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Background: Endoplasmic reticulum (ER) stress is involved in many neurological and inflam-

matory responses. Peripheral inflammatory responses can induce central sensitization and trigger 

inflammatory pain. However, there is little research on the relationship between ER stress and 

inflammatory pain. In this study, we examined whether the ER stress response is involved in 

peripheral inflammatory pain using a formalin-induced rat pain model.

Methods: Rats were divided into the following five groups: control, formalin, formalin + 

vehicle, formalin + 4-phenylbutyric acid (4-PBA) (40 mg/kg) and formalin + 4-PBA (100 mg/

kg). Formalin-induced pain was assessed behaviorally by recording licking activity. The expres-

sion levels of immunoglobulin-binding protein (BIP), activating transcription factor-6 (ATF6), 

phosphorylated inositol-requiring enzyme-1 (p-IRE1), phosphorylated protein kinase RNA-like 

ER kinase (p-PERK) and c-fos were quantitatively assessed by Western blot, and the distribution 

of BIP, ATF6 and c-fos in the lumbar enlargement of spinal cord were identified by immuno-

histochemistry in spinal dorsal horn slices. In addition, the concentrations of nitric oxide (NO) 

and prostaglandin E2 (PGE2) in the spinal cord were tested by biochemical measurement and 

enzyme-linked immunosorbent assay (ELISA), respectively.

Results: Intraperitoneal injection of 4-PBA at the dose of 100 mg/kg before formalin injec-

tion significantly decreased nociceptive behavior in the second phase compared with control, 

formalin, formalin + vehicle and formalin + 4-PBA (40 mg/kg) (P<0.05). Western blot showed 

that formalin injection significantly upregulated the expression of BIP, ATF6, p-PERK and c-fos 

in the spinal cord. This upregulation was reduced by peritoneal injection of 4-PBA (P<0.05), 

while expression of p-IRE1 was not altered by formalin treatment. Immunohistochemistry 

revealed markedly increased staining density for BIP, ATF6 and c-fos in the superficial spinal 

dorsal horn after formalin injection. This was significantly decreased by administration of 4-PBA 

(P<0.05). Compared with the formalin + vehicle group, 4-PBA inhibited the release of NO and 

PGE2 in the spinal cord (P<0.05).

Conclusion: These results suggest that ER stress is involved in formalin-induced inflammatory 

pain and that inhibition of ER stress may attenuate central sensitization induced by peripheral 

inflammatory stimulation.

Keywords: endoplasmic reticulum stress, formalin-induced pain, 4-phenylbutyric acid, central 

sensitization

Introduction
Endoplasmic reticulum (ER) stress is triggered by the accumulation of unfolded or 

misfolded proteins, alterations in calcium homeostasis, exposure to free radicals or 

glucose deprivation, all of which can disturb the correct functions of the ER. Such 

ER stress initiates an evolutionarily conserved signaling cascade called the unfolded 
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protein response (UPR), which is a self-protective signaling 

pathway.1,2 This pathway includes three main proteins that 

act as signal transducers, activating transcription factor-6 

(ATF6), protein kinase RNA-like ER kinase (PERK), and 

inositol-requiring protein-1 (IRE1), and an important ER 

chaperone known as immunoglobulin-binding protein/

glucose regulated protein 78 (BIP/GRP78).3

The chemical chaperone 4-phenylbutyric acid (4-PBA) 

is approved by the US Food and Drug Administration (FDA) 

for use in humans.4 Chemical chaperones are small molecules 

that have the ability to stabilize mutant proteins and facilitate 

their folding.5 Both in vitro and in vivo, administration of 

4-PBA alleviates ER stress, blocks neuropathic pain,6–8 pro-

tects against cerebral ischemic injury9 and prevents cardiac 

fibrosis.10 Moreover, 4-PBA acts against ER stress-induced 

autophagy in gingival fibroblasts.11 Such findings show that 

4-PBA can attenuate ER stress and consequently alleviate 

ER stress-related pathophysiology and disease.

