
© 2008 Dove Medical Press Limited.  All rights reserved
Clinical Interventions in Aging 2008:3(3) 431–444 431

R E V I E W

Model of human aging: Recent fi ndings
on Werner’s and Hutchinson-Gilford progeria 
syndromes

Shian-ling Ding1

Chen-Yang Shen2,3,4

1Department of Nursing, Kang-Ning 
Junior College of Medical Care
and Management, Taipei, Taiwan; 
2Institute of Biomedical Sciences,
and 3Life Science Library, Academia 
Sinica, Taipei, Taiwan; 4Graduate 
Institute of Environmental Science, 
China Medical University, Taichong, 
Taiwan

Correspondence: Shian-ling Ding
Department of Nursing, Kang-Ning Junior 
College of Medical Care and Management, 
Taipei, 11485, Taiwan
Tel +886 2 26321181 ext 257
Fax +886 2 23649857
Email slding@knjc.edu.tw

Abstract: The molecular mechanisms involved in human aging are complicated. Two progeria 

syndromes, Werner’s syndrome (WS) and Hutchinson-Gilford progeria syndrome (HGPS), 

characterized by clinical features mimicking physiological aging at an early age, provide 

insights into the mechanisms of natural aging. Based on recent fi ndings on WS and HGPS, 

we suggest a model of human aging. Human aging can be triggered by two main mechanisms, 

telomere shortening and DNA damage. In telomere-dependent aging, telomere shortening and 

dysfunction may lead to DNA damage responses which induce cellular senescence. In DNA 

damage-initiated aging, DNA damage accumulates, along with DNA repair defi ciencies, result-

ing in genomic instability and accelerated cellular senescence. In addition, aging due to both 

mechanisms (DNA damage and telomere shortening) is strongly dependent on p53 status. These 

two mechanisms can also act cooperatively to increase the overall level of genomic instability, 

triggering the onset of human aging phenotypes.
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Introduction
Aging is an extremely complicated process and is known to be driven by a variety 

of different mutually interacting mechanisms. Conventionally, it is seen as a process 

of progressive failure of homeostasis involving genes for maintenance and repair, 

environmental factors leading to molecular damage and molecular heterogeneity, 

and chance events with potentially signifi cant consequences for death (Alberts et al 

2002). Since several human progeroid synqdromes (PSs) (human premature aging-like 

syndromes) are characterized by features resembling precocious aging, the identifi ca-

tion of the genes involved in PSs has provided important clues to understanding the 

molecular mechanisms underlying normal human aging (Hutchinson 1886, Gilford 

1904; Martin 1978, 1985).

The classic example of PS is Werner’s syndrome (WS), a progeria of the adult, 

which is caused by a mutation in a gene coding for a member of the RecQ helicase 

family, WRN (Yu et al 1996) and is characterized by features resembling preco-

cious aging, appearing as a variety of visible features associated with aging, such 

as graying of the hair and skeletal changes, which occur much earlier than normal 

(Goto 1997). WRN acts as a “caretaker of the genome” and functions in both DNA 

repair and transcription, suggesting that breakdown of these processes is critical in 

promoting aging (Epstein et al 1966; Goto 1997; Bachrati et al 2003). Hutchinson-

Gilford progeria syndrome (HGPS), a progeria of the child, is the other classic 

example, and is caused by mutations in the gene LMNA (1q21.2) (Eriksson et al 

2003), encoding a nuclear envelope protein, lamin A, which has been shown to affect 

RNA polymerase II transcription, probably by alterations in chromatin organization 
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(Martin and Oshima 2000; Spann et al 2002; Hickson 

2003; Andressoo and Hoeijmakers 2005). In addition, 

skin fi broblast biopsies from patients with HGPS fail to 

show evidence of normal DNA strand rejoining in vitro 

after exposure to irradiation, suggesting that DNA repair 

may be absent or greatly reduced in the cells (Epstein et al 

1973). Thus, these two PSs directly mimic the clinical 

and molecular features of natural aging, providing unique 

insights into the molecular mechanisms underlying human 

aging (Martin 1978, 1985). In this review, we will focus on 

these two best characterized PSs, with particular emphasis 

on the functions of the mutated syndrome-causing genes, 

and their potential implications for resemble aging. Based 

on the current information on these two syndromes, we also 

propose a model to explain human aging.

Werner’s syndrome
Werner’s syndrome is a rare autosomal recessive disorder 

characterized by premature aging (Epstein et al 1966; 

Martin et al 1970; Goto et al 1996; Yu et al 1996). The 

WRN gene responsible for WS encodes the 1432 amino 

acid WRN protein, which is a member of the RecQ DNA 

helicase family (Yu et al 1996). The C-terminal region of 

WRN contains the conserved RQC domain, which includes 

a nucleolar targeting sequence (NTS) (Marciniak et al 1998; 

von Kobbe and Bohr 2002), and the helicase and RNaseD 

C-terminal (HRDC) domain (Liu et al 1999). WRN has 

DNA-dependent ATPase, DNA strand annealing, DNA 

helicase, and exonuclease activities (Gray et al 1997; 

Suzuki et al 1997, 1999; Huang et al 1998). WRN, as a 

“caretaker of the genome”, is needed to prevent telomere 

dysfunction and consequent genomic instability (Opresko 

et al 2003; Crabbe et al 2004; Du et al 2004). Since most of 

the mutations identifi ed in WRN cause premature termina-

tion of translation (Goto 1997; Yu et al 1997), resulting in 

impaired nuclear import of the protein (Matsumoto et al 

1997), the clinical features and cellular phenotypes of WS 

patients are major due to an absolute lack of normal WRN 

in the nucleus. WS cells have defects in DNA replication, 

resulting in dysfunction in multiple cellular DNA metabolic 

processes, such as DNA replication initiation, replication 

foci establishment, and the resolution of stalled replication 

forks during replication and DNA repair (Martin et al 1970; 

Hasty et al 2003). In addition, a large number of reports 

have shown that many cellular events, including transcrip-

tion and apoptosis, are affected in WS cells (Ogburn et al 

1997; Balajee et al 1999; Spillare et al 1999, 2006; Som-

mers et al 2005). The loss of WRN function in WS appears 

as chromosome instability, a shorter life span in culture 

(Martin 1977), and accelerated telomere shortening (Schulz 

et al 1996), suggesting that breakdown of WRN function 

is important in promoting aging (Martin et al 1970; Hasty 

et al 2003).

