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Abstract: Influenza A virus (IAV) is the sole cause of the unpredictable influenza pandemics and 

deadly zoonotic outbreaks and constitutes at least half of the cause of regular annual influenza 

epidemics in humans. Two classes of anti-IAV drugs, adamantanes and neuraminidase (NA) 

inhibitors (NAIs) targeting the viral components M2 ion channel and NA, respectively, have been 

approved to treat IAV infections. However, IAV rapidly acquired resistance against both classes 

of drugs by mutating these viral components. The adamantane-resistant IAV has established itself 

in nature, and a majority of the IAV subtypes, especially the most common H1N1 and H3N2, 

circulating globally are resistant to adamantanes. Consequently, adamantanes have become prac-

tically obsolete as anti-IAV drugs. Similarly, up to 100% of the globally circulating IAV H1N1 

subtypes were resistant to oseltamivir, the most commonly used NAI, until 2009. However, the 

2009 pandemic IAV H1N1 subtype, which was sensitive to NAIs and has now become one of 

the dominant seasonal influenza virus strains, has replaced the pre-2009 oseltamivir-resistant 

H1N1 variants. This review traces the epidemiology of both adamantane- and NAI-resistant IAV 

subtypes since the approval of these drugs and highlights the susceptibility status of currently 

circulating IAV subtypes to NAIs. Further, it provides an overview of currently and soon to 

be available control measures to manage current and emerging drug-resistant IAV. Finally, this 

review outlines the research directions that should be undertaken to manage the circulation of 

IAV in intermediate hosts and develop effective and alternative anti-IAV therapies.

Keywords: influenza A virus, drug resistance, M2 ion channel inhibitors, neuraminidase 

inhibitors, oseltamivir, zanamivir

Introduction
Influenza virus is one of the most successful, persistent, and unpredictable human 

pathogens. Influenza continues to cause regular seasonal epidemics, unpredictable 

pandemics, and frequent and deadly zoonotic outbreaks worldwide. Influenza 

virus transmits through aerosol and causes an acute febrile respiratory disease in 

humans, commonly known as “flu”, which is particularly severe in young children, 

elderly, and immunocompromised individuals. The burden of influenza virus on 

global human population and economy is significant.1–23 According to the World 

Health Organization (WHO) estimate, influenza virus annually causes 1 billion 

cases of flu, 3–5 million cases of severe illness, and 300,000 to 500,000 deaths 

worldwide. The annual influenza vaccination program alternating in the Northern 

and Southern Hemispheres is the major tool to prevent or control seasonal influenza 

epidemics. In addition, two classes of antiviral drugs, 1) M2 ion channel inhibitors 
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(amantadine and rimantadine) and 2) neuraminidase (NA) 

inhibitors (NAIs; oseltamivir, zanamivir, peramivir, and 

laninamivir), have been approved to treat influenza virus 

infections. However, like antibiotic resistance, emergence 

of antiviral drug resistance in influenza virus is a major 

concern. Consequently, NAIs are the only class of anti-

influenza drugs currently in use as most of the circulating 

influenza viruses have acquired resistance to M2 ion chan-

nel inhibitors.24 Nevertheless, many circulating influenza 

viruses have also acquired the resistance to NAIs. This 

review highlights the emergence and epidemiology of drug-

resistance mutations in M2 and NA with focus on influenza 

A virus (IAV), the prototypic and most significant member 

of the Orthomyxoviridae family.

Natural history and epidemiology 
of IAV
IAV virion particles exhibit both spherical and filamentous 

morphology and possess the negative-sense, segmented and 

single-stranded RNA genome. Each of the eight IAV gene 

segments encodes at least one major viral protein. However, 

some IAV segments encode more than one viral protein 

through mechanisms including leaky ribosomal scanning, 

alternative splicing, ribosomal frameshifting, and use of 

alternative start codon.25,26 So far, IAV has been reported 

to encode at least 17 viral proteins, although not all IAV 

subtypes encode every protein. IAV is an enveloped virus, 

and each virion contains ~300 hemagglutinin (HA) and ~40 

NA glycoprotein spikes on the surface.27,28 The HA is the 

receptor-binding protein and facilitates IAV entry to host 

cell, whereas NA facilitates the release of newly produced 

virions from the host cell.28 A third protein, M2 that forms 

an ion channel and is critically involved in virus entry, is 

also embedded in the viral envelope, which is derived from 

the host cell plasma membrane.28 Underneath the envelope 

is a rigid layer comprised of matrix protein 1 (M1), which 

maintains the shape and integrity of IAV virion.29 M1 also 

interacts with the cytoplasmic domains of IAV envelope 

proteins and viral ribonucleoprotein (vRNP) core. The vRNP 

core is primarily composed of viral genome, nucleoprotein 

(NP), and polymerase complex, which consists of PA, PB1, 

and PB2 proteins.28

IAV has global presence and a broad host range that 

includes humans, seals, horses, pigs, dogs, cats, and birds 

(Figure 1). The aquatic birds, such as waterfowl and shore-

birds, are the reservoir host of IAV.30 IAV is subtyped based on 

the type and antigenicity of its surface glycoproteins, HA and 

NA. So far, 18 HA and 11 NA subtypes have been described, 

of which 16 HA and 9 NA have been found to circulate in 

avian species, whereas 2 HA and 2 NA subtypes have been 

detected in bats (Figure 1).31,32 However, the bat IAV subtypes, 

H17N10 and H18N11, are remarkably different from other 

IAV subtypes prompting suggestion that these bat viruses 

should be labeled as influenza-like viruses.33

The interspecies transmission of IAV occurs and is com-

mon as well as significant between humans and pigs and 

poultry and pigs, while it is sporadic in others (Figure 1). 

