic 

DC, a study was performed ablating the myeloid DC (mDC) 

and pDC mediated by diphtheria toxin receptor in nonobese 

diabetic mice (NOD). The results showed that, with the 

ablation of mDC, prevention of the development of DM was 

achieved. However, with the ablation of pDC, an increase 

in the severity of the insulitis was observed, accompanied 

by the loss of natural killer T cells (NKT) and a decrease of 

IDO. Since IDO enzyme is an inhibitor of T cell response, 

the decrease of pDC or the inhibition of IDO by the use of 

1-methyl-d-tryptophan (1-MT) increased the aggressiveness 

of the insulitis and the destruction of pancreatic β-cells. 

Also, the ablation of pDC caused reallocation of NKT cells 

that aggravates the insulitis, while the restoration of pDC 

normalized the insulin and NKT levels. The IFN-γ secretion 

by the NKT induced IDO production by DC, interconnecting 

these responses. Finally, it was concluded that pDC, IDO, 

and NKT can act together to prevent insulin production and, 

consequently, the development of DM1.71,72

Another study demonstrated that NOD mice have a defi-

ciency in the signaling and functioning of the IDO enzyme, 

even after stimulation of pDC with TGF-β1. IDO could only 

be stimulated by this cytokine in the presence of a basal 

amount of this enzyme in the pDC. So, in order to initiate 

the phosphorylation cascade and the consequent protein 

signaling, it was necessary to perform a forced induction 

of the IDO in the pDC and the stimulation with TGF-β1. 

IDO signaling generated a positive feedback with TGF-β1, 

alternatively activating the NF-κB pathway.17

A recent study showed that a chimeric vaccine composed 

of the proinsulin and cholera toxin B subunit (CTB-INS) was 

able to suppress DM1 onset in NOD mice and upregulated 

enzyme IDO1 in human DC. This vaccine activated the 

tumor necrosis factor associated factor (TRAF) super-family 

receptor (TRAFR) pathway and led to the upregulation of 

IDO1 biosynthesis in CTB-INS inoculated DC. The control 

of NF-κB-inducing kinase (NIK) post-translational stability 

may be essential for the modulation of non-canonical NF-κB 

signaling pathway. Evidence suggests that TRAF2, TRAF3, 

and TRAF6 are critical to negative regulation of NIK activity. 

The CTB-INS vaccine acts in the TNF receptor-dependent 

signaling pathway of the noncanonical NF-κB signaling 

pathway resulting in the suppression of mediated DM1.73

DCs present autoantigens of pancreatic β-cells for self-

reactive T lymphocytes. They are also involved in the dele-

tion of autoreactive T cells. A report showed that targeting 

of DCs with beta cell antigens was able to achieve deletion 

of autoreactive cytotoxic T cells in NOD model.74

After treating DC with CTB-INS vaccine, an increase 

in the degradation of the TRP, a reduction in cell matura-

tion functions, and an augment of the IDO1 synthesis were 

observed. This biosynthesis was reduced with NF-κB block-

ers reinforcing the role of this factor in the induction of IDO. 

All these findings, combined with the fact that this does not 

interfere with the monocytes differentiation into DC, open 

the possibility of developing safe and effective immuno-

therapeutic strategies for the prevention of autoimmunity 

that occurs in DM1.16

A clinical trial using DC for the treatment of DM1 is 

currently underway.75–79 The vaccine consists of autolo-

gous monocyte-derived DC treated ex vivo with antisense 

phosphorothioate-modified oligonucleotides targeting 

the primary transcripts of the CD40, CD80, and CD86 

co-stimulatory molecules, generating DC with immuno-

regulatory properties. The safety Phase I study80 allowed 

to conclude that the use of tolerogenic DC in patients with 

DM1 was well accepted and safe, without adverse effects 

or toxicity.76 In Phase II, the modulatory capability of DC 

collected via leukapheresis and engineered ex vivo via 

incubation with antisense DNA oligonucleotides targeting 

the primary transcripts of CD40, CD80, and CD86 will 

be evaluated.80,81

Final considerations
Nowadays, DC therapies to DM1 have focus on the immuno-

regulatory properties of these cells through their maturation 

and on the action of the IDO, an enzyme that participates 

in the metabolism of TRP and causes accumulation of the 

metabolites of kynurenines and consequent blockade of 

T lymphocyte proliferation. As shown here, the use of DCs 

in cell therapies in DM1, although recent, already presents 

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Drug Design, Development and Therapy 2017:11submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

2176

Abram et al

promising results since it has been proven that the IDO 

enzyme can be modulated in DC in a tolerogenic way. In this 

sense, it was possible to conclude that recent studies have 

demonstrated that DC expressing tolerogenic IDO may be 

effective in regulating the immune response of DM1. There-

fore, the data support the suggestion of the application of 

tolerogenic DCs to induce tolerance in DM1. It is important 

to highlight that studies with DC on DM1 are in clinical phase 

and the results obtained heretofore are promising since they 

indicate the possibility of developing therapies for the treat-

ment or prevention of the DM1. However, clinical trials are 

still in the initial phase and a more robust group of assays to 

confirm this proposition is necessary.
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