Injection of formalin into the hind paw in rodents is a 

widely used model of inflammatory pain that shows a biphasic 

pain response.12 The first phase is mainly caused by peripheral 

noxious stimulation, and the second phase depends primarily 

on central sensitization in the spinal dorsal horn.13 Previous 

studies have shown that formalin-induced tissue injury in the 

spinal cord increases calcium influx following N-methyl-d-

aspartate (NMDA) receptor activation, contributing to the 

central sensitization that is characteristic of the second phase.14 

Ca2+-influx also initiates an enzymatic cascade that finally trig-

gers the release of nitric oxide (NO), prostaglandins (PGs) and 

the induction of c-fos expression.15,16 NO and PGs have been 

proven to further increase the sensitivity of dorsal horn neurons 

and finally central sensitization,17 and the early gene c-fos has 

been demonstrated to be a suitable indicator for the presence 

of nociceptive neurons activated by formalin injection.18 ER 

stress has been shown to be involved in a range of diseases, 

such as neurodegenerative disorders, including Parkinson’s 

disease,19 Alzheimer’s disease2 and neuropathic and inflam-

matory pain.7,20,21 However, there is little evidence to show 

whether and how ER stress is involved in formalin-induced 

pain and central sensitization. In addition, in vivo and in vitro 

studies have demonstrated that NMDA receptor activation can 

induce ER stress by activating transducing proteins.22 Indeed, 

NMDA receptor antagonist, such as S-methyl-N,N-dieth-

yldithiocarbamate sulfoxide (DETC-MeSO), exerts potent 

neuroprotective effects by attenuating ischemia-induced UPR 

signaling.23 In light of these findings, we hypothesized that the 

ER stress response might be involved in formalin-induced pain 

and play a critical role in central sensitization caused by the 

activation of NMDA receptors in the spinal dorsal horn. We 

further predicted that 4-PBA would be effective at inhibiting 

ER stress and consequently attenuating formalin-induced pain.

Materials and methods
Ethics statement
This study and the experiments were approved by the Animal 

Care and Use Committee of Central South University, and 

animal handling procedures were in accordance with the 

National Institutes of Health Guide for the Care and Use of 

Laboratory Animals.

Reagents and animals
4-PBA and polyethylene glycol 400 (PEG 400) were 

purchased from Sigma-Aldrich (St. Louis, MO, USA). 

Antibodies (Ab) against BIP (78  kDa), ATF6 (90  kDa), 

glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and 

horseradish peroxidase (HRP)-conjugated goat anti-rabbit 

secondary Ab were purchased from Proteintech, Wuhan, 

China. Phosphorylated PERK (p-PERK; Thr 981, 125 kDa) 

Ab was purchased from Santa Cruz Biotechnology, Santa 

Cruz, CA, USA. Phosphorylated IRE-1 (p-IRE1; phosphor 

S724, 110 kDa) Ab was purchased from Abcam, Cambridge, 

UK. c-fos (62 kDa) Ab was purchased from Bioworld Tech-

nology, Inc, Minneapolis, MN, USA. Dimethylsulfoxide 

(DMSO) was purchased from Amresco, Solon, OH, USA.

A total of 80 male Sprague Dawley rats (weighing 

200–250 g) were purchased from Central South University 

Animal Service (Changsha, China). All rats were housed in a 

quiet, specialized animal room, with a constant temperature 

(25°C) and humidity on a 12:12 hour light/dark cycle, with 

free access to food and water.

Formalin test
Formalin test experiments were performed 1 week after accli-

mation in the animal room. Rats were placed in a Plexiglas 

box for ~30 minutes for acclimatization. After 30 minutes, 

rats received 50 μL of 5% formalin, injected subcutaneously 

(sc) into the plantar surface of the right hind paw.

