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Abstract: The blood–brain barrier (BBB) plays a fundamental role in protecting and 

maintaining the homeostasis of the brain. For this reason, drug delivery to the brain is much 

more difficult than that to other compartments of the body. In order to bypass or cross the 

BBB, many strategies have been developed: invasive techniques, such as temporary disrup-

tion of the BBB or direct intraventricular and intracerebral administration of the drug, as 

well as noninvasive techniques. Preliminary results, reported in the large number of stud-

ies on the potential strategies for brain delivery, are encouraging, but it is far too early to 

draw any conclusion about the actual use of these therapeutic approaches. Among the most 

recent, but still pioneering, approaches related to the nasal mucosa properties, the permea-

bilization of the BBB via nasal mucosal engrafting can offer new potential opportunities. It 

should be emphasized that this surgical procedure is quite invasive, but the implication for 

patient outcome needs to be compared to the gold standard of direct intracranial injection, 

and evaluated whilst keeping in mind that central nervous system diseases and lysosomal 

storage diseases are chronic and severely debilitating and that up to now no therapy seems 

to be completely successful.

Keywords: CNS, BBB, nasal mucosa, grafting, lysosomal storage diseases, enzyme replace-

ment therapies

Introduction
There are more than 1,000 agents which are active on central nervous system (CNS) 

pathologies that have shown promising perspectives in preclinical studies but failed 

to show good results in the later phases of the development process (at Phase III or 

even after registration).1–5

For this reason, disorders of the CNS represent one of the largest areas of unsatis-

fied medical needs, with about 2 billion people affected worldwide and many pharma 

companies moving away from such fields of innovative research because of the high 

risk of failure associated with CNS medicines, together with the ever increasing 

approval time.6,7

One of the major reasons for the poor translation of neuroscience research into 

medicines is the high degree of complexity of the human CNS, and effective nonin-

vasive treatment of neurological diseases is often limited by the very limited access 

of therapeutic agents into the CNS owing to the presence of two anatomical and bio-

chemical dynamic barriers: the blood–brain barrier (BBB) and the blood–cerebrospinal 

fluid barrier (BCSFB).8

It is already well known that BBB is formed by endothelial cells (ECs), which line 

up in capillaries of the brain and spinal cord by a variety of pericytes, vascular smooth 

muscle cells, astrocytes, and microglia.9 The BBB, composed of densely packed cells 
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with copious intercellular tight junctions (TJs), active efflux 

pumps, and a trilamellar basement membrane, regulates the 

synaptic signaling function. Furthermore, BBB protects the 

CNS from neurotoxic substances, ensures brain nutrition, and 

prevents the entry of unwanted cells into the brain as well 

as the absorption of polar or high molecular weight (HMW) 

molecules larger than 500 Da; in other words, more than 98% 

of therapeutic drugs.10–12

The BBB also displays immunological and transporta-

tion features. The immune barrier is composed of microglia, 

perivascular mast cells, and macrophages. The transport 

barrier includes para- and transcellular routes. In addition, 

the brain is extremely rich in vascularity, with each neuron 

in contact with a capillary.13–15

The BCSFB is formed by the TJs of choroid plexus cells 

surrounding the microvascular endothelium with intracellular 

gap and fenestration. Owing to their structural difference, 

BBB and BCSFB have different main functions, but they 

both participate in controlling the transfer of molecules 

between the blood and the brain parenchyma or cerebrospinal 

fluid (CSF).

Under certain physiological conditions, circulating 

molecules can only gain access to the brain or CSF via 

a transcellular route through the capillary endothelial 

cells or choroid plexus cells, by either passive or active 

transport, or both.

Furthermore, if molecules overcome the BBB, they are 

not able to do so in high amounts, and they are exposed to 

degradation and/or rapid efflux from the CNS.16

Different transporters suitable for targeting molecules and 

delivering endogenous and exogenous compounds across the 

BBB are located on the BBB (Figure 1).

