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Abstract: The elderly population faces an increasing number of cases of chronic neurological 

conditions, such as epilepsy and Alzheimer’s disease. Because the elderly with epilepsy are 

commonly excluded from randomized controlled clinical trials, there are few rigorous studies 

to guide clinical practice. When the elderly are eligible for trials, they either rarely participate 

or frequently have poor adherence to therapy, thus limiting both generalizability and validity. 

In contrast, large observational data sets are increasingly available, but are susceptible to bias 

when using common analytic approaches. Recent developments in causal inference-analytic 

approaches also introduce the possibility of emulating randomized controlled trials to yield 

valid estimates. We provide a practical example of the application of the principles of causal 

inference to a large observational data set of patients with epilepsy. This review also provides a 

framework for comparative-effectiveness research in chronic neurological conditions.
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Introduction
Epilepsy is an incurable, life-threatening neurological disorder characterized by recur-

rent, spontaneous seizures that affects approximately 3 million in the US annually.1–3 

Epilepsy among the elderly has garnered attention in recent years, due to the dispro-

portionate rates of incidence in this population, compounding the existing disease 

burden and its negative impact on quality-of-life, eg, loss of a driver’s license and 

reduced independence.4–6 Half of all new-onset epileptic seizures are expected to occur 

in patients aged 60 years and above in 2020.7,8 The risk of seizure recurrence after a 

first seizure could be as high as 80%.9 Unfortunately, there have been few randomized 

clinical trials in the elderly that could guide therapy.

Moreover, many epilepsy patients have a complex constellation of other condi-

tions that might influence both therapy and outcomes. For example, increased survival 

in elderly people with other underlying medical complications may contribute to the 

observed increased rate of epilepsy.9–12 Neurodegenerative diseases are large contributors 

to the development of epilepsy, with Alzheimer’s disease patients experiencing a six- to 

tenfold increased risk of epilepsy when compared to age-matched healthy individuals.9 

Cerebrovascular complications (eg, stroke), cerebral tumors, and severe brain injury 

are also significant risk factors contributing to epilepsy in the elderly.10–12 There are 

no trials to date that account for both epilepsy and comorbid conditions in the elderly.

In this study, we aimed to review the limitations of traditional retrospective and 

prospective studies involving the elderly population with epilepsy. We then sought 
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to describe the application of a new model for conducting 

clinical research at the population level.

Scope of the problem
A total of 24 antiepileptic drugs (AEDs) are currently avail-

able in the US. While all have demonstrated efficacy to some 

degree, the amount of available information for each drug var-

ies, particularly with respect to side effects and toxicity.13–17 In 

general, most clinicians believe that the benefits of preventing 

seizure recurrence with AEDs outweigh the potential risks 

of drug therapy.18,19 Therefore, treatment with AEDs is cur-

rently recommended for epilepsy in the elderly.20,21 However, 

the most recent national practice guidelines do not rank 

AEDs.22–24 As a result, AED-prescribing practices within 

adult epilepsy patients vary widely, and no consensus exists 

regarding which drugs should be used as a form of first-line 

treatment in the elderly.24–27

The elderly are exceptional, due to known age-related 

metabolic changes, reduced drug clearance, and increased 

pharmacodynamic sensitivity.4,20,27 This age-group is more 

vulnerable to treatment side effects, including cogni-

tive impairment, vomiting, hepatic failure, and loss of 

mobility.28–34 Elderly patients often suffer from comorbid 

conditions, increasing the potential for drug–drug interac-

tions, and reducing efficacy and adherence to monitoring 

schedules.27,35,36 Clinicians are left with questions regarding 

1) which drug to prescribe for older adults that will be taken 

consistently, and 2) whether the drug(s) prescribed will 

achieve desired outcomes.