Multiple functions of the WRN 
protein
Biochemistry and catalytic activities
WRN, a multifunctional nuclear protein, interacts with a 

number of proteins to catalyze four major DNA-dependent 

enzymatic activities, acting (1) as a DNA-dependent ATPase, 

(2) as an intrinsic 3′→5′ helicase (Gray et al 1997), (3) as a 

3′→5′ exonuclease (Huang et al 1998, 2000), and (4) in 

DNA strand annealing (Machwe et al 2005), and interacts 

with factors with established roles in DNA metabolic path-

ways (Brosh and Bohr 2002). WRN contains three distinct 

structure-specifi c DNA-binding domains, one N-terminal 

domain and two different C-terminal fragments (the 

RecQ and HRDC domains), each of which plays roles 

in distinct DNA metabolic pathways (von Kobbe et al 

2003a).

ATP-stimulated activities are required for the suc-

cessive steps in the hydrolytic reaction, such as structure 

recognition, DNA binding, and 3′-terminal hydrolysis. In 

this context, WRN plays a DNA-dependent ATPase, using 

the energy from ATP hydrolysis to unwind double-stranded 

DNA, and its exonuclease and helicase activities act in con-

cert to catalyze structure-dependent DNA degradation in 

resolving aberrant DNA structures (Shen and Loeb 2000). 

As a helicase, WRN is active on the forked end of a DNA 

duplex, while, as an exonuclease, it acts on the blunt end 

of the same duplex (Gray et al 1997; Huang et al 1998; 

Opresko et al 2001). WRN exonuclease can effi ciently 

remove a mismatched nucleotide at a 3′ recessed terminus 

and can initiate DNA degradation from a 12-nucleotide 

gap or a nick (Huang et al 2000). Furthermore, WRN 

forms a trimer, which interacts with the proliferating cell 

nuclear antigen (PCNA) to participate in the replication 

restart process (Huang et al 2000; Rodríguez-López et al 

2003; Jeziorny et al 2006). WRN exonuclease activity is 

suppressed by interaction with p53 (Brosh et al 2001a) or 

BLM (von Kobbe et al 2002) and stimulated by interaction 

with Ku70/80 (Li and Comai 2001) or phosphorylation 

(Karmakar et al 2002). WRN helicase activity is stimulated 

by interaction with replication protein A (RPA) (Shen et al 

1998) or telomere repeat binding factor 2 (TRF2) (Opresko 

et al 2002) and phosphorylation (Karmakar et al 2002). 
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Moreover, WRN colocalizes and interacts with RAD52 

and has strand annealing activity in addition to its DNA 

unwinding activity (Baynton et al 2003; Machwe et al 

2005, 2006). WRN-dependent unwinding activity is 

signifi cantly stronger than previously believed (Machwe 

et al 2006).

Post-translational modifi cations
In response to DNA damage, WRN can be modulated by 

post-translational modifi cations, including phosphoryla-

tion, sumoylation, and acetylation. It is phosphorylated 

at serine/threonine and tyrosine residues in vivo after 

bleomycin treatment or after replication stress (Karmakar 

et al 2002; Cheng et al 2003; Pichierri et al 2003). WRN 

phosphorylation at serine/threonine residues is primarily 

dependent on DNA-PKcs and c-Abl kinases (Karmakar 

et al 2002; Cheng et al 2003; Pichierri et al 2003). Impor-

tantly, the serine/threonine phosphorylation of WRN by 

the DNA-PK complex results in inhibition of both WRN 

helicase and exonuclease activities, whereas dephosphory-

lation of WRN enhances both these activities. Thus, the 

serine/threonine phosphorylation status of WRN plays a 

role in the regulation of its catalytic activities (Karmakar 

et al 2002; Cheng et al 2003). c-Abl was also found to 

phosphorylate WRN (Cheng et al 2003). c-Abl kinase, a 

regulator of the DNA damage response, mediates WRN 

nuclear localization and catalytic activities in response 

to DNA damage. WRN directly binds to c-Abl and this 

interaction is disrupted in the early cellular response to 

bleomycin (Cheng et al 2003). As with phosphorylation 

by the DNA-PK complex, c-Abl phosphorylation inhibits 

WRN helicase and exonuclease activities (Cheng et al 

2003).

Phosphorylation of WRN may infl uence other forms of 

WRN post-translational modifi cation, such as sumoylation 

and/or acetylation. Modifi cation of proteins by the small 

ubiquitin-related modifi er 1 (SUMO-1) conjugating system 

requires a set of enzymes, including SUMO-activating 

(E1), conjugating (Ubc9), and ligating enzymes (Muller 

et al 2004). WRN interacts with Ubc9, which is required 

for conjugation of SUMO-1 to the N-terminal fragment 

(amino acids 272–514) of WRN (Kawabe et al 2000). In 

addition, binding of p14 Arf to WRN is multivalent and 

resembles the binding of p14 Arf to Mdm2, promoting 

sumoylation of WRN in a synergistic manner with the 

SUMO-conjugating enzyme Ubc9 (Woods et al 2004). p14 

Arf causes redistribution of WRN within the nucleus, and 

this effect is reversed by expression of a SUMO-specifi c 

protease, thus implicating the SUMO conjugation pathway 

in controlling WRN re-localization (Woods et al 2004). 