The ability of IAV to transmit between species is determined 

by its capability to change specificity to target species. IAV 

is also well adapted to promote antigenic diversity by using 

two particular mechanisms known as antigenic drift and 

antigenic shift.34 Antigenic drift causes mutations in HA 

and NA resulting in antigenic variants, which can reinfect a 

host and avoid the pre-existing immunity.34 The error-prone 

nature of viral RNA polymerase is the major contributor to 

antigenic drift, which along with frequent reassortment and 

natural selection is the main cause of recurring seasonal 

influenza epidemics.35 These epidemics are capable of last-

ing at least 6 to 12 weeks, with observed infection rates of 

10–30% in adults and 20–50% in children.36 On the other 

hand, antigenic shift is the reassortment of gene segments 

between two different parental viruses within the same host, 

giving rise to a novel pandemic IAV. The H1N1 subtype, 

which caused the first recorded IAV pandemic in 1918, 

was originated from the reassortment between a human H1 

Figure 1 The host range of influenza A virus.
Notes: The IAV HA subtypes isolated from each host are mentioned in parenthesis. 
The significant interspecies IAV transmission is shown by solid (common) and 
dashed (sporadic) arrows.
Abbreviations: IAV, influenza A virus; HA, hemagglutinin.
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subtype and an avian N1 subtype.37 The next IAV pandemic 

of 1957 was caused by an H2N2 subtype, which originated 

when circulating 1918 H1N1 subtype reassorted with an 

avian H2N2 subtype.38 Subsequent IAV pandemic in 1968 

was caused by the H3N2 subtype. This subtype arose when 

circulating 1957 H2N2 subtype reassorted with an avian 

H3 subtype.38 The most recent IAV pandemic in 2009 was 

caused by a swine-origin H1N1 subtype, which originated 

from the sequential reassortment events between human 

H3N2, swine H1N1 and avian H1N2 subtypes of North 

American and Eurasian lineages.38 A pandemic IAV has the 

potential to spread quickly and infect ~50% of the global 

human population within a short period of time. Therefore, 

all four pandemics combined resulted in the deaths of mil-

lions of people worldwide. Lately, several pure avian-origin 

IAV subtypes (e.g., H5N1, H7N9, and H10N8) have been 

found to cause deadly outbreaks in humans. Many of these 

IAV subtypes cause a disease that is clinically distinct and 

more severe than the disease caused by a human IAV subtype 

and results in a significantly high mortality rate (~35–50%).39 

Fortunately, none of these avian IAV subtypes have acquired 

the capability of direct human-to-human transmission by 

aerosol; they mainly spread through a direct contact. The 

spread of avian IAV to humans is limited by differing recep-

tor specificities.40 IAV utilizes carbohydrate moiety, sialic 

acids present on host cell surface as its receptor. The HA of 

human IAV subtypes specifically binds to sialic acids with 

α-2,6-linkages, whereas the HA of avian IAV subtypes binds 

to sialic acids with α-2,3-linkages.40 The upper respiratory 

tract in humans predominantly contains sialic acid with 

α-2,6-linkages. However, sialic acids with α-2,3-linkages 

are found in the lower respiratory tract of humans, meaning 

that avian IAV subtypes are capable of infecting humans upon 

exposure. Interestingly, both α-2,6- and α-2,3-linkages are 

found in swine upper respiratory tract; therefore, pigs are 

regarded as the “mixing vessels” for the generation of human 

and avian IAV reassortant subtypes.41

Antiviral drugs and drug resistance 
in IAV
Adamantanes: M2 ion channel inhibitors
The adamantanes, amantadine (Symmetrel), and rimanta-

dine (Flumadine) were the first-approved class of anti-IAV 

drugs.42 Adamantanes target the M2 protein of IAV to exert 

their antiviral function.43,44 The M2 is a tetrameric, type III 

integral membrane protein, and the single transmembrane 

domain of M2 forms a 4-helix bundle that acts as a pH-

sensitive gated ion channel in the IAV envelope.45–49 IAV 

enters the host cell via receptor-mediated endocytosis and 

uncoats through HA-mediated fusion of viral envelope with 

endosomal membrane.28 Prior to the fusion, the low pH in 

endosome activates and opens the M2 ion channel allowing 

the entry of protons and causing the internal acidification of 

virion. This event leads to the dissociation of M1 protein from 

vRNP core and subsequent release of the latter into host cell 

cytoplasm, initiating the IAV replication.50 The adamantanes 

bind to M2 channel pore and block proton conductance either 

directly or allosterically, consequently inhibiting the vRNP 

release and IAV replication.51–54 To acquire resistance to ada-

mantanes, IAV mutated several amino acids (L26F, V27A, 

A30T/V, S31N, G34E, and L38F) in M2 transmembrane 

domain that line the channel pore (V27, A30, and G34) or 

are involved in the tetramer helix–helix packing (L26, S31, 

and L38), leading to increase in pore size and hydrophilicity 

of the channel or destabilization of helix–helix assembly and 

narrowing of the pore size, respectively.51–53,55–58

Epidemiology of adamantane-resistant 
IAV
Amantadine was first of the two adamantanes to be approved 