Figure 1 Transport routes across the blood–brain barrier.
Note: Green lines indicate tight junctions; blue boxes indicate no carrier or receptor mediated transport.
Abbreviations: BBB, blood–brain barrier; RMT, receptor-mediated transcytosis; AMT, adsorptive-mediated transcytosis.
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All these highly regulated and efficient features supply 

BBB with multiple functions as a physical barrier (TJ), a 

transport barrier (P-gp), a metabolic or enzymatic barrier, 

and an immunological barrier.17,18

Functions and organization of the BBB can be altered 

under pathological conditions, such as multiple sclerosis, 

epilepsy, acquired immune deficiency syndrome (AIDS), 

dementia, stroke, and brain cancer.19,20

It should also be pointed out that alterations in the barrier, 

as in the blood–brain tumor barrier (BBTB), often form an 

increased obstacle in CNS therapy by preventing the delivery 

of potentially effective therapeutic agents.21

Molecular and physiological mechanisms involved in 

the transport of compounds through the BBB can be used to 

design drug and drug carriers for brain delivery.

Ligands such as peptides, monoclonal antibodies (mAbs), 

modified proteins, peptidomimetic antibodies, and penetrat-

ing peptides can be conjugated to bioactive compounds or to 

colloidal supramolecular aggregates and potentially used to 

cross the BBB and accumulate inside the CNS.22

The paradox is that more than 99% of the global CNS 

drug development effort is devoted to CNS drug discovery, 

while less than 1% is devoted to CNS drug delivery.23

Fortunately, scientists realized how important is the 

pathway from the systemic circulation to the CNS, and 

a few years ago, the Stroke Therapy Academic Industry 

Roundtable Preclinical Recommendations group highly 

recommended that future neurological disease research 

should consider also the method of drug delivery when 

developing novel drugs.24

Current methodologies for drug 
delivery across the BBB
In order to bypass or cross the BBB, many strategies have 

been developed: invasive techniques, such as temporary dis-

ruption of the BBB or intraventricular and intracerebral direct 

administration of the drug, and noninvasive techniques. The 

invasive strategies, however, compromise the integrity and 

the functions of the BBB, allowing the potential accumulation 

of neurotoxic xenobiotics and exogenous agents; a state that 

is moderately to severely neurotoxic.25,26

Noninvasive chemical approaches involve the “manipula-

tion” of active substances to be administered with the aim of 

increasing physiological stability and degree of penetration 

into the brain by passive diffusion or by active targeting. 

For this purpose, several methods have been proposed, such 

as the lipidization via addition of lipid-like molecules to 

the structure; the addition of molecules able to use specific 

endogenous transporters (eg, nutrients and other essential 

compounds), and the synthesis of prodrugs. Chemical modi-

fications can be considered a safe, noninvasive approach, but 

they need chemical or enzymatic in vivo transformations that 

sometimes may lead to the loss of therapeutic activity or the 

activation of the physiological defense mechanisms of the 

membrane pumping out exogenous compounds.

Along with chemical modifications, there is an increase 

in multidisciplinary investigations, intended to facilitate 

the crossing of BBB, that combine biological, nanotech-

nological, and even biophysical expertise. In this sense, 

the most recent approaches concern TJ opening (eg, 

through the utilization of compounds like bradykinin 

via second messengers), receptor-mediated, adsorptive-

mediated transportation (some potentially useful tech-

nologies based on receptor-mediated transcytosis are 

currently under clinical evaluation for brain tumor therapy –  

Clinicaltrials.gov: NCT01967810, NCT02048059, 

NCT01480583, NCT01386580, NCT01818713), and efflux 

pump inhibition by specific inhibitors that appears to be a 

strategy capable of delivering the drug to the brain without 

affecting the integrity of the endothelial layer and TJ that 

might cause toxicities. Also, energy-based physical methods, 

such as ultrasound, microwave, or electromagnetic fields, 

are under evaluation.