Besides phosphorylation and sumoylation, WRN can be 

acetylated after mitomycin C or methyl methane-sulfonate 

treatment (Sharma et al 2005). On exposure to UV or 

ionizing radiation, WRN is acetylated by acetyltransferase 

p300, a transcriptional coactivator, which has acetylation 

activity (Blander et al 2002).

DNA replication
WRN helicase unwinds replication fork structures very 

effi ciently (Mohaghegh et al 2001), acting to resolve the 

block and/or in the replication restart process (Rodríguez-

López et al 2003). Compared to normal cells, cells from WS 

patients undergo premature replicative senescence (Martin 

et al 1970; Salk et al 1985), display an extended S-phase 

(Poot et al 1992), and show a reduced frequency of replication 

initiation sites (Takeuchi et al 1982; Hanaoka et al 1985), 

thus exhibiting defects in DNA replication consistent with 

the inability to properly recover from DNA replication fork 

demise (Hickson 2003).

WRN is able to interact with PCNA, DNA topoisomer-

ase I (topo I), polδ, and RPA (Wold 1997; Lebel and Leder 

1998; Brosh et al 1999; Lebel et al 1999; Constantinou et al 

2000; Huang et al 2000; Laine et al 2003) and catalyze DNA 

unwinding in vitro for DNA replication, recombination, and 

repair (Brosh and Bohr 2002).

WRN and PCNA colocalize at replication foci, suggesting 

a physiological interaction between them in cycling primary 

cells (Rodríguez-López et al 2003). In addition, WRN is as 

part of the 17S multiprotein DNA replication complex, and 

establishes PCNA and topoisomerase I as the two WRN-

interacting components (Warbrick 1998, 2000; Lebel et al 

1999; Rodríguez-López et al 2003).

Polδ participates in DNA replication and repair of DNA 

damage. WRN interacts specifi cally with the p50 subunit of 

polδ, and WRN directly modifi es DNA replication via its 

interaction with p50 and is involved in the dynamic relocal-

ization of polδ complexes within the nucleus (Kamath-Loeb 

et al 2000; Szekely et al 2000). Moreover, WRN enhances the 

rate of nucleotide incorporation in polδ-mediated replication 

in the absence of PCNA and its helicase activity enables polδ 

to overcome hairpin and G-quadruplex DNA structures (Fry 

and Loeb 1999; Szekely et al 2000; Kamath-Loeb et al 2000, 

2001; Brosh et al 2001b; Mohaghegh et al 2001). Thus, WRN 

may facilitate polδ-mediated DNA replication, and disruption 

of the WRN-polδ interaction in WS cells may contribute to 

the S-phase defects.
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Human RPA is a heterotrimeric, single stranded DNA-

binding protein required for DNA replication, recombina-

tion, and repair (Wold 1997; Brosh et al 1999, 2002). RPA 

directly interacts with to WRN, markedly increasing the 

DNA helicase activity of WRN (Brosh et al 1999; Shen 

et al 2003) and its ability to unwind forked telomeric DNA 

structures (Ohsugi et al 2000; Opresko et al 2001). After 

DNA damage, WRN can colocalize with BLM and RPA 

(Constantinou et al 2000; Bischof et al 2001; Sakamoto 

et al 2001). RPA binds to WRN and BLM to stimulate their 

unwinding of long DNA duplexes (Bachrati and Hickson 

2003).

Another interesting replication protein, FEN-1, interacts 

with the 144-amino acid RQC domain on the C-terminal 

region of WRN (Brosh et al 2001c). FEN-1, a DNA 

structure-specifi c nuclease, participates in pathways of 

DNA metabolism that are important for genomic stability 

(Brosh et al 2002) and is involved in the maturation of 

Okazaki fragments during lagging strand DNA replication 

(Bambara et al 1997; Merrill and Holm 1998). WRN 

stimulates FEN-1-mediated cleavage activity of displaced 

fl aps that occur during lagging strand DNA synthesis at 

Okazaki fragments (Brosh et al 2001c; Sharma et al 2004). 

WRN-FEN-1 complex colocalizes in foci associated with 

arrested replication forks, and this complex plays a role in 

the unwinding and degradation of Holliday junction struc-

tures associated with regressed replication forks (Sharma 

et al 2004). Defective Okazaki fragment processing causes 

DSBs, which may lead to the genomic instability in WS 

(Brosh et al 2002).

WRN colocalizes with, and directly interacts with, human 

topo I (Laine et al 2003). WRN stimulates the ability of 

topo I to relax negatively supercoiled DNA and specifi cally 

stimulates the religation step of the relaxation reaction, and 

cell extracts from WS fi broblasts exhibit a decreased ability 

to unwind negatively supercoiled DNA (Laine et al 2003). 

These fi ndings provide the interrelationship between WRN 

helicases and topoisomerases in the maintenance of genomic 

integrity.

DNA repair
WS cells display sensitivity to 4-nitroquinoline 1-oxide 

(Ogburn et al 1997; Poot et al 2002), a carcinogen which 

causes the formation of DNA strand breaks and bulky DNA 

adducts (Nagao and Sugimura 1976), and are also hypersen-

sitive to O6-methylguanine, a site-specifi c alkylating agent 

that can block DNA replication (Blank et al 2004). WS cells 

are sensitive to DNA crosslinking drugs (Poot et al 2001, 

2002) and, since DNA crosslinks are normally repaired by 

homologous repair (HR), this suggests a defect in this repair 

pathway. WS cells display extensive deletions at nonhomolo-

gous joined ends (Oshima et al 2002; Chen et al 2003), while 

expression of wild-type WRN prevents excessive DNA dele-

tions (Oshima et al 2002; Chen et al 2003). These fi ndings 

suggest that lack of WRN may increase DNA damage and 

disrupt the regulatory processes controlling DNA repair, for 

example, nonhomologous end joining (NHEJ), HR, and base 

excision repair (BER).