for clinical use in 1966 followed by rimantadine in 1993.43,56,59 

Initially, both drugs were highly successful in inhibiting and 

preventing the IAV infection with an efficacy rate of up to 

90%.60–62 The resistance of IAV to adamantanes was first 

detected during 1980 epidemic.63 However, the resistance 

to both drugs in seasonal IAV subtypes was rare with only 

1–2% frequency until 200059,64–66 but has risen dramatically 

since then.67 From 2000 to 2004, the resistance to adamantane 

among IAV H3N2 subtype isolates across Asia increased 

from 1.1% to 27%.67 The numbers from China (73.8%), 

Hong Kong (69.6%), and Taiwan (22.7%) were the main 

contributors to this 27% increase in Asia.67 However, during 

the same period, the increase in H3N2 subtypes resistant to 

adamantanes in Europe, North America, and South America 

was only 4.7%, 3.9%, and 4.3%, respectively, whereas no 

resistant virus was detected in the Oceania region. Neverthe-

less, during 2000–2004, the overall resistance to adamantanes 

among H3N2 subtypes rose to 12.3% globally.67 In majority 

of the H3N2 isolates (98·2%), the adamantane resistance was 

due to the S31N mutation while the L26F, V27A, and A30T 

mutations accounted for the rest (1.8%).67 On the other hand, 

only 0.3% H1N1 subtypes were resistant to adamantanes 

during this period. Similarly, during 2004–2005 season, only 

15% of the H3N2 and 4.1% of the H1N1 global isolates were 

resistant to adamantanes.68 However, from 2005 onward, 

the resistance to adamantanes started to increase almost 
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exponentially. Remarkably, during 2005–2006 season, 90.6% 

of the H3N2 and 15.6% of the H1N1 global isolates were 

adamantane resistant.68 The Asia, Europe, North and South 

America, and Oceania regions contributed almost equally 

to these statistics, although no significant data were avail-

able from Africa. Astonishingly, 100% of the H3N2 isolates 

from South Korea, Taiwan, Japan, Hong Kong, and China 

were resistant to adamantanes.68 Similarly, in the USA, up 

to 96.4% of the H3N2 isolates and up to 25% of the H1N1 

isolates were adamantane resistant.68,69 These data prompted 

the Centers for Disease Control and Prevention (CDC), 

USA, to issue an advisory against the use of adamantanes 

to treat IAV infections.70 Again, in 90–98% of the isolates, 

the resistance-conferring mutation was S31N in both H1N1 

and H3N2 subtypes. Similarly, the swine-origin IAV H1N1 

subtype that caused the pandemic in 2009 also contained 

the S31N mutation in M2, hence, was resistant to adaman-

tanes.71,72 Furthermore, the avian IAV subtypes H5N1 and 

H7N9 that emerged and caused severe zoonotic infections in 

humans in 2003 and 2013, respectively, also possess the S31N 

mutation in M2, hence, were resistant to adamantanes.39,73

As of 2013, ~45% of all IAV subtypes circulating in the 

world were resistant to adamantanes.74 Particularly, over 69% 

of the H1, 43% of the H3, 28% of the H5, 12% of the H7, 

and 23% of the H9 subtypes carried adamantane resistance-

conferring mutations in M2. However, the adamantane-

resistant mutations were rare in H2, H4, H6, H10, and H11 

subtypes, and no such mutations were identified in H8 and 

H12–16 subtypes. Interestingly, all three bat-origin H17N10 

isolates were also adamantane resistant. The adamantane-

resistant H1 and H3 subtypes were mainly found in humans 

and swine and were widely distributed in the world. However, 

most of the adamantane-resistant H1 and H3 subtypes were 

detected in the Americas (52% and 56%), followed by Asia 

(26% and 34%), Europe (19% and 4.6%), Oceania (1.8% 

and 1.8%), and Africa (0.7% and 2.5%). In the Americas, 

USA had the largest distribution of adamantane-resistant 

H1 and H3 subtypes, whereas China, Singapore, and Hong 

Kong led the numbers in Asia and UK followed by Spain in 

Europe. In contrast, majority of the adamantane-resistant 

H4–H11 subtypes were detected in avian species and were 

mainly distributed in Asia. Particularly, the distribution of 

adamantane-resistant H5, H6, H7, and H9 subtypes in Asia 

was at 91%, 100%, 67%, and 100%, respectively. Vietnam 

had the highest number of adamantane-resistant H5 subtypes 

followed by Thailand, China, and Indonesia. On the other 

hand, China had the largest distribution of adamantane-resis-

tant H7 and H9 subtypes followed by Hong Kong. The next 

largest distribution of the adamantane-resistant H7 (31.3%) 