Another approach for the improvement of brain targeting 

is represented by the combination of the drug with the living 

cells, acting as Trojan horses that can cross the BBB.27–29

In recent times, much attention has been given to nano-

technology in many areas because of its significant potential 

for the successful treatment of severe diseases such as cancer 

and neurological diseases.

A promising noninvasive approach to brain delivery 

involves nanomedicine, which takes advantage of the pos-

sible assembly of several biomaterials that can provide 

a delivery platform, at nanoscale size, capable of raising 

brain levels of drug substances otherwise unable to cross 

the BBB.23,30

The success of a therapeutic strategy by means of nano-

carriers depends on their ability to entrap drugs, to penetrate 

through anatomical barriers, and to release the incorporated 

drugs, accompanied by a good stability in the nanometric 

size range.26

One possible strategy is the drug encapsulation into 

brain-targeted nanocarriers such as polymeric nanopar-

ticles, dendrimers, vesicular carriers, metal, and silicon. 

These nanocarriers can have an organic or inorganic core 

and a surface coating with organic moieties able to interact 
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with the biological system at a molecular level for crossing 

the BBB.31

Modification of nanocarrier surface by adsorption or 

covalent linking of hydrophilic polymers, such as PEG, 

polysorbate 80, or polysaccharides, leads to an increase in 

nanocarrier circulation in the blood, whereas the surface 

derivatization with molecules that recognize cellular 

receptors facilitates the penetration of nanoparticles through 

the BBB.32

The strategy often termed active targeting involves two 

types of transports: adsorptive-mediated transcytosis (AMT) 

and receptor-mediated transcytosis (RMT). The AMT has 

gained considerable attention because several studies assess 

that this strategy has the possibility to enhance the transport 

of nanocarriers across the BBB, using cationic proteins or 

cell-penetrating peptides.33 However, as AMT is a nonspecific 

process, conjugation of such cationic proteins will also increase 

the adsorptive uptake process of nanocarriers in other parts of 

the body, which may possibly create toxic and immunogenic 

concerns. Transport of nanocarriers to the brain using the 

RMT process is more specific than AMT. The RMT involves 

addition of endogenous molecules on the nanocarrier surface, 

which are substrates for specific receptors expressed on the 

BBB. Addition of proteins (eg, transferrin, lactoferrin, Apoli-

poprotein E [ApoE]); peptides (eg, glutathione); or antitrans-

ferrin receptor antibody OX26 on the surface of liposomes, 

polymeric nanoparticles, and lipidic nanoparticles significantly 

increased the BBB penetrations of such nanocarriers.34

Size of the nanocarrier along with surface charge, surface 

hydration, and targeting strategy are important characteristics 

for development of a successful brain-targeted nanocolloid 

drug delivery system for glioblastoma multiforme (GBM) 

treatment. Among various possible nanocarriers, liposomes, 

polymeric nanoparticles, and lipid nanocarriers are the most 

widely studied, and will be discussed in detail in the follow-

ing sections.

Preliminary results reported in the large number of 

studies on the potential strategies to overcome and/or cross 

the BBB are encouraging, but it is far too early to draw any 

conclusion about the actual practical applications of these 

therapeutic approaches.

Challenge in nasal delivery to CNS
Nasal delivery has conventionally been restricted to topically/