Rats were administered 4-PBA at doses of 100 mg/kg and 

40 mg/kg (dissolved in a 5% DMSO, 20% PEG 400 solution 

at a concentration of 10 mg/mL) by intraperitoneal injection, 

30 minutes before formalin injection. Control group animals 

were injected in the hind paw with 50 μL of 0.9% saline, 

while the formalin + vehicle group received an intraperitoneal 

injection of 10 mL/kg vehicle (5% DMSO, 20% PEG 400) 

only. Rats were sacrificed an hour after formalin injection 

for subsequent histological and biochemical assessments.
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Behavioral assessment
Formalin-induced pain is typically characterized by two 

phases of nociceptive behaviors: 1) an initial acute phase 

(the first phase, the first 5 minutes after the formalin injec-

tion) was followed by a relative short quiescent period, 

which lasts ~5 minutes. The first phase is mainly caused by 

peripheral noxious stimulation; 2) the second phase, which 

begins ~10  minutes after formalin injection and lasts for 

~50 minutes. The main mechanism of the second phase is 

enhanced neuronal responsiveness, which is known as central 

sensitization.

Behaviors were recorded every 5  minutes following 

formalin injection for a total duration of ~1 hour and scored 

according to the pain rating scale of Abbott et al.13 The dura-

tions of licking and biting behaviors for the injected hind paw 

were recorded every 5 minutes after injection, up to ~1 hour 

post-injection. The first phase and the second (tonic) phase 

were recorded between 0–10  minutes and 10–60  minutes 

post-injection, respectively.

Western blotting analysis
After anesthetization with 10% chloral hydrate (3 mL/kg), 

the L4–L6 section of the spinal cord was dissected from the 

rats. Tissue from rats in each group was homogenized in 

radioimmunoprecipitation assay (RIPA) buffer (Beyotime 

Technology, Shanghai, China) with 1% protease inhibitor 

cocktail (ethylene diamine tetraacetic acid-free; Roche, Basel, 

Switzerland) and phosphatase inhibitor cocktail (PhosSTOP; 

Roche). Homogenates were left to stand for 30 minutes and 

then centrifuged at 12,000 rpm for 15 minutes at 4°C. After-

ward, the supernatants were collected and the protein con-

centration was measured with the bicinchoninic acid (BCA) 

protein assay kit (Beyotime Technology). A total of 20–40 μg 

protein from each sample was loaded and separated on either 

a 12% or 8% Bis-Tris sodium dodecyl sulfate-polyacrylamide 

gel electrophoresis gel (Beyotime Technology). The separated 

proteins were then transferred to a 0.45 μm polyvinylidene 

fluoride (PVDF) membrane (Millipore, Boston, MA, USA). 

Each membrane was blocked with 5% defatted milk for 

2 hours at room temperature and subsequently incubated in 

the presence of primary Ab overnight at 4°C (dilution factors: 

1:2000 for GAPDH and BIP; 1:200 for p-PERK; 1:300 for 

ATF6; 1:1000 for p-IRE1 and 1:500 for c-fos). After washing 

in Tris-buffered saline with 0.1% Tween (TBST), the mem-

brane was incubated for 120 minutes at room temperature 

with HRP-conjugated goat anti-mouse or goat anti-rabbit 

secondary Ab (diluted 1:5000). After washing again with 

TBST, membranes were rinsed and Ab-reactive bands were 

visualized using a chemiluminescent HRP substrate (ECL; 

Millipore). Western blotting bands were analyzed according to 

their mean gray value using the BandScan 4.0 system (Glyko, 

Toronto, Canada), with GAPDH used as the control protein.

Immunohistochemistry
Rats in different groups were anesthetized using a high dose 

of 10% chloral hydrate (3 mL/kg) ~1 hour after formalin 

injection. Immediately after this, they were transcardially 

perfused with heparinized 0.9% saline, followed by perfusion 

with 4% paraformaldehyde. The lumbosacral enlargement 

(L4–L6) of the spinal cord was removed immediately and 

then post-fixed with 4% paraformaldehyde overnight at 4°C, 

before being embedded in paraffin.

Paraffin-embedded lumbar enlargements of the spinal 

cord were cut into slices that were 4 μm thick. Slices were 

put in a 60°C oven for 30 minutes and washed three times 

in dimethylbenzene for 10 minutes each, before being rehy-

drated using the following alcohol gradient wash sequence: 3 

× 100% ethanol, 95% ethanol, 75% ethanol, 50% ethanol, for 

5 minutes each. After rinsing with 0.01 M phosphate–buff-

ered saline (PBS) (pH 7.4) three times (5 minutes each), tissue 

antigens were retrieved using a citrate buffer (CW Biotech, 

Beijing, China) in a water bath heated to 98°C for 18 minutes. 