Double-strand break repair
The fi rst evidence for a link between WRN and double-strand 

break repair was the discovery that WRN interacts with both 

Ku and DNA-dependent protein kinase catalytic subunits 

(DNA-PKcs) (Cooper et al 2000; Li and Comai 2000; Cheng 

et al 2003; Opresko et al 2003) to participate in NHEJ (Li and 

Comai 2002). Assembly of DNA-PK and WRN at DNA ends 

allows DNA-PKcs to phosphorylate WRN, thus stimulating 

WRN enzymatic activity and facilitating effi cient processing 

of double-strand breaks (DSBs) prior to ligation (Yannone 

et al 2001). Defi ciencies in either Ku or DNA-PKcs result 

in sensitivity to ionizing radiation due to defects in DSB 

repair. Complementation with the exonuclease/helicase 

double mutant or wild-type WRN restores NHEJ activity, 

suggesting that WRN is necessary for normal repair of DSBs 

(Chen et al 2003).

Chromatographic studies showed that WRN is bound 

to PARP-1 in a complex that contains Ku70/80 (Li et al 

2004). PARP-1 can induce apoptosis or necrosis in cells 

with extensive DNA damage. Absence of functional WRN 

prevents activation of PARP-1 in response to DNA damage 

caused by oxidative stress and alkylating agents (von Kobbe 

et al 2003b).

Some proteins that participate in the recombinational 

repair pathway have been found to functionally interact 

with WRN. WRN is involved in resolving recombination 

intermediates in RAD51-dependent HR (Prince et al 2001; 

Saintigny et al 2002) and forms distinct nuclear foci that 

partially overlap with the RAD51 nuclear foci formed in 

response to DNA damage (including DSBs) (Sakamoto 

et al 2001). In vivo data show that WRN interacts function-

ally with NBS1 (Cheng et al 2004), which is thought to act 

downstream of RAD51 (Saintigny et al 2002; Tauchi et al 

2002; Monnat and Saintigny 2004). WRN colocalizes with, 

and interacts with, RAD52 (Baynton et al 2003), NBS1 in 

the MRN complex (Cheng et al 2004), and fl ap endonuclease 1 

(FEN-1) (Brosh et al 2001c; Sharma et al 2004). In addition, it 
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interacts physically with the Mre11-RAD50-NBS1 complex, 

which also functions in HR for DSB processing (Cheng et al 

2004).

Base excision repair
Oxidative DNA lesions are repaired primarily by base 

excision repair (BER), and the accumulation of oxidative 

products and the resulting phenotypic changes have been 

implicated in the aging process (Beckman et al 1998). In 

general, BER can be divided into short patch repair and long 

patch repair. WRN has been shown to physically interacts 

with polβ and participate in short patch BER (Harrigan 

et al 2003). The active WRN helicase domain stimulates 

polβ strand displacement DNA synthesis at a nick on a 

BER substrate (Harrigan et al 2003). In addition, it has been 

shown to interact physically and/or functionally with several 

replication proteins which participate in long patch BER, 

including PCNA, RPA, polδ, and FEN-1 (Shen et al 1998; 

Brosh et al 1999, 2002; Kamath-Loeb et al 2001). PCNA is 

part of a sliding clamp which forms a ring which maintains 

the connection between polymerase and its DNA template, 

allowing uninterrupted synthesis. WRN has been shown to 

directly interact with PCNA in vitro, suggesting a unique 

role for WRN in DNA synthesis (Huang et al 2000). WRN 

stimulates FEN-1 fl ap cleavage (Brosh et al 2001c, 2002) 

and nucleotide incorporation by polδ (Kamath-Loeb et al 

2000, 2001). RPA stimulates WRN helicase unwinding of 

long substrates (Shen et al 1998; Brosh et al 1999) and the 

poly(ADP-ribosyl)ation state of PARP-1 regulates WRN 

helicase and exonuclease activities (von Kobbe et al 2004). 

PARP-1 binds strongly to strand breaks and acts in the DNA 

damage surveillance network, partly by ribosylating a variety 

of nuclear proteins in response to DNA damage.

DNA recombination
Cellular DNA recombination can occur physiologically 

during meiotic DNA replication and V(D)J recombination, 

or can be induced by DNA damaging agents. Some reports 

define a physiological role for WRN RecQ helicase in 

recombination via RAD51-dependent HR (Prince et al 2001; 

Saintigny et al 2002). WRN and BLM colocalize to DNA 

damage-induced RAD51 foci, implicated in HR (Bischof 

et al 2001; Sakamoto et al 2001; Wu et al 2001; Saintigny 

et al 2002; Von Kobbe et al 2002; Wu and Hickson 2003; 

Spillare et al 2006). The WRN and BLM helicase activities 

are possible in a synergistic manner to intermediate DNA 

recombination, since a coimmunoprecipitation and colocal-

ization study showed that the exonuclease domain of WRN 

interacts with BLM (von Kobbe and Bohr 2002). In addition, 

a biochemical study showed that WRN interacts with the 

homologous recombination mediator protein RAD52, and 

that WRN and RAD52 form a complex, should be a gen-

eral response to replication forks arrested by DNA damage 

(Baynton et al 2003).