The current literature points to the need for more studies 

based on patient-centered outcomes for the elderly suffering 

from epilepsy. By identifying which drugs will lead to better 

seizure control, higher quality-of-life scores, fewer negative 

effects on cognition, and less frequent falls, physicians will 

be better able to create an optimized prescription regimen 

for these patients.37 However, because the elderly are com-

monly excluded from clinical trials, these outcomes remain 

underexplored.

Clinical trials
Clinical trials are regarded as the gold standard for defining 

optimal approaches to treatment. There are several major 

trial-related challenges that limit the likelihood that clinical 

trials can address the range of questions valuable for guid-

ing therapy (Table 1). Trials can be extremely expensive to 

conduct, with few funders willing to sponsor the multitude 

of trials that might be necessary to develop a robust evidence 

base. Even fewer funders are willing to support large com-

parative trials in which there is a direct analysis of different 

candidate therapies (as opposed to a comparison to placebos). 

In part because of cost, most trials attempt to examine clini-

cally homogeneous groups, and generally exclude those with 

multiple comorbidities, cognitive impairment, limited life 

expectancy, or functional limitations, which tend to exclude 

the modal elderly patient with seizures.38

Paradoxically, comorbidities that preclude participation 

in ED trials contribute to the unique burden of epilepsy 

observed in elderly patients. Compared with healthy indi-

viduals of the same age, patients with Alzheimer’s disease 

have a six- to tenfold increased risk of developing clinical 

seizures during the course of their illness.9 The paucity 

of comparative-effectiveness research involving patients 

with chronic neurological conditions, such as epilepsy and 

Alzheimer’s disease, as well as their lowered medication 

tolerance, limits the application of results from randomized 

clinical trials in this population.9,38,39

The International Conference on Harmonisation (ICH) 

guidelines on geriatrics (E7) were adopted in 1994 to improve 

Table 1 Comparison of the advantages and limitations of study strategies

Study stage/type Randomized clinical trial Prospective cohort Causal inference framework

Study design/major 
limitations

Many studies are unethical, 
impractical, or too expensive

Misclassification bias and under 
ascertainment with administrative 
data

Misclassification bias and under ascertainment with 
administrative data

Recruitment Expensive enrollment, 
multiple comorbid conditions, 
selection bias, limited 
external validity

Prospective, follow-up period might 
make it impractical or expensive

Retrospective, feasible within shorter period of 
time, less expensive

Randomization Yes No Yes
Treatment-group 
retention and 
statistical analysis

Limited tolerability for drugs, 
limited statistical power, 
limited intention-to-treat 
effect estimates

Individual preferences, comorbidities, 
or practice patterns may determine 
the treatment group and may be 
enigmatically confounded, restricting 
validity

The appearance of a drug or formulary creates a 
new treatment arm, independently of individual 
preferences, comorbidities, or practice patterns
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elderly representation in clinical trials; however, low enroll-