For immunohistochemical analysis, endogenous peroxidases 

were removed from the slices by immersing them in 3% H
2
O

2
 

at room temperature for 30 minutes and then incubated with 

primary Ab for BIP (1:100), ATF6 (1:20) and c-fos (1:100) 

at 4°C overnight. Next, slices were incubated with goat anti-

rabbit secondary antibody immunoglobulin (ZSGB-BIO, 

Beijing, China). Diaminobenzidine tetrahydrochloride (DAB; 

ZSGB-BIO) was used for visualization. Finally, all slices 

were cover slipped for visualization by optical microscopy.

Enzyme-linked immunosorbent assay 
(ELISA) and NO assay
Inflammatory cytokine (prostaglandin E2 [PGE2]) expression 

in the spinal cord was tested using ELISA kits (Elabscience, 

Wuhan, China). The protocol was carried out following 

the manufacturer’s instructions. Optical density (OD) was 

detected at 450  nm (A450), and the standard curve was 

calibrated according to Protein A standard. The concentration 

of PGE2 in the samples was then determined by comparing 

the OD of the samples to the standard curve. The concentra-

tion of NO was detected using the NO assay kit (Jiancheng 

Bioengineering Institute, Nanjing, China), according to the 

manufacturer’s instructions. The absorbance was measured 

at 550 nm.
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Statistical analysis
Data from the behavioral tests, immunohistochemistry and 

Western blotting are shown as mean ± standard error. Graph-

Pad Prism 6 (GraphPad Software, Inc, San Diego, CA, USA) 

and IPP 6.0 (Media Cybernetics, Rockville, MD, USA) were 

used for statistical analyses. A two-way analysis of variance 

(ANOVA) followed by Dunnett’s multiple comparison post-

test was used to analyze the behavioral data. A one-way 

ANOVA followed by Tukey’s multiple comparison post-test 

was used for comparisons of mean values. Differences were 

considered statistically significant at P<0.05.

Results
Pain behavior in the second, but not 
first, phase of formalin-induced pain is 
attenuated by 4-PBA
Formalin intra-plantar injection usually induces two distinct 

periods of high licking activity: the first phase, which begins 

immediately after the injection of formalin and lasts for 

10 minutes, and the second phase, which begins after 10 min-

utes and lasts for 50 minutes after injection.12 To determine 

the level of acute inflammatory pain following unilateral 

formalin intra-plantar injection, we measured the duration of 

licking time every 5 minutes for 1 hour and the total licking 

time in each of the two phases, between 0–10 minutes and 

10–60 minutes.

We administered 4-PBA 30 minutes before injection of 

50 μL of 5% formalin. Pretreatment with 4-PBA (100 mg/kg) 

before formalin injection significantly decreased nociceptive 

behavior in the second phase (Figure 1A and C), compared 

with other treatment groups: control, formalin, formalin + 

vehicle and formalin + 4-PBA (40 mg/kg). It is worth noting 

that 4-PBA, both at the dose of 100 mg/kg and 40 mg/kg, 

had no effect on pain behavior during the first phase of the 

formalin test (Figure 1A and B).

ER stress is involved in the central 
sensitization response of the formalin 
test and is reduced by 4-PBA 
administration
It is widely accepted that the mechanism underlying the 

second phase of the formalin test is central sensitization 

of the spinal cord. To better understand this process, we 

performed Western blot analyses to investigate whether ER 

stress-mediated pathways are activated in the ipsilateral 

side of the lumbar enlargement of the spinal cord. The 

levels of the ER stress chaperone protein BIP and signaling 

pathway proteins ATF6 and p-PERK were increased in 

the formalin group compared to the saline control group 

(Figure 2A, B, C and E). Treatment with 4-PBA alongside 

formalin significantly decreased the expression of BIP, 

ATF6 and p-PERK, relative to the formalin or formalin + 

vehicle groups; however, the expression of p-IRE1 showed 

no difference in the four groups (Figure 2A, B, C, E and 

F). In combination with the behavioral results showing 

that 4-PBA attenuates the second phase of nociceptive 

behavior (Figure 1A and C), these results suggest that ER 

stress is involved in the central sensitization response of 

the formalin test.