WRN interacts physically and functionally with the MRN 

complex via NBS1 and they colocalize in response to ionizing 

radiation or mitomycin C treatment (Cheng et al 2004). WS 

cells display a defi ciency in resolving DNA recombination 

intermediates which contributes to DNA damage hypersen-

sitivity, limited cell growth, and genomic instability (Prince 

et al 2001). The generation of viable mitotic recombinant 

progeny was rescued by the expression of WRN, which also 

improved WS cell survival after DNA damage (Saintigny 

et al 2002). These results defi ne a physiological role for the 

WRN RecQ helicase protein in RAD51-dependent HR and 

identify a mechanistic link between defective recombina-

tion resolution and limited cell division potential, DNA 

damage hypersensitivity, and genetic instability in human 

somatic cells (Saintigny et al 2002). WRN also colocal-

izes with RAD51 and RPA in response to DNA damaging 

agents (Constantinou et al 2000; Sakamoto et al 2001), and 

both WRN and BLM interact with RPA (Brosh et al 1999, 

2000).

Telomere maintenance
Telomeres are specialized nucleoprotein structures con-

sisting of G-rich repetitive sequences that cap the ends of 

eukaryotic chromosomes and are crucial for the maintenance 

of chromosomal integrity and cell viability (McClintock et al 

1941). They are maintained by the enzyme telomerase, which 

consists of an essential telomerase RNA component (TERC), 

which serves as a template for the addition of telomere 

repeats, and a protein component, the telomerase reverse 

transcriptase catalytic subunit (TERT). Telomere shorten-

ing eventually results in diverse pathophysiological conse-

quences, primarily through accelerated telomere erosion, and 

triggers entry into premature senescence (Wright and Shay 

1992; Blasco 2002; Chang et al 2004; Du et al 2004). Defects 

in telomere structure can initiate a DNA damage response and 

may lead to telomeric end fusions and chromosome breakage 

if not properly repaired (De Lange 2002).

Biochemical and cellular evidence suggest that WRN 

may dissociate secondary structures at the telomere to allow 

replication, repair, and telomerase activity at the telomere 

end (Opresko et al 2003). Under normal conditions, WRN 

associates with telomeres in S phase to prevent loss of 
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individual telomeres (Crabbe et al 2004). Accelerated loss 

of telomere reserves and activation of cellular checkpoints 

appear integral to the decreased replicative potential seen 

in WS, as evidenced by the capacity of enforced TERT 

expression to impart unlimited replicative potential (Wyllie 

et al 2000).

WRN functionally interacts with a number of proteins 

involved in telomere length maintenance, including Ku 

70/86 (Orren et al 2001), RPA (Brosh et al 1999, 2000; Sanz 

et al 2000), TRF1, and TRF2 (Opresko et al 2002, 2004; 

Machwe et al 2004). RPA is a single strand DNA-binding 

protein that is required for all aspects of DNA metabolism 

(Brosh et al 2000), while TRF1 and TRF2 are homodimeric 

proteins that have been shown to bind exclusively to double 

stranded telomeric DNA throughout the cell cycle and are 

thought to be involved in the regulation of telomeric length 

(Fairall et al 2001). TRF2 as a promoter for the helicase 

activity of WRN, the interaction between WRN and TRF2 

may serve to stabilize TRF2 in its active form or to improve 

TRF2’s interaction with DNA (Opresko et al 2002). Due 

to the absence of WRN in WS patients, TRF2 is unable to 

perform its duty and telomeric-specifi c structures that need to 

be degraded are not (Griffi th 1999; Opresko 2002; Jeziorny 

2006). These structures then act as barriers against various 

transcription factors and telomeres are left without being 

fully transcribed.

Taken together, these results suggest that WRN is 

necessary for the effi cient replication of G-rich telomeric 

DNA and that WRN defi ciency and dysfunctional telomeres 

appear to act cooperatively to increase the overall level 

of genomic instability, triggering the onset of premature 

aging phenotypes (Orren et al 2001; Opresko et al 2002, 

2004).

DNA apoptosis
A link between WRN and apoptosis was fi rst proposed by 

studies demonstrating that WS fi broblasts exhibit a decreased 

p53- mediated apoptotic response, and this defi ciency can be 

rescued by expression of wild-type WRN (Spillare et al 1999). 

p53 is a key cellular component in maintaining genomic 

stability either by regulating the cell cycle to allow DNA 

repair or by inducing apoptosis (Haupt et al 2003; Hofseth 

et al 2004; Lane 2004). The C-terminus of WRN binds to the 

C-terminal domain of p53 to induce p53-mediated apoptosis 

(Clarke et al 1993; Symonds et al 1994; Wang et al 1996, 

2001; Spillare et al 1999; Brosh et al 2001a).

Fibroblasts from WS patients have a decreased ability 

to undergo p53-mediated apoptosis (Spillare et al 1999), so 

the absence of WRN-p53 direct interaction could serve as a 

signal for programmed cell death. Moreover, the expression 

of wild-type WRN is suffi cient to rescue WS¯/¯ cells from the 

attenuation of p53-mediated apoptosis (Spillare et al 1999; 

Blander et al 2001). p53 may exert its effect on WRN by its 

interaction with RPA. Overexpression of p53 results in a 

decrease in Sp-1-mediated transcription of the WRN gene, 

suggesting that p53 regulates WRN expression (Yamabe et al 

1998). Thus, the interaction of WRN with p53 and/or the 

WRN-RPA complex may be critical in preventing entry into 

S phase or in directing S phase cells towards apoptosis. The 

absence of a p53-WRN helicase interaction may disrupt the 

signal to direct S-phase cells into apoptosis for programmed 

cell death and contribute to the pronounced genomic insta-

bility and cancer predisposition seen in WS cells (Sommers 

et al 2005). In addition, epigenetic inactivation (promoter 

hypermethylation) of WRN can lead to the loss of WRN-

associated exonuclease activity and increased chromosomal 

instability and apoptosis induced by topoisomerase inhibitors 

(Agrelo et al 2006).