locally acting therapeutic agents for the treatment of nasal 

problems (eg, cold and nasal hypersensitivity). Recently, 

nasal route received increased attention as a substitute for 

oral and parenteral routes for several systemic therapeutic 

agents. The highly vascularized and immunogenic nasal 

mucosa allows fast onset of action, enhanced bioavailability 

and patient compliance.35–37

The pioneering method of intranasal delivery for drug 

delivery into the CNS was first described in 1991 by 

Dr William H Frey, and nowadays, it has proven to be a 

safe and efficient way to deliver exogenous molecules to 

the CNS.38–42 After nasal administration for CNS delivery, 

four physiological steps are possible, and they include the 

olfactory nerve pathway, trigeminal nerve pathway, vascular 

pathway, and the lymphatic pathway.43

During the last two decades, four areas, including intra-

nasal delivery validation, pathway elucidation, intranasal 

delivery of various therapeutics for the treatment of 

neurological diseases, and enhancement of the efficiency of 

intranasal delivery, have been explored.44,45

Nasal cavity delivery and nasal absorption are promising 

approaches but are still uncertain. Direct intranasal transport 

is not always well established, and controversial results were 

obtained when similar substances were administered, and 

sometimes, even opposite results have been reported after 

nasal delivery to the CSF.46,47

A few years ago, Merkus and van den Berg,48 reviewing 

more than 100 papers, reported that no significant phar-

macokinetic evidence was yet capable of establishing that, 

in humans, the intranasal route of administration actually 

provides enhanced targeting to the CNS, compared to the 

systemic route.

The real potential of the nasal route for drug delivery 

purposes clearly needs to be explored, developing new 

approaches and amending theories.37

Nasal mucosal properties (ie, permeability to very large 

and polar molecules), are used in recent but still pioneering 

approaches, and among the various techniques, the permea-

bilization of the BBB via nasal mucosal engrafting could 

offer new important opportunities.

Nasal mucosal grafting: potential for 
drug delivery and implications for 
enzyme replacement therapies
Nasal mucosal grafting
Over the last few decades, the management of anterior skull 

base defects, CSF leaks, and encephaloceles by endoscopic, 

minimally invasive approaches is improving. Whether the 

etiology of these defects is spontaneous, traumatic, or surgical 

(eg, removal of brain tumors through the nose without facial 

incisions), the large majority of such defects can be repaired 

by means of free mucosal grafts that can be applied as a 

single layer reconstruction for small leaks or as a multilayer 

reconstruction for larger defects.49
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Middle turbinate, inferior turbinate, and nasal septum can 

be used as donor sites for free mucosal grafts for endoscopic 

endonasal reconstruction of the skull base. In this sense, 

the harvest of a nasal floor free mucosal graft was recently 

proposed as a rapid, potentially less morbid method.50 

Accessibility, ease of placement, and high take rate make 

free mucosal grafts suitable candidates for reconstruction 

of many skull base defects.51

The repairs by mucosal grafts are permanent, watertight, 

and immunocompetent, and they can also be used to replace 

large regions of the BCSFB within the arachnoid with 

relatively permeable mucosa.52,53 In principle, the engrafted 

mucosa can be dosed with therapeutic agents applied 

topically. Given the lack of underlying arachnoid membrane, 

these mucosal grafts, using purely autologous tissues, could 

be proposed to solve problems related to the BBB crossing 

by HMW or polar agents and a direct delivery to the brain 

and to the subarachnoid space (Figure 2).

This approach was tested for the first time by Bleier 

et al54 in a proof-of-concept extracranial graft model in 

mice. The applied mucosal grafting method was adapted 

by a surgical technique that is currently used in the field 

of endoscopic skull base surgery defects.55 The ability of 

septal mucosal grafts to allow diffusion of HMW markers 

into the CNS was investigated. A murine model, mimick-

ing the human skull base, was developed and validated. 

A polypropylene reservoir, allowing topical dosing of the 

graft with different fluorescent markers (20–500 kDa), was 

surgically implanted over the mucosal graft. The whole 

mucosal implant was well tolerated, and no evidence of 

subcutaneous infection or distress related to the surgi-

cal site was observed. Furthermore, the delivery via the 

mucosal graft was compared to the intranasal delivery, and 

a minimal delivery, similar to that of the negative control 

(dura membrane kept intact), was obtained. The direct 

exposure of the brain to the marker solution was used as 

positive control (no intervening dura or nasal mucosa). 