Activation of the NMDA receptor plays a key role in 

central sensitization, leading to calcium influx followed by 

a series of biochemical reactions including transcription 

of the c-fos gene and the release of NO and PGE2.14,24 To 

investigate this, we measured the expression of c-fos protein 

in the ipsilateral lumbar enlargement of the spinal cord using 

Western blotting. The results showed that the level of c-fos 

protein was significantly increased after formalin injection 

compared with the saline control group. In contrast, 4-PBA 

administration before formalin injection reduced the level 

of c-fos compared with the formalin and formalin + vehicle 

groups (Figure 2A and D). These results suggest that the 

modulation of c-fos expression by the ER stress response 

is one mechanism influencing central sensitization of the 

spinal cord.

Expression of BIP, ATF6 and c-fos in the 
spinal dorsal horn is increased in the 
formalin test
Central sensitization is triggered by inputs from nocicep-

tive afferents and characterized by a reduced threshold of 

dorsal horn neurons to noxious stimulation.14,25 Therefore, 

we examined the expression of BIP, ATF6 and c-fos in the 

spinal dorsal horn, 1  hour after formalin injection, using 

immunohistochemical analysis. Formalin injection induced a 

marked upregulation of BIP, ATF6 and c-fos in the ipsilateral 

superficial lumbar dorsal horn, whereas only low staining 

density for BIP, ATF6 and c-fos could be detected in the saline 

control group (Figure 3A1–2, B1–2, C1–2). Administration 

of 4-PBA before formalin injection decreased the expression 

of BIP, ATF6 and c-fos in the superficial lumbar dorsal horn 

(Figure 3A3–4, B3–4, C3–4 and D–F). These results suggest 

that ER stress markers are elevated in the ipsilateral spinal 

dorsal horn during formalin-induced pain and further sup-

port the conclusion that the ER stress response is involved 

in central sensitization.

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Journal of Pain Research  2017:10 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

657

Involvement of endoplasmic reticulum stress in formalin-induced pain

4-PBA attenuates the release of NO and 
PGE2 in the ipsilateral spinal cord after 
formalin injection
NO and PGs are thought to be key mediators in the induction 

and maintenance of nociceptive transmission and central 

sensitization in the formalin test.14 To examine this, we mea-

sured the concentration of NO and PGE2 in the ipsilateral 

spinal cord using biochemical measurement and ELISA, 

respectively. We found that the release of NO and PGE2 both 

increased after formalin injection, while 4-PBA (100 mg/kg) 

treatment before formalin injection decreased the level of 

both NO and PGE2 compared to the formalin and formalin 

+ vehicle groups (Figure 4). Meanwhile, the formalin and 

formalin + vehicle groups did not differ from one another. 

These results suggest that 4-PBA reduces the release of NO 

and PGE2, corroborating the notion that inhibition of the ER 

stress response attenuates central sensitization.