and H5 (6.4%) subtypes was found in Americas (exclusively 

USA) and Africa (primarily Egypt), respectively.74

A vast majority of adamantane-resistant IAV subtypes 

(95%) contained the S31N mutation.74,75 Particularly, over 

96% of the H1, 93% of the H3, 83% of the H5, 86% of 

the H7, and 87% of the H9 subtypes harbored the S31N 

mutation. Other mutations (L26F, V27A, A30T/V, G34E, 

and L38F) were sporadic, but over 11.8% of the H5 and 

9.8% of the H9 subtypes contained V27A mutation. In 

addition, 2.8% of the H1, 5.4% of the H3, 2.6% of the H5, 

and 10.4% of the H7 viruses possessed the double mutation 

V27A+S31N and few of the H1, H3, and H5 viruses had the 

double mutation L26F+S31N. Furthermore, S31N was the 

most common mutation in human (98%), avian (88%), and 

swine (77%) IAV subtypes distantly followed by V27A in 

the same species. Interestingly, over 20% of the swine IAV 

subtypes had the double mutation V27A+S31N, frequency 

of which is believed to be rising in swine IAV.76 Predictably, 

S31N mutation was distributed worldwide with majority of 

the distribution in Americas followed by Asia, Europe, Africa, 

and Oceania. However, V27A, A30T and L26F mutations 

were more prevalent in Asia, with majority V27A distribution 

in Indonesia followed by China. The most common double 

mutation was V27A+S31N with major distribution in the 

Americas (mainly USA) followed by Europe and Asia. The 

next most common double mutation was L26F+S31N with 

similar geographical distribution.74

Temporally, the resistance to adamantanes in IAV sub-

types H1 and H3 increased consistently in many countries 

from 2001 and spiked in 2009. Particularly, in Hong Kong, 

UK, and Germany, the frequency of adamantane-resistant 

H1N1 subtypes has increased consistently since 2001, and 

in China and USA since 2005 and 2006, respectively. Simi-

larly, China, Hong Kong, Taiwan, and USA had a consistent 

increase in adamantane-resistant H3N2 subtypes since 2000, 

and Vietnam, Taiwan, and Malaysia since 2004.74 The most 

likely reason for this dramatic increase in IAV resistance to 

adamantanes is the widespread usage of these drugs to treat 

IAV infections. However, increase in resistance has also been 

noted in countries where adamantanes use was low, indicating 

the stable circulation of the fit mutant viruses, which may 

have emerged without drug pressure and have replication 

potential and virulence similar to the wild type.59,77–80 It has 

been proposed that S31N mutation independently emerged 

multiple times and introduced at least 11 times in H3N2 

subtypes during 1997–2007. It was the seventh introduc-

tion in H3N2 during 2003 in Hong Kong that subsequently 
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reassorted with another H3N2 subtype in 2005 to acquire 

a novel HA and gave rise to the “N-lineage”.75,79,81 The 

N-lineage then acquired other fitness-enhancing mutations 

elsewhere in the genome and spread globally; hence, all 

currently circulating adamantane-resistant H3N2 subtypes 

belong to a single lineage.79 The emergence of adamantane 

resistance in H1N1 subtypes was delayed and temporally dif-

ferent to H3N2 subtypes.68,69,74 It is believed that adamantane 

resistance in H1N1 subtypes did not arise through reassort-

ment with a resistant H3N2 subtype, but through a separate 

introduction and spread process.68,82

NAIs
NAIs were the second approved and are the only currently 

used class of anti-influenza drugs. As the name suggests, NAIs 

target the IAV surface protein NA to exert their antiviral func-

tion.83 NA possesses the sialidase enzyme activity that cleaves 

the cell surface sialic acid to which the newly formed IAV 

progeny is attached.28,84,85 This action releases the IAV progeny 

from infected cells that go on to infect naive cells and spread 

the infection. In addition, NA sialidase activity also facilitates 

the movement of IAV particles through sialic acid-rich human 

respiratory tract. The concept of an inhibitor of the NA siali-

dase activity as an antiviral agent was envisaged as early as 

1948, not long after the discovery of a receptor-destroying 

activity on influenza virus surface.83 The first such inhibitors 

were tested during 1966–1976 but exhibited low specificity 

and potency.83,86–88 However, the determination of the three-

dimensional crystal structure and catalytic sites of NA led 

to the rational design of first two potent NAIs, now known 

as zanamivir (Relenza) and oseltamivir (Tamiflu).89–92 The 

NA is a mushroom-shaped, tetrameric glycoprotein, which 

is anchored in IAV envelope with exposed globular head.83 

The enzyme active site is situated in the head and consists of 

8 functional amino acids (R118, D151, R152, R224, E276, 

R292, R371, and Y406 – N2 numbering throughout) and 11 

structural amino acids (E119, R156, W178, S179, D/N198, 

I222, E227, H274, E277, D293, and E425) that are conserved 

in almost all IAV subtypes. The functional amino acids form 

the catalytic core and directly contact the sialic acid, whereas 

the structural amino acids form the active site framework.93,94 

The NAIs are sialic acid or transition state structural analogs 

that compete with cell surface sialic acid–viral NA interactions 

and inhibit the enzymatic reaction and release of the newly 

formed IAV progeny, consequently inhibiting the spread of 

the IAV and further infection.83,91 However, similar to M2, 

IAV has mutated several amino acids, notably E119V, I222V, 

H274Y, R292K, and N294S, in or around NA active site to 

acquire the resistance to NAIs.95,96 Many of these mutations 

alter the architecture of NA active site and reduce the binding 

of NAIs by many fold.95,97–103

Epidemiology of NAI-resistant IAV
Initial clinical studies showed that confirmed cases of IAV 