This study showed that the mucosal grafts allowed good 

permeability to HMW molecules and that the transport rate 

seemed to be molecular weight dependent. By extending 

the exposure duration, this effect was partially overcome. 

By developing different drug eluting polymers, the release 

rate can be modulated over time, and this could be a great 

challenge in combining innovative surgical and technologi-

cal approaches.54

The interesting findings of this study are limited by the 

possibility of comparing an animal model to a clinical setting 

owing to regional differences in convection throughout the 

murine and human brain. First of all, in humans, the ratio 

between mucosal graft area and brain volume ratio is much 

higher. In addition, in the clinical application, diffusion to 

more distal regions of the brain can be possible via CSF 

circulation, while it should be quite impossible in the murine 

model because of the occlusion of the smaller subarachnoid 

space after craniotomy.

Despite the aforementioned limitations of nasal mucosal 

grafting, the delivery of glial-derived neurotrophic factor 

(GDNF) was investigated in a mouse model for the treat-

ment of Parkinson disease (PD).56 In this study, a murine 

6-hydroxydopamine PD model was applied. A parietal 

craniotomy and arachnoid defect was repaired with a 

heterotopic donor mucosal graft. Given the permeability 

of these mucosal grafts to HMW molecules, as previously 

reported, the possibility, by means of this approach, to 

Figure 2 Graphic description of nasal mucosa graft.
Notes: The area circled in red indicates the nasal mucosal grafting area; the green arrow indicates absorption direction; and the white boxed area indicates removed bone 
and dura/arachnoid.
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bypass the BBB and to deliver HMW neuroactive sub-

stances, engrafted over an arachnoid defect, directly to the 

CNS was evaluated.54

GDNF was released by a polypropylene reservoir placed 

over the mucosal graft. Cyanoacrylate adhesive was used 

to attach the reservoir to the skull, and dental cement was 

applied to the skull. To maintain structural integrity, two 

bone screws were implanted into the skull before cement 

application.

GDNF was delivered through the mucosal graft, and the 

therapeutic efficacy was evaluated and compared with direct 

intrastriatal GDNF injection using behavioral assays (rotarod 

and apomorphine rotation). To compare the preservation of 

substantia nigra cell bodies, an immunohistological analy-

sis was also used. Both behavioral and histological results 

demonstrated the therapeutic efficacy of transmucosal GDNF 

delivery. No significant difference was reported in neuronal 

survival between the transmucosal and injected GDNF mice, 

suggesting that the transmucosal pathway could be as effective 

as direct intraparenchymal injection in GDNF delivering to 

the end-target structures deep within the brain. Furthermore, 

the proposed mucosal grafting method could show advantages 

over the simple intranasal drug delivery while avoiding the 

concerns over the limitations of olfactory uptake in humans. 

In principle, the graft may be placed adjacent to the sphenoid 

sinus, which creates an intrinsic reservoir capable of retaining 

a greater volume of any intranasally applied solution. This 

reservoir can also help to enhance mucosal residence time by 

limiting the immediate clearance of the drug from the nose 

because of the mucociliary clearance.57

This chirurgical procedure can be an efficient method to 

assure drug localization in the CNS, especially in the case 

of HMW drugs, such as enzymes that are widely used in the 

treatment of lysosomal storage diseases.

The local effect of this surgical procedure is the replace-

ment of BBB and BCSFB, while the effect on the remain-

ing part of BBB and BCSFB has not been evaluated and is 

not easily predictable by the results reported in the three 

cited research papers. Furthermore, the long-term effects of 

grafting nasal mucosa have not yet been evaluated because 

this technique has only been reported in a few very recent 

experimental studies on mice.54–56

Lysosomal storage diseases
Lysosomal storage diseases (LSDs) include more than 

50 inherited metabolic disorders characterized by the 

intralysosomal accumulation of undegraded substrates. 