Discussion
To explore the role of ER stress in the development of 

formalin-induced pain, we inhibited the ER stress response 

by intraperitoneal injection of 4-PBA before formalin injec-

tion. We found that formalin injection significantly elevated 

the expression level of the ER stress markers BIP, ATF6 

and p-PERK in the ipsilateral lumbar enlargement of the 

spinal cord, while the expression level of p-IRE1 showed 
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Figure 1 Pretreatment of 4-PBA (100 mg/kg) attenuates formalin-induced pain.
Notes: Intraperitoneal pretreatment with the ER stress inhibitor, 4-PBA (100 mg/kg), attenuates the second phase of nociceptive responses induced by 5% formalin intra-
plantar injection, but 4-PBA (40 mg/kg) shows no effect on nociceptive behaviors. (A) Time course of biphasic nociceptive responses (*P<0.05 versus control, formalin, 
formalin + vehicle and formalin + 4-PBA (40 mg/kg); two-way ANOVA with Dunnett’s multiple comparisons test; n = 5 per group). (B) Both doses of 4-PBA (40 mg/kg 
and 100 mg/kg) have no remission effect on the first phase of formalin-induced nociceptive behaviors (*P<0.05 versus formalin, one-way ANOVA with Tukey’s multiple 
comparison test; n = 5 per group). (C) Intraperitoneal pretreatment with 4-PBA at 100 mg/kg but not at 40 mg/kg significantly reduces tonic pain in the formalin test (*P<0.05, 
one-way ANOVA with Tukey’s multiple comparison test; n = 5 per group).
Abbreviations: 4-PBA, 4-phenylbutyric acid; ER, endoplasmic reticulum; ANOVA, analysis of variance; sec, seconds; min, minutes.
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Figure 2 After formalin injection, 4-PBA blocks prominent signs of elevated ER stress in the spinal cord and pain-related behaviors and suppresses markers of ER stress 
and c-fos levels.
Notes: Markers of ER stress (BIP, ATF6 and p-PERK) and central sensitization-related protein c-fos from the lumbar enlargement of the spinal cord were measured by Western 
blotting. (A–E) The levels of BIP, ATF6, p-PERK and c-fos increase in the ipsilateral lumbar enlargement of the spinal cord in the formalin group compared to the control 
group, 1 hour after injection of 50 μL of 5% formalin. Intraperitoneal injection of 4-PBA at 30 minutes before formalin injection inhibits the expression of BIP, ATF6, p-PERK 
and c-fos in the formalin + 4-PBA (100 mg/kg) group compared with the formalin + vehicle group. (A and F) The expression level of p-IRE1 showed no change between the 
four groups. GAPDH was used as a loading control. Statistical analysis was performed by one-way ANOVA with Tukey’s multiple comparisons test; n = 5 per group; *P<0.05.
Abbreviations: 4-PBA, 4-phenylbutyric acid; ER, endoplasmic reticulum; BIP, immunoglobulin-binding protein; ATF6, activating transcription factor-6; p-PERK, phosphorylated 
protein kinase RNA-like ER kinase; p-IRE1, phosphorylated inositol-requiring enzyme-1; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; ANOVA, analysis of variance.
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no difference, suggesting that the signaling pathway for 

IRE1 is not activated in formalin-induced pain. This could 

be explained by the role of IRE1 signaling in cell apoptosis 

and death3 but not in formalin-induced pain. Furthermore, 

the ER stress inhibitor 4-PBA greatly decreased the levels 

of BIP, ATF6 and p-PERK (Figure 2). However, 4-PBA had 

no effect on pain behaviors during the first phase of the 

formalin test (Figure 1). A possible reason may be that the 

first phase occurs as a result of direct injury to the nerve 

endings by formalin.26 Additionally, accurate behavioral 

observations were difficult during this phase, since it lasts 

only 5–10  minutes. Meanwhile, 4-PBA treatment before 
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Figure 3 4-PBA attenuates the expression of BIP, ATF6 and c-fos in the rat spinal dorsal horn 1 hour after formalin injection.
Notes: (A–C) Weak staining for (A1) BIP, (B1) ATF6 and (C1) c-fos can be observed in the dorsal horn of the spinal cord in the control group, especially in the superficial 
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to the control group. In addition, injection of 4-PBA (100 mg/kg) reduces the expression of (A4) BIP, (B4) ATF6 and (C4) c-fos in the spinal dorsal horn compared with 
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formalin injection significantly reduced nociceptive pain 

behaviors in the second (tonic) phase of the pain response 

(Figure 1) and decreased the expression of BIP and ATF6 in 

the lumbosacral enlargement of the spinal dorsal horn (Figure 

3). These results support the idea that ER stress is involved 

in central sensitization caused by activity of the NMDA 

receptor, which is widely accepted to play an important role 

in the second phase.

Repetitive activation of the NMDA receptor leads to 

calcium influx into the cell,14 which then activates Ca2+/

calmodulin-dependent protein kinases, resulting in the tran-

scription of the immediate early gene c-fos.24 In neurons, 

increasing the intracellular free calcium can lead to fast and 

profound changes in the transcription of genes such as c-fos. 