infection can be treated with both zanamivir and oseltamivir, 

and if administered within 36 to 48 h of the onset of clinical 

symptoms, both drugs reduced the duration of illness by up 

to 3 days in all ages.104–106 The prompt initiation of treatment 

after the onset of clinical symptoms was key in reducing 

the duration of illness proportionally.107 Accordingly, both 

zanamivir and oseltamivir also prevented the IAV infection by 

70–90% when used as a prophylaxis before or after the expo-

sure to close contacts infected with IAV.104,106 In July 1999, 

zanamivir was the first NAI approved for the prophylaxis 

and treatment of IAV infection in humans followed by osel-

tamivir in October 1999.108 Two related NAIs, peramivir109,110 

and laninamivir,111–113 have also been recently approved in 

multiple countries and Japan, respectively.

Due to the experience with rapid emergence of adaman-

tane-resistant IAV, several in vitro and preclinical studies 

were performed to select and isolate NAI-resistant IAV. 

Only few drug-resistant IAV mutants were isolated from in 

vitro passage cultures as well as patients treated with both 

zanamivir and oseltamivir.114 These mutants predominantly 

had two mutations, E119G/A/D/V and R292K in NA.114 

In addition, two resistant mutants containing the H274Y 

mutation in NA were also isolated from healthy volunteers 

experimentally infected with IAV H1N1 subtype and sub-

sequently treated with oseltamivir.115 Therefore, to monitor 

IAV resistance to NAIs, a global Neuraminidase Inhibitor 

Susceptibility Network (NISN) was established in 1999.116 

The main objectives of NISN were to set the guidelines to 

test sensitivity of NAIs and monitor the susceptibility and 

resistance to NAIs in clinical influenza virus isolates collected 

from various parts of the world. In their first study published 

in 2003, NISN concluded that all clinical IAV isolates col-

lected during 1996–1999 were susceptible to NAIs.117,118 

Furthermore, during first 3 years (1999–2002) of NAI usage, 

basically no resistant IAV was detected, except few isolates 

from untreated individuals that exhibited reduced suscepti-

bility to oseltamivir,118,119 and a disproportionally high rate 

(18–27%) of oseltamivir resistance observed in both H1N1 

and H3N2 isolates from children.120,121 Similarly, no resistance 

was detected during 2004–2005 season.122 In the following 

2005–2006 and 2006–2007 seasons, the frequency of oselta-

mivir resistance in global H1N1 isolates was only 0.4% and 
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0.6%, respectively.123 Particularly in USA, no resistance was 

detected during 2005–2006 season, but during 2006–2007 

season, it was detected to be ~0.9%. However, 2007–2008 

season had a significant 7% increase in oseltamivir resistance 

in global H1N1 isolates, but no resistant H3N2 isolates were 

detected, and all 2007–2008 oseltamivir-resistant H1N1 iso-

lates were sensitive to zanamivir.122 Nevertheless, 2.3% of 

the H1N1 isolates circulating between 2006 and early 2008 

in Australasia and Southeast Asia exhibited resistance to 

zanamivir.124 During 2007–2008, several European countries 

also had ~20% increase in oseltamivir-resistant H1N1 sub-

types.125–127 Particularly, Norway witnessed an unprecedented 

65% increase in the circulation of oseltamivir-resistant H1N1 

subtypes followed by France (46%), Belgium (37%), and rest 

of the Europe. According to the WHO, by mid-2008, 15% 

of the H1N1 isolates circulating worldwide were oseltamivir 

resistant. Remarkably, in 2008–2009 season, more than 90% 

of the circulating H1N1 subtypes globally were oseltamivir 

resistant.128,129 According to CDC (USA), until April 2009 

(just before the emergence of 2009 pandemic H1N1 subtype), 

over 99% of the H1N1 isolates were resistant to oseltamivir; 

however, all were sensitive to zanamivir and none of the 

H3N2 isolates were resistant to oseltamivir. Similarly, during 

2008–2009 season, 100% of the H1N1 isolates from Japan 

were oseltamivir resistant.130,131 Further, 86%, 32%, and 100% 

of the H1N1 subtypes isolated in Oceania, South East Asia, 

and South Africa, respectively, were oseltamivir resistant.132

In April 2009, a novel swine-origin IAV H1N1 subtype 

emerged and caused the first IAV pandemic of 21st century. 