Chemical properties of the accumulated substrate allow 

classification of the different types of LSDs. Individually, 

these disorders are rare, but their cumulative prevalence is 

relatively high when compared with other groups of rare 

diseases, and they reach an incidence of one over 8,000 

newborns.58

LSDs are responsible for various clinical consequences 

on multiple organs and systems with visceral, ocular, hema-

tological, skeletal, and neurological manifestations, and there 

is partial phenotypic overlap among different disorders. 

Symptoms may emerge in utero, during the newborn period, 

or in late adulthood. About 75% of LSD patients present a 

neurological impairment.

LSDs are often responsible for physical and neurologi-

cal disabilities, and they can interfere with patients’ health 

and life expectancy. Therefore, the LSD therapy requires a 

multidisciplinary collaboration.

LSDs are caused by mutations in genes encoding soluble 

acidic hydrolases, integral membrane proteins, activator 

proteins, transporter proteins, or nonlysosomal proteins that 

are necessary for the lysosomal functions. These deficien-

cies are responsible for intralysosomal accumulation of 

undegraded substrates in multiple tissues and organs.

Perturbation of lysosomal function may also lead to less 

obvious consequences, such as PD, which is the prevalent 

neurodegenerative disorder. Histopathologically, PD is 

characterized by the accumulation of insoluble aggregates 

of the presynaptic protein α-synuclein in typical intran-

euronal inclusions (Lewy bodies), by the selective loss of 

dopaminergic neurons in the substantia nigra, and clinically 

by movement and postural defects. Although the mechanisms 

underlying this connection have not been fully elucidated, 

dysfunctions in several lysosomal proteins (and lysosomal 

gene mutations) have been involved in the pathogenesis 

of PD.

Mutations in gene encodings, essential components of 

the endolysosomal–autophagic pathway, have also been 

described in other neurodegenerative diseases, including 

Alzheimer disease, Huntington disease, frontotemporal 

dementia, and Charcot-Marie-Tooth type 2B.

In the past 25 years, much effort has been directed at 

developing specific therapies to correct the metabolic defects 

of these disorders by means of different strategies that were 

intended to target a specific event in the pathogenetic cascade, 

increasing the activity of the defective enzyme or protein by 

different ways.

The normal enzyme, obtained by recombinant technol-

ogy or its precursor secreted in the circulation by engineered 

cells, may be administered through the endocytic pathway, by 
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intravenous administration. It is also possible to correct the 

gene mutation by delivering a wild-type copy of the mutated 

gene or to protect from degradation the mutant enzyme by 

increasing its residual activity.

Other strategies, aimed at restoring the equilibrium 

between the synthesis of substrates and their degradation 

by lysosomal enzymes, have been studied. They include 

reduction of substrate synthesis, enhancement of the clear-

ance of substrates from cells and tissues, and manipula-

tion of specific cellular pathways, involved in vesicle 

trafficking (Figure 3).59

Moreover, alterations in the BBB are likely involved in 

LSDs as well as in all neurodegenerative diseases.60 Actu-

ally, neuroinflammatory changes present in neurodegenera-

tion commonly affect the BBB or its function by altering 

transport systems, affecting the integrity of TJ, enhancing 

immune cell entry, or influencing the BBB’s role as a sig-

naling interface.61 In addition, ion balance, disruption of 

transport systems, and altered function of BBB constitutive 

enzymes61,62 are also induced by BBB dysfunction. The 

BBB impairment influences drug therapy, in particular the 

process regulating the entry of drugs normally excluded 

from the brain.61,63

Enzyme replacement therapy
Enzyme replacement therapy (ERT) is one of the approaches 

for several LSD treatments. In the early 1990s the efficacy 

of ERT in Gaucher disease was demonstrated, and this 

approach has been used to treat other LSDs, including Fabry 

disease, Pompe disease, and Mucopolysaccharidosis I, II, 

and VI.64–71

After the conclusion of the first phase of ERT develop-

ment, advantages and limitations of this approach have 

emerged. Important limitations include the reduced bio-

availability of intravenously injected recombinant enzymes, 

and, therefore, strategies to improve ERT efficacy need to 

be identified. Recombinant enzymes are HMW molecules 

that are unlikely diffuse across membranes and are unable 

to reach therapeutic concentrations in some target tissues, 

particularly the brain. An additional major goal in future years 

should be the discovery of a BBB crossing enzyme because 

two-thirds of LSDs are involved in neurological symptoms 

and progressive neurodegeneration.