The precise signaling pathway is as follows: 1)  elevated 

intracellular calcium activates calmodulin; 2) activated 

calmodulin regulates a calmodulin-dependent protein 

kinase (CaMK), which phosphorylates cyclic AMP response 

element-binding protein (CREB) at Ser133; 3) leading to the 

transcriptional activation of c-fos.16,27 Alterations in the ER 

Ca2+ store induces ER stress, and if severe ER stress occurs, 

the 1,4,5-trisphosphate (IP3) receptor 1 (IP3R1), which is 

the most ubiquitously expressed Ca2+-release channel, can 

become hypersensitized, finally resulting in excessive calcium 

flow out of the ER and aggravating the calcium overload.28 

Liu et al29 found that in periprosthetic osteolysis, ER stress 

is linked to the Ca2+–c-fos pathway and 4-PBA reduces c-fos 

and Ca2+ levels. The in vitro findings of He et al30 suggest that 

ER stress can be induced by thapsigargin (TG), accompanied 

by a rapid increase in the levels of c-fos messenger RNA 

(mRNA). These reports support the notion that ER stress 

influences central sensitization by altering calcium homeo-

stasis, thus inducing the transcription of c-fos mRNA; 4-PBA 

may, through inhibiting the ER stress response, consequently 

attenuate calcium overload in the cytoplasm, thereby reduc-

ing the level of c-fos. Our results are consistent with previ-

ous findings in showing that the level of c-fos in the spinal 

dorsal horn is increased by the formalin test and that 4-PBA 

treatment before formalin injection inhibits the ER stress 

response, reducing c-fos expression and attenuating pain 

in the second phase of the formalin test (Figures 2 and 3).

Furthermore, NO and PGE2 have been shown to be key 

mediators involved in the induction and maintenance of spinal 

nociceptive transmission and central sensitization induced by 

formalin injection. These effects are evoked by an enzymatic 

cascade initiated by Ca2+-influx, which is followed by NMDA 

receptor activation after peripheral tissue injury.31 Kuda et al32 

found that PGE2 concentration was significantly elevated in 

the medium of Chinese hamster ovary (CHO) cells after TG 

treatment, which simultaneously induced ER stress. ER stress 

can stimulate the expression of cyclooxygenase-2, which is 

the key enzyme for the production of PGE2.33,34 Those studies 

support the hypothesis that ER stress could upregulate release 

of PGE2. Previous studies showed that excessive NO could 

disturb calcium homeostasis in ER, thus activating ER stress 

pathway.35 Our results show that formalin injection increases 
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Figure 4 Administration of 4-PBA reduces the release of NO and PGE2 in the ipsilateral spinal cord.
Notes: Administration of 4-PBA (100 mg/kg) attenuates the release of (A) NO and (B) PGE2 in the formalin + 4-PBA (100 mg/kg) group compared with the formalin + 
vehicle group. Concentrations of NO and PGE2 were measured by biochemical measurement and ELISA assays. Statistical analysis was performed by one-way ANOVA with 
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the level of both NO and PGE2 in the lumbar enlargement of 

the spinal cord, which could be attenuated by 4-PBA treat-

ment (Figure 4). These results strongly support a role for ER 

stress in central sensitization that results from an alteration 

to calcium hemostasis. They furthermore suggest that the 

ER stress inhibitor 4-PBA can stabilize calcium hemostasis 

and thus attenuate central sensitization. However, our study 

does not supply full evidence of the necessary association 

between NO and the ER stress response; further research is 

required to elucidate their exact relationship.

Conclusion
Inflammation and central sensitization play important roles in 

the development of inflammatory pain, and the mechanisms 

underlying these processes are an important topic for current 

and future investigation. In this study, we showed that ER 

stress is strongly involved in formalin-induced pain and that 

4-PBA can attenuate pain behaviors and central sensitization. 

This suggests that 4-PBA might be a useful therapeutic agent 

for counteracting central sensitization. However, further stud-

ies are required to completely understand how the ER stress 

response relates to the formalin test and central sensitization 

and exactly how the ER stress inhibitor 4-PBA attenuates 

formalin-induced nociceptive behaviors.
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