Fortunately, the 2009 pandemic H1N1 subtype was sensitive 

to NAIs.71 Therefore, the only positive outcome of 2009 pan-

demic was that in the following seasons, the circulating pre-

pandemic oseltamivir-resistant H1N1 subtype was replaced 

by the oseltamivir-sensitive pandemic H1N1 subtype.133 

Almost all of the pandemic H1N1 global isolates collected 

between April 2009 and January 2010 were sensitive to NAIs, 

except an odd 0.7% and other few H1N1 subtypes isolated 

from local cases that were resistant to oseltamivir.129,133–137 In 

April 2011, only 1.6% of the global pandemic H1N1 isolates 

were oseltamivir resistant.138 Furthermore, only 3.2% of the 

pandemic H1N1 isolates collected between 2009 and 2012 

from Asia, Africa, and Oceania were resistant to peramivir, 

but none to laninamivir.139 Therefore, more than 98% of the 

pandemic H1N1 and seasonal H3N2 isolates collected glob-

ally till May 2015 remain largely sensitive to all NAIs.140–142 

Nevertheless, a high transmission (15–29%) of oseltamivir-

resistant pandemic H1N1 virus in some local communi-

ties141,143–146 and the rapid emergence and transmission of 

resistant viruses in immunocompromised patients have been 

detected.147–151

Unlike adamantanes resistance, which initially emerged 

and was more widespread in IAV H3N2 subtypes, the NAI 

resistance first emerged and was predominant in H1N1 sub-

types.75,152 Majority of avian IAV H5N1 subtypes (except 

some isolates from Indonesia and Vietnam that exhibit 

reduced sensitivity to oseltamivir) and H7N9 subtypes circu-

lating in nature are largely susceptible to NAIs.39,153 Further, 

the resistance in circulating IAV was mainly against oselta-

mivir and peramivir, and not zanamivir, and it is primarily 

limited to human IAV of N1 subtype.75 The most common 

oseltamivir (and peramivir) resistance-conferring mutation in 

NA of the H1N1 and H5N1 subtypes was H274Y, whereas in 

H3N2 and H7N9 subtypes, the E119V and R292K mutations 

were more common (Table 1).122,125,127,130–133,138,141,142 Further, 

few of the H1N1 and H3N2 isolates carrying single mutations 

I222K/T/R, N142S, D198E, S246G/N, N294S, and G320E 

and double mutations T156I+D213G, I222T+S331R, I222R/

V+H274Y, and S246N+H2724Y in their NA also exhibited 

reduced sensitivity to oseltamivir and peramivir and seldom 

to laninamivir (Table 1).140–142 In addition, the H1N1 subtypes 

with H274Y mutation also acquired secondary permissive 

mutations R193G, R221Q, V233M, V240I, D343N, D353G, 

and N368K in NA and T82K, K141E, R189K, and A193T in 

HA to improve their fitness.130,154–159 On the other hand, the 

resistance or reduced sensitivity to zanamivir in H1N1 and 

H3N2 isolates was conferred by the Q136K mutation in NA 

(Table 1).124,140,142,160

Although use of NAIs is high in some countries such as 

Japan and USA, the emergence of oseltamivir-resistant IAV 

is largely attributed to the spread of a fit H274Y mutant, 

both pre- and post-pandemic period of 2009. Except in Japan 

(where the use of oseltamivir dramatically increased in 2001–

2002 and was at its peak during 2008–2009) and USA, little or 

no oseltamivir was in use in Europe, Australia, New Zealand, 

and Southeast Asian countries where H274Y mutant was 

also pre-dominantly circulating during 2008–2009.119,127,130,132 

Furthermore, rapid transmission of 2009 pandemic H1N1 

(H274Y) mutant has been detected in communities with 

little or no previous exposure to oseltamivir.144,145 The pre-

pandemic oseltamivir-resistant IAV H1N1 lineage (A/Bris-

bane/59/2007), first detected in Europe, emerged without drug 

pressure and subsequently acquired permissive mutations in 

NA and spread globally.127,130–132,152,157,161 The NAI-sensitive 

2009 pandemic H1N1 subtype displaced the pre-pandemic 

oseltamivir-resistant H1N1 lineage and remains largely NAI 

sensitive and is predominantly circulating at present. However, 

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Infection and Drug Resistance 2017:10 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

127

Drug resistance in influenza A virus

some oseltamivir- and peramivir-resistant 2009 H1N1 sub-

types found circulating in local community clusters acquired 

two permissive NA mutations V240I and N368K, which 

improved their fitness.158,162 Concernedly, almost all currently 

circulating oseltamivir-sensitive 2009 H1N1 subtypes pos-

sess the V240I and N368K substitutions in NA.141 Therefore, 

similar to pre-pandemic H1N1 variants, a potential exists for 

the fit oseltamivir-resistant 2009 H1N1 variants to emerge and 

spread globally in the future.

It is somewhat intriguing that only some IAV subtypes 

(predominantly H1, H3, and H5) primarily circulating in 

birds, humans, and pigs – the three most important IAV 

hosts, have been reported to acquire the adamantane- or 

NAI-resistant mutations. This could be explained partly by 

the circulation and transmission frequency as well as epi-

demiological fitness of these subtypes in above hosts. One 

theory is that the acquisition of drug resistant, but potentially 

fitness-compromising mutations by these IAV subtypes under 

drug pressure in one host (humans) helps them acquire the 

fitness-enhancing permissive or epistatic mutations when 

transmitted to the other host (birds or pigs) under no drug 

pressure and a favorable immune environment. Consequently, 

such drug-resistant variants then become epidemiologically 

fit and prevail in multiple host populations.