Strategies to improve the delivery of enzymes to the 

CNS are currently undergoing preclinical and clinical evalu-

ation. For example, β-glucuronidase, which is deficient in 

Mucopolysaccharidosis VII, has been chemically modified to 

Figure 3 Schematic representation of therapeutic approaches to LSDs.
Abbreviations: LSDs, lysosomal storage diseases; ERT, enzyme replacement therapy.
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increase its plasma half-life and facilitate its traffic through 

the BBB.72,73 Other approaches consider the use of so-called 

Trojan horses, made of chimeric enzymes conjugated with 

peptides that can allow penetration through the BBB leading 

to brain delivery by specific pathways such as the apolipo-

protein and receptor pathways. These approaches have been 

evaluated in preclinical studies for α-iduronidase, iduronate-

2-sulfatase, arylsulfatase A, and tripeptidyl peptidase I.74–78

In addition to these approaches, preclinical studies 

are evaluating the use of invasive procedures to deliver 

recombinant enzymes directly into the CSF for the treat-

ment of several lysosomal disorders. Intrathecal and lum-

bar or cisterna magna punctures have been studied for the 

administration of various types of mucopolysaccharidoses 

in animal models.79–82 Intrathecal ERT has been translated 

into human therapy for mucopolysaccharidoses types I and 

VI. Devices for continuous intrathecal infusion have been 

developed and tested in preclinical studies. Some clinical 

trials of intrathecal administration of ERT are ongoing, and 

others have been completed. Invasive techniques for BBB 

crossing were based on neurosurgery or on a temporary 

chemical/physical disruption of the barrier, produced by 

biochemical and immunological changes or by an osmotic 

shift.83–85 However, both these approaches entail several 

drawbacks such as the invasiveness and the high costs of neu-

rosurgery, the physiological stress, or the transient increase 

in the intracranial pressure, along with high risk of infec-

tions and damages from toxins, due to the BBB temporary 

opening. Therefore, to improve drug delivery to the brain, 

noninvasive techniques have been explored, and among them 

the nanotechnology-based approach surely represents one of 

the most encouraging procedures.