Hutchinson-Gilford progeria 
syndrome
Hutchinson-Gilford progeria syndrome, a childhood 

progeroid disorder, is a rare, fatal genetic disorder charac-

terized by segmental accelerated aging. Affected children 

appear normal at birth, but within a year develop character-

istic features of failure to thrive, delayed dentition, alopecia, 

atherosclerosis, prominent scalp veins, a high pitched voice, 

and sclerodermatous skin changes, with death at approxi-

mately 13 years from atherosclerosis of the coronary and 

cerebrovascular arteries. Eriksson and colleagues (2003) 

identifi ed the disease causing mutations in the LMNA gene 

(encoding lamin A/C). The vast majority of HGPS cases 

are caused by a single-base substitution (GGC � GGT), 

which does not cause an amino acid change (G608G), but 

results in deletion of 150 nucleotides in exon 11, causing 

an alternatively spliced truncated variant of lamin A mRNA 

and an in-frame deletion of 50 amino acids near the carboxy 

terminus, leading to changes in the nuclear architecture (De 

Sandre-Giovannoli et al 2003; Eriksson et al 2003). Other 

HGPS mutations that have been described in LMNA include 

E145K, R471C, R527C, G608S, T623S, and 1824C � T 

(Cao and Hegele 2003; Csoka et al 2004a; Fukuchi et al 

2004). Lamins form microfi laments in the nucleus and are 

important in maintaining the proper structure of the nuclei, 

but they also infl uence on chromatin structure, regula-

tion of gene expression, localization and probably protein 
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degradation (Ly et al 2000; Goldman et al 2002; Scaffi di 

and Misteli 2005). Immunofl uorescence of HGPS fi bro-

blasts with antibodies directed against lamin A revealed 

that many cells show visible abnormalities of the nuclear 

membrane (Eriksson et al 2003). In addition, HGPS cells 

have also altered histone modifi cation patterns, including 

reduced heterochromatin-specifi c trimethylation of Lys9 

on histone H3 (Tri-Me-K9H3) (Scaffi di and Misteli 2005, 

2006). A recent study implicated lamin A in physiological 

aging, showing that the molecular mechanism responsible 

for the premature aging (Hasty and Vijg 2004; Scaffi di and 

Misteli 2006). Thus, accelerated aging in HGPS might thus 

refl ect an exaggerated lamin A-dependent mechanism, which 

contributes to physiological aging.

Defects in prelamin A processing
Lamin A has a conserved C-terminal CAAX motif, which 

is a potential target for subsequent processing steps. To 

generate mature lamin A, prelamin A undergoes substantial 

post-translational modifi cation of its CAAX motif via four 

processing steps (Zhang and Casey 1996; Young et al 2006). 

First, a 15-carbon farnesyl lipid is added to the thiol group 

of the cysteine by a cytosolic enzyme, protein farnesyltrans-

ferase. Second, the last three amino acids of the protein 

(ie, the -AAX) are clipped off by the metalloprotease ZMP-

STE24 and/or RCE1 (Bergo et al 2002; Corrigan et al 2005). 

Third, the newly exposed farnesylcysteine is carboxylmethyl-

ated by ICMT, a prenylprotein-specifi c methyltransferase in 

the endoplasmic reticulum (Clarke et al 1988; Dai et al 1998). 

Fourth, the last 15 amino acids of the protein, including the 

farnesylcysteine methyl ester, are clipped off by ZMPSTE24 

and degraded, releasing mature lamin A (Weber et al 1989; 

Beck et al 1990; Corrigan et al 2005; Young et al 2006). In 

HGPS, a 50-amino acid deletion in the C-terminus of the pro-

tein (amino acids 607–656) lacks an important endoprotease 

cleavage site recognized by ZMPSTE24 during prelamin A 

post-translational processing, so no mature lamin A is formed 

and a farnesylated mutant prelamin A (progerin) accumulates 

in cells (De Sandre-Giovannoli et al 2003; Eriksson et al 

2003; Navarro et al 2006; Sun and Schatten 2006; Tsai et al 

2006; Young et al 2006).

Progerin accumulation and nuclear 
morphology abnormalities
The mutant prelamin A is targeted to the nuclear rim, where 

it disrupts the integrity of the nuclear lamina, leading to 

premature cell death (Eriksson et al 2003; Goldman et al 

2004; Varela et al 2005; Yang et al 2005; Fong et al 2006). 

The GGC � GGT (G608G) mutation of LMNA causes 

accumulation of farnesyl-prelamin A in the nucleus in a cel-

lular age-dependent manner, and the cells display irregular 

nuclear shapes, including lobulation of the nuclear envelope, 

thickening of the nuclear lamina, loss of peripheral hetero-

chromatin, and clustering of nuclear pores (Eriksson et al 

2003; Goldman et al 2004). Aberrant nuclear morphology is 

also reported with other LMNA mutations, which have been 

linked to other ‘‘laminopathies’’, such as Emery–Dreifuss 

muscular dystrophy, dilated cardiomyopathy-1A, Dun-

nigan-type familial partial lipodystrophy, mandibuloacral 

dysplasia, and atypical WS (Goldman et al 2002; Chen 

et al 2003). In HGPS cells, the nuclei and lamina appeared 

normal at early passages, but, at later passages, the nuclei 

are severely misshapen and contain an abnormally thick 

lamina (de Sandre-Giovannoli et al 2003; Eriksson et al 

2003). These structural defects worsen as HGPS cells age in 

culture, and their severity correlates with an obvious increase 

in mutant lamin A (Goldman et al 2004). An abnormal 

distribution of nuclear pore complexes is seen in late pas-

sage HGPS cells. The changes in nuclear pore complexes 

gradually affect various aspects of the normal traffi cking of 

protein and RNA across the nuclear envelope, having severe 

effects on the physiological state of HGPS cells (Yoshida 

and Blobel 2001). In addition, mutant lamin A induces 

decreased cellular proliferation, premature senescence, and 

altered motility (Goldman et al 2004). The highly lobulated 

late passage HGPS cells primarily exhibit PCNA patterns 

resembling early S phase, suggesting that there is a block 

in the transition from the early chain-elongation phase of 

DNA replication to the mid- and later phases of replication. 