Management of drug-resistant IAV
The trio – vaccines, antiviral drugs, and surveillance – are 

key to control and eradicate viral pathogens, and the same 

is true for IAV.

Vaccines
The vaccines are at the forefront to prevent and manage the 

spread of drug-resistant IAV. Although a universal influenza 

vaccine is yet to be developed due to highly variable nature 

of its surface antigens HA and NA, vaccines specific to 

individual influenza viruses are available and have come a 

long way in terms of their composition and administration 

since first introduction in 1940s.163 Now, intramuscularly, 

intradermally, and intranasally administered subunit and 

live-attenuated vaccines are available against seasonal IAV 

as well as zoonotic IAV such as H5N1 and H7N9. Based 

on a worldwide surveillance program in both Northern and 

Southern hemispheres spearheaded by the WHO, seasonal 

IAV vaccines are annually reformulated, manufactured, and 

Table 1 Susceptibility of IAV subtypes with naturally acquired NA mutations to NAIs

Mutation Subtype Inhibition level (IC50 fold-change)# Reference

Oseltamivir Zanamivir Peramivir Laninamivir

V116A H5N1 NI/RI (7.2–18) RI (32.8) NT NT 180,181

E119A H5N1 RI (35.3) HRI (1,254) NT NT 181

E119V H3N2 RI/HRI (25–535) NI (1.2–5.7) NI (0.9–3.7) NI (1.1–3.0) 140–142,160,182

Q136K H3N2 NI (0.2–1.1) RI (11) NI (2.5–9.0) NI (0.9–5.2) 141,142,160

Q136K/R pH1N1 NI (0.6) HRI (185–200) HRI (143–234) RI (33–42) 140

N142S H3N2 HRI (595) HRI (244) RI (40) RI (53) 142

D198E pH1N1 RI (16) NI (7.1) NT NT 141

I222K pH1N1 RI (23–39) NI (5–6) NI (4) NI (3.6) 141,183

I222R pH1N1 RI (13–58) NI/RI (7–10) NI/RI (5.3–10.0) NI (2.2–2.3) 141,142,184

I222T pH1N1 NI/RI (8.9–15.0) NI (3.1–3.2) NI (1.8–1.7) NI (1.7–2.0) 141

S246N pH1N1 NI (4–8) NI (2–5) NI (1) NT 185

H5N1 RI (24) NI (2) NT NT 180

H274Y pH1N1 HRI (151–4,010) NI (0.1–6.5) RI/HRI (87–2,045) NI (0.3–5.1) 140–142,186–190

H5N1 HRI (941–1,813) NI (2.5–3.4) NT NT 181,191

R292K H3N2 HRI (27,146–110,000) RI (12–53.0) HRI (271–474) NI (2.7–5.3) 120,140,142,186,192

N294S pH1N1 HRI (124–208) NI (3–9) NI/RI (4–12) NT 140,193,194

H5N1 RI (57–93) NI (3–3.4) NI (4) NT 181,194

G320E H3N2 RI (17) RI (8.4) NI (3.3) NI (1.9) 142

T156I+D213G pH1N1 RI (14) NI (7.0) NI (1.6) NI (1.3) 142

D198N+H274Y pH1N1 HRI (318) NI (3.0) HRI (108) NT 187

I222R+H274Y pH1N1 HRI (1,674–16,307) NI/RI (2–22) HRI (7,530–17,347) RI (17) 183,184,189

I222V+H274Y pH1N1 HRI (1,733) NI (2) HRI (1,331–2,707) NT 184,193

I222T+S331R H3N2 RI (12–31) NI (2.9–7.2) NI (1.6–2.4) NI (2.5–3.6) 142

S246N+H274Y pH1N1 HRI (5,880) NI (5) HRI (334) NT 185

Notes: Bold indicates resistance; pH1N1, 2009 pandemic H1N1. #As per the WHO GISRS guidelines.140–142

Abbreviations: IAV, influenza A virus; NA, neuraminidase; NAI, neuraminidase inhibitor; NI, normal inhibition; RI, reduced inhibition; NT, not tested; HRI, highly reduced 
inhibition; GISRS, Global Influenza Surveillance and Response System.
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delivered for administration to global human population 

just before the start of flu season. Numerous individual and 

meta-analysis studies have found the seasonal IAV vaccines 

to be effective, albeit modestly in some instances, for both 

healthy and at-risk population.164–167 Nevertheless, influenza 

vaccine effectiveness is an important issue, and efforts are 

being made continuously to improve the efficacy of current 

vaccines and develop next-generation influenza vaccines. 