To obtain a selective targeting to receptors highly 

expressed on the BBB, several possible ligands have been 

identified including transferrin, lactoferrin, insulin and leptin, 

and the LDL-receptor related protein LRP1.11 The proposed 

nanocarriers include a wide variety of drug-delivery vehi-

cles, including dendrimers, micelles, liposomes, nanoscale 

ceramics, and polymer nanoparticles.86–88 Different carriers 

offer different approaches to enzyme delivery. Liposomes 

are the first generation of nanoparticulate drug-delivery 

systems that reached the market, and they consist of one or 

more phospholipid bilayers delimiting an internal aqueous 

compartment. They are able to deliver hydrophobic, hydro-

philic, and amphiphilic molecules. It has been reported that 

β-galactosidase loaded liposomes injected by rat tail vein 

can penetrate the BBB and reach the lysosomes in the CNS 

more efficiently than the free enzyme.89 Similar results 

have been obtained by ex vivo and in vivo studies on 

saposin C-loaded liposomes that improve the neurologi-

cal condition.90 Liposomes modified with lysosomotropic 

octadecyl-rhodamine B (Rh) and loaded with therapeutic 

glucocerebroside velaglucerase α (VPRIVTM) increase 

lysosomal delivery of the enzyme into Gaucher cells.91 

Biodegradable and biocompatible nanoparticles, composed 

of poly (d,l-lactide-co-glycolide) (PLGA), have been inves-

tigated for recombinant proteins, plasmid DNA, and low 

molecular weight compounds brain delivery.92 Recently, 

in vitro and in vivo animal studies demonstrated the ability of 

PLGA nanoparticles, modified with glycopeptides (g7-NPs), 

to efficiently cross the BBB and to be transported intra- and 

intercellularly within vesicles for a more effective treatment 

of neurological disorders.93–95 Pegylated immunoliposomes, 

derivatized with the 8D3 antitransferrin receptor antibody, 

have been used to target the luciferase and α-galactosidase 

genes into the rat brain and to assure their activity after 

intracellular delivery.

Systemic gene therapy, together with several recombi-

nant vector systems, is under evaluation and appears to be 

promising.96,97 Finally, it was shown that hemopoietic stem 

cells, derived from the monocyte/macrophage lineage and 

genetically modified to produce replacement enzymes, are 

capable of crossing the BBB in rodent models and enter-

ing into the CNS.98,99 However, so far neither nanocarriers 

nor adeno-associated virus vectors nor cell-based therapies 

capable of crossing the BBB have reached clinical trials in 

LSD, for both technological and toxicological problems.

Conclusion
The BBB plays a fundamental role in protecting and main-

taining the homeostasis of the brain. For this reason, drug 

delivery to the brain is much more difficult than to other 

compartments of the body. The brain capillary endothelium 

excludes from the brain around 100% of large-molecule and 

more than 98% of small-molecule drugs.

Consequently, possible therapies with charged or mac-

romolecular drugs, which could be capable of preventing or 

even reversing certain neurologic diseases, are actually clini-

cally ineffective owing to their inability to cross the BBB. 

This is the central and crucial problem for an effective treat-

ment of both LSDs and the associated neuropathology.

The fact that therapeutic approaches capable of modify-

ing the natural evolution of many LSDs in the peripheral 

organs have been published and/or are under development 

(eg, enzyme replacement therapy, nanotechnology, gene 

therapy, and the use of stem cells) makes LSDs the ideal 
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environment in which to further investigate the relationship 

between lysosomal dysfunction-related neurodegeneration 

and the development of new strategies capable of crossing 

the BBB and reaching the brain compartment.

A number of studies showed that, in neurodegenerative 

diseases and LSDs, the function and integrity of the BBB and, 

in particular, of TJ, might be compromised. In these condi-

tions, an increased passive extravasation of solutes, including 

proteins up to at least a molecular weight of 150 kDa, into 

the brain can be demonstrated. In general, damage to the 

BBB can induce even worse CNS damages. Furthermore, 

the neuropathology, related to the accumulation of storage 

products, and the correlation between the two processes, 

needs to be better understood.

It must be clarified that the ERT treatment or other 

approaches must bypass the BBB barrier function. At present, 

the best way to reach the CNS crossing the BBB, whether by 

a clinical approach or a technological one using innovative 

drug delivery systems, is not clearly defined. Valid results 

obtained on a large-animal are still not available and the 

nasal mucosal grafting approach appears not yet feasible for 

clinical translation.

Mucosal grafting requires an endoscopic procedure, 

and this can seriously limit patient compliance. However, 

because the grafting technique is adapted from an existing 

endoscopic surgical procedure, its safety profile has been 

well established over several decades of clinical use and is 

associated with a lower morbidity rate than other currently 

accepted methods of BBB invasive penetration. It should be 

emphasized that this surgical procedure is quite invasive, but 

at present, patients are subjected to direct intracranial injec-

tion that is not always tolerated, because neurodegenerative 

diseases and LSDs are chronic and severely debilitating 

diseases, and to this day no therapy seems to be completely 

successful.100–102
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