Mutant lamin A (progerin) progressively accumulates in the 

nucleus with cellular age, resulting in premature cessation 

of growth in the later passages of HGPS cells (Goldman 

et al 2004).

Universal transcriptional alterations
Lamin A is a major constituent of the nuclear membrane, 

and an immunofl uorescence study of HGPS fi broblast nuclei 

demonstrated abnormalities (Goldman et al 2004). Given 

the prominent structural role of lamin A in the nuclear 

membrane, it is suggested that this protein has diverse 

roles in DNA metabolism, including DNA replication and 

transcription. Gene expression in HGPS was investigated by 

measuring mRNA levels in fi broblasts isolated from young, 

middle aged, and old humans with or without progeria 

(Ly et al 2000). Of the 152 genes studied, 47 (31%) were 

differentially transcribed in both old and HGPS compared 
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to young. The direction of the change was the same in 

old and HGPS for all coregulated genes. Genes involved 

in mitosis were downregulated and the observed changes 

might result in increased rates of somatic mutation, leading 

to chromosome aberrations and mutations manifesting as 

an aging phenotype. Csoka and colleagues (2004b) found 

that the genes differentially expressed in HGPS fi broblasts 

compared to age-matched control cell lines are involved 

in a variety of biological processes. Of the approximately 

33,000 genes analyzed, 361 (1.1%) showed at least a 2 fold 

change in HGPS compared to the aged controls. The most 

prominent categories encoded transcription factors and 

extracellular matrix proteins, many of which are known to 

function in the tissues severely affected in HGPS. The most 

affected gene was MEOX/GAX, a homeobox gene that func-

tions as a negative regulator of proliferation. Several genes 

involved in DNA replication and chromatin remodeling were 

downregulated. These changes were interpreted as contrib-

uting to depression of cellular proliferation. Some of the 

transcription changes suggested excess extracellular matrix 

deposition through the increased expression of extracellular 

matrix components and decreased expression of extracellular 

matrix remodeling enzymes. Of the 58 genes examined by 

both of these groups, the expression of 17 (29%) changed in 

the same direction, demonstrating a reasonable agreement 

between the two studies considering their different designs. 

The studies by Kyng and Bohr (2005) and Csoka and col-

leagues (2004b) point to a shared mechanism of aging accel-

eration in PSs ie, misregulated transcription. The idea that 

aging is due to the loss of the proper transcriptional state of 

the cell followed by “dysdifferentiation” had been previously 

proposed by other investigators (Kator et al 1985; Zs-Nagy 

et al 1988; Fossel 2003; Prolla 2005). These fi ndings that 

HGPS patients show inappropriate transcriptional patterns 

provides new evidence that transcriptional deregulation can 

contribute to the aging process in humans.

Genomic instability
DNA damage accumulation and the effects of repair 

defects can lead to genomic instability associated with 

premature aging and have causal roles in normal aging 

(Lombard et al 2005; von Zglinicki et al 2005). Indeed, 

defective recruitment of 53BP1 and RAD51 to sites of DNA 

lesion is seen in HGPS fi broblasts, resulting in a delayed 

checkpoint response and defective DNA repair (Liu et al 

2005). Wild-type mouse embryonic fi broblasts ectopically 

expressing unprocessible prelamin A show similar defects 

in checkpoint response and DNA repair (Liu et al 2005). 

These results indicate that unprocessed prelamin A and 

truncated lamin A act dominant negatively to perturb the 

DNA damage response and repair, resulting in genomic 

instability, which might contribute to laminopathy-based 

premature aging (Liu et al 2005). In HGPS cells, DNA dam-

age checkpoints are persistently activated, and inactivation 

of checkpoint kinases ATM and ATR can partially restore 

cell cycle progression into S-phase (Cortez et al 2001; Liu 

et al 2006), suggesting that senescence can be suppressed 

by inactivating DNA damage response pathways in HGPS 

cells. Organismal aging has been linked to activation of 

p53-dependent signaling pathways and initiation of the 

senescence program in a premature aging mouse model 

(Varela et al 2005). Inhibition of aberrant splicing of lamin 

A results in signifi cant downregulation of p21, IGFBP3, and 

GADD45B compared with mock-treated cells (Scaffi di and 

Misteli 2006). Consistent with the reduction in p53 activa-

tion, upon elimination of Δ50 lamin A from old cells, the 

fraction of 5-bromo-2’-deoxyuridine-positive proliferating 

cells increased by 30% and was similar to that in mock-

treated young cells. Over the past few years, there have 

been reports that progerin leads to defective DNA repair 

and genome instability (Liu et al 2005), overexpression of 

p53 target genes (Varela et al 2005), and changes in his-

tone methylation that affect heterochromatin organization 

(Shumaker et al 2006).