These include new vaccine formulations, development of 

universal influenza vaccine targeting the HA stalk domain, 

M2 ectodomain or inducing T-cell response, DNA vaccine 

against different influenza antigens, recombinant HA vac-

cine using baculovirus expression system (e.g., FluBlock) 

and other viral vectors (e.g., adenovirus and poxvirus), and 

influenza virus-like particles as vaccine.168–170 Furthermore, 

cell culture-based platforms are being used to prepare vac-

cines (e.g., Optaflu, Flucelvax, Preflucel, and Celvapan) to 

circumvent the issues faced with egg-based virus culture and 

vaccine delivery timeframe, a critical factor in the event of a 

pandemic or zoonotic outbreak.168

Antiviral drugs
In the absence of a universal influenza vaccine, antiviral 

drugs become the first line of defense against a pandemic 

and zoonotic IAV. The adamantane-resistant IAV with S31N 

mutation appears to have established itself in nature and 

it is unlikely that this mutation will ever be lost; hence, 

adamantanes have become practically obsolete as anti-IAV 

drugs. Luckily, majority of currently circulating IAV H1N1 

and H3N2 subtypes are sensitive to NAIs, and primarily 

human IAV H1N1 subtypes have acquired the resistance to 

oseltamivir. Therefore, NAIs are still effective in treating 

the infections with adamantane-resistant IAV and newly 

emerging IAV, provided they are administered at least 

within 48 hours of the appearance of clinical symptoms. 

Furthermore, majority of the oseltamivir- and peramivir-

resistant IAV are still largely sensitive to zanamivir and 

laninamivir (Table 1). Nevertheless, the emergence and 

global spread of the fit IAV variants resistant to all NAIs 

is a concern. Therefore, a variety of new antiviral agents 

targeting either existing targets M2 and NA or other IAV 

components HA, NP, NS1, and polymerase complex are 

being developed, and several of them have shown promis-

ing results in clinical trials. Particularly, a small-molecule 

inhibitor of HA, nitazoxanide, and polymerase inhibitors, 

VX-787 and S-033188 are undergoing Phase 3 and Phase 2 

clinical trials, respectively. One of the influenza polymerase 

inhibitors, Favipiravir (T-705) has already been approved in 

Japan and is undergoing Phase 3 clinical trial in USA and 

Europe. Several other polymerase inhibitors (L-742001, 

Compounds “1”, “7”, and “367”, ASN2, ANA1) and NP 

inhibitors (Curcumin, Naproxen, Nucleozin, RK424) are at 

the experimental stages. In addition, therapeutic monoclonal 

antibodies are also being developed against IAV. Some of 

them (e.g., CR6261, CR8020, MHAA4549A, and VIS410) 

targeting the HA are in Phase 2 clinical trials.24,171–173 Further-

more, host factors that are involved in IAV replication and 

pathogenesis are also being explored as targets to develop 

anti-IAV strategies.24,172 Finally, viral RNA is also being 

targeted by antisense and short-interfering RNAs to develop 

the alternative anti-IAV therapeutics; however, this approach 

would have its own challenges and it will be interesting to 

know whether and how IAV develops resistance to it. Once 

more than one class of anti-IAV drugs is available, a com-

bination therapy involving different classes of drugs could 

be more effective and beneficial in reducing the emergence 

of antiviral resistance in IAV.

Surveillance
IAV transmission in humans via aerosol and intercontinen-

tal spread by migratory birds makes surveillance a crucial 

player in the global management of IAV.174,175 The WHO 

Global Influenza Surveillance and Response System (GISRS) 

through its collaborating centers and reference laboratories 

in 113 member states conducts influenza virus surveillance 

and provides recommendations regarding the laboratory 

diagnosis, vaccines, antiviral susceptibility, and risk assess-

ment. In addition, GISRS also provides global alerts on the 

emergence of novel influenza viruses. Therefore, GISRS 

serves as a single and timely source on worldwide status and 

management of the influenza virus, including drug-resistant 

IAV. In addition, CDC (USA) also puts out timely updates 

and advisories on influenza virus.

Future research directions
The broad host range of IAV and interspecies transmission 

are critical factors for its continuous circulation and evolu-

tion in nature (Figure 1).175 The intermediate hosts such as 

pigs, birds, and horses play a crucial role in maintaining the 

IAV in nature and its transfer to humans (Figure 1). There-

fore, in addition to continuous surveillance and developing 

a universal vaccine and effective antivirals, an effective 

management of such hosts to restrict the circulation and 

generation of new and more virulent IAV variants is needed. 

Eradication of IAV from its zoonotic hosts using existing 

knowledge and approaches is practically impossible. There 
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is a need to gain molecular and genetic understanding of why 

some animals (e.g., sheep and rabbits) are resistant to IAV 

infection and some (e.g., ducks) are resistant to IAV disease 

and identify the genes that confer such resistance. Then, by 

inserting those genes or using gene-editing methods (e.g., 

RNA interference and CRISPR-Cas), the intermediate hosts 

could potentially be made resistant to IAV infection. This will 

reduce and potentially eliminate IAV from the intermediate 

hosts and consequently its maintenance in nature and transfer 

to humans. Initial proof-of-concept studies in this direction 

have already begun to restrict IAV transmission or replication 

in transgenic animals.176–179

The current understanding of IAV biology in a host is 

mainly acquired using cell culture or animal models, because 

it is not possible to experimentally infect humans. Due to lack 

of the insight into IAV infection dynamics in human respiratory 

tract, many antiviral drugs fail to advance beyond experimental 

and clinical trial stage. Therefore, large animals such as pigs 

may be engineered to exhibit respiratory tract physiology akin 

to humans to make advances in this area. Finally, the relation-

ship between the microbiota of healthy and at-risk humans and 

IAV pathogenesis needs to be understood to develop alternative 

treatments such as probiotics to treat IAV infections.
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