Farnesyltransferase inhibitor
Farnesyl-prelamin A is targeted to the nuclear envelope, 

where it interferes with the integrity of the nuclear enve-

lope and causes misshapen cell nuclei. It has also been 

shown to affect the mechanical stability of the nucleus 

(Dahl et al 2006). Farnesyltransferase inhibitors (FTIs) 

can block prelamin A processing and reduce the percent-

age of cells with misshapen nuclei (Capell et al 2005; 

Glynn and Glover 2005; Mallampalli et al 2005; Toth et al 

2005). Thus, the favorable effects of FTIs raise the ques-

tion whether an FTI might improve disease phenotypes in 

HGPS (Young et al 2006). It is also important to defi ne the 

extent to which these abnormalities are affected by an FTI 

and to determine whether FTIs will be a useful therapy in 

children with HGPS. A recent study found that treatment 

of patient’s cells with an FTI did not result in a reduction 

in DNA DSBs and damage checkpoint signaling, although 

it signifi cantly reversed the aberrant shape of their nuclei 

(Liu et al 2006), suggesting that DNA damage accumula-

tion and aberrant nuclear morphology are independent 

phenotypes arising from prelamin A accumulation in these 
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PSs. Yang and colleagues (2006) created gene-targeted mice 

with an HGPS mutation (LmnaHG/+) and examined the 

effect of an FTI on the disease phenotypes. The LmnaHG/+ 

mice exhibited phenotypes similar to those in human HGPS 

patients, including retarded growth, reduced amounts of 

adipose tissue, micrognathia, osteoporosis, and osteolytic 

lesions in bone. In addition, osteolytic lesions in the ribs led 

to spontaneous bone fractures. Treatment with an FTI ame-

liorated the disease phenotypes, resulting in an increased 

adipose tissue mass, improved body weight curves, a reduc-

tion in the number of rib fractures, and improved bone 

mineralization and bone cortical thickness, suggesting that 

FTIs could be useful for treating HGPS patients (Yang et al 

2006). Though FTIs fall short of curing the disease (Yang 

et al 2006), these fi ndings have established a paradigm for 

ameliorating the most obvious cellular pathology in HGPS 

and suggest a potential strategy for treating this disease.

A hypothetical model of aging
The molecular mechanisms involved in human senescence 

are complicated. Two canonical PSs, WS and HGPS, 

characterized by clinical features mimicking physiologi-

cal aging at an early age, have provided insights into the 

mechanisms of natural aging. In these PSs, several cel-

lular pathways are affected, resulting in the formation of 

endogenous and exogenous sources of oxidative stress, 

telomere attrition, and a decline in DNA repair, which can 

jointly contribute to genomic instability, and subsequently 

result in growth arrest and apoptosis, leading to the human 

aging phenotypes (Karanjawala and Lieber 2004; Prolla 

2005; Collado 2007). The gene defective in WS, WRN, 

encodes a helicase of the RecQ family and possesses 

an exonuclease domain. WRN is involves in multiple 

DNA repair pathways and plays a signifi cant role in the 

maintenance of overall genomic stability (Bachrati and 

Hickson 2003) (as seen in WS). The clinical features of 

HGPS show similarities to WS, but progress more rapidly 

(Hennekam 2006). LMNA, the gene defective in HGPS, 

affects the structure or post-translational maturation of 

lamin A, a major nuclear component (Eriksson et al 2003). 

Recently, several studies have established a functional 

link between DNA repair and A-type lamin-associated 

syndromes, which are associated with transcriptional 

alterations, abnormal DNA replication, changed organi-

zation of higher order chromatin structure, and genomic 

instability (Serrano and Blasco 2007), suggesting a link 

between these syndromes and physiological aging (as 

seen in HGPS). DNA damage is generated throughout 

life and causes continuous damage to the macromolecular 

components of cells. Importantly, the rate of DNA damage 

production increases with ageing (Hasty and Vijg 2004; 

Serrano and Blasco 2007).

Thus, the causal relationship between the DNA dam-

age response and cellular senescence suggests that DNA 

damage-initiated genomic instability can induce human 

aging phenotypes (Harman 1956). p53-mediated senescence 

and apoptosis in response to DNA damage also probably 

contribute to aging. Indeed, p53, as a master integrator of 

cellular stress, is able to respond to a wide range of DNA 

damage (Horn and Vousden 2007), then, if the stress per-

sists, prevent propagation of the damaged cells (by apop-

tosis or senescence) (Vousden and Lane 2007). Following 

DNA damage, activation of p53 leads to transcription and 

upregulation of p53 target genes, among which P21 acts 

as the major effector of p53-induced cellular senescence. 

P21 levels increase gradually as cells pass into senescence 

(Alcorta et al 1996). Collectively, these results suggest 

that p53 activation is at least partially responsible for the 

induction of cellular senescence in response to DNA dam-

age. On the other hand, various lines of evidence have 

shown that telomere shortening and dysfunction can also 

trigger DNA damage responses and are suffi cient to induce 

cellular senescence (d’Adda di Fagagna et al 2003; Takai 

et al 2003; Chang et al 2004; Du et al 2004). Some HGP 

fi broblasts also appear refractory to telomerase-mediated 

immortalization (Wallis et al 2004), and most cultures 

show elevated apoptosis and senescence (Bridger and Kill 

2004). Numerous studies indicate that, in the setting of 

WRN defi ciency, dysfunctional telomeres trigger the onset 

of premature aging phenotypes, suggesting a link between 

increased telomere dysfunction and the genomic instability 

associated with the aging process (d’Adda di Fagagna et al 

2003; Takai et al 2003; Smogorzewska and de Lange 2004; 

Chang et al 2004; Du et al 2004). On the basis of the infor-

mation available for WS and HGPS, we suggest a model of 

human aging (Figure 1). Human aging can be triggered by 

two main mechanisms, telomere shortening and DNA dam-

age. In telomere-dependent aging, telomere shortening and 

dysfunction can lead to DNA damage responses, inducing 

cellular senescence. In DNA damage-initiated aging, DNA 

damage accumulates, along with DNA repair defi ciencies, 

resulting in genomic instability and accelerated cellular 

senescence. Both aging mechanisms depend strongly on 

p53 status. These two mechanisms can act cooperatively to 

increase the overall level of genomic instability and trigger 

the onset of human aging phenotypes.
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