ment numbers persist.38 In clinical drug trials involving 

medications frequently prescribed to the elderly, less than 

10% of participants are above age 65 years, and only 1% 

are above age 75 years. This is particularly low, given the 

bimodal distribution of incident epilepsy, with pediatric and 

elderly patients representing over 50% of the population.39,40

Even though substantial societal resources are dedi-

cated to the conduct of randomized controlled trials that 

include the elderly population with epilepsy, most studies 

do not provide adequate clinical information, because they 

are only summarized by the “intention-to-treat effect”. In 

these intention-to-treat analyses, all persons, regardless 

of whether they obeyed the treatment regimens from the 

study’s protocol, are placed in the treatment arm they were 

randomized to.41

In epilepsy in particular, adherence to therapy tends to 

be poor in both trials and real-world practice. This variable 

adherence creates a major threat to the validity of random-

ized clinical trials to yield valid estimates of the treatment 

effects.41 Stated differently, epilepsy trials need to address 

potential time-varying confounders that can impact adher-

ence to the study protocol, as well as to outcomes. By add-

ing a properly conducted “per protocol analysis” to each 

intention-to-treat analysis in randomized trials, one can help 

adjust for these incomplete-adherence issues. Unfortunately, 

a universally accepted per protocol effect-estimation method 

does not currently exist. The naïve approach, “per protocol 

analysis”, is flawed, because it approximates nonadherence 

to occur at random. Modification of the prerandomization 

variables would lessen the impact of this bias, but this is not 

common in practice. In fact, most clinical trial protocols 

devote little if any attention to the estimation of the per 

protocol effect.41 With the aid of new statistical methods, 

which allow for manipulation of pre- and postrandomiza-

tion variables, one can obtain less biased per protocol effect 

estimates than those found through the naïve per protocol 

analysis.42

Even when eligible, recruitment rates among the elderly 

in trials are often lower than among younger patients. This 

raises further concerns about the ability to generalize find-

ings beyond the narrow group of trial subjects. In summary, 

even if substantial resources are allocated to conduct large 

randomized clinical trials targeting the elderly population, 

there might still be a gap in the literature with respect to 

treatment effectiveness (ie, efficacy of treatments in the real 

world), which includes adjustment for real-world adherence 

to treatment.

Observational studies
Randomized experiments often exclude the elderly, and 

many experiments are simply impractical.9,38,39 The next-best 

alternative to a randomized experiment is an observational 

study. Observational studies are promising, as observational 

data sets of elderly patients with epilepsy have become 

widely available with the advent and large-scale adoption 

of electronic health records, linked registry-claim data, and 

validated-claims data sets. However, common observational 

studies are scrutinized on the basis of both internal valid-

ity (the strength of the conclusions from the study) and 

external validity (the ability to generalize study results to 

a broader population). Internal validity is assessed on the 

basis of whether the observed changes can be credited to 

the exposure/intervention, and not to any systemic error in 

the study. A common cause of lack of internal validity is 

lacking a control group, or by including a noncomparable 

group.43 External validity refers to generalizability of study 

results to other populations and settings. In this way, inter-

nal validity is required for external validation, as a valida-

tion of the causal relationship is necessary before it can be 

applied universally.43 As outlined in Table 1, conventional 

observational studies (eg, comparative cohorts and case-

control studies) face major challenges related to causality. 

For instance, individual preferences, practice patterns, and 

policy decisions determine the treatment group and may be 

enigmatically confounded, restricting validity.43 The study 

subjects, sampling method, and variable measures may all 

contribute to random variation.43

A number of statistical tools now exist for use in obser-

vational data to assess causality better, allowing for less 

biased effect estimates.42 These new forms of analysis, 

termed “causal inference”, have been used in comparative-

effectiveness research using large observational data, and 

have been particularly helpful in the study of chronic con-

ditions in which enrollment and adherence to treatment is 

highly variable.44,45 The effectiveness of the causal inference 

framework lies in its ability to make use of the counterfac-

tual theory for outcome comparisons in point treatments 

and sustained-treatment strategies, organize and combine 

analytic approaches throughout literature, provide struc-

tured criticism of observational studies, and avoid common 

methodological pitfalls. Previous work has demonstrated the 

application of the causal inference framework across clinical 

trial treatment of chronic conditions, such as HIV and cancer, 

though this approach has rarely been used within neurol-

ogy.44,46 The next section provides a practical example of the 

application of the causal inference framework to emulate a 
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clinical trial examining the effect of AED choice on risk of 

seizure recurrence.

Emulating the target trial using 
observational data
We wish to estimate the 1-year risk of emergency room 

visits for seizures among elderly patients treated with a 

new-generation vs old-generation AED (eg, levetiracetam 

vs phenytoin) using a claims database, as in Table 2 and 3.

Eligibility criteria
Analysis of retrospective data using the causal inference 

framework depends on concordance between the study ques-

tion and billing-codification scheme. If we wish to specify 

that all eligible patients are required to have an electroen-

cephalogram with focal interictal abnormalities suggestive 

of localization-related epilepsy, excluding patients with 

abnormalities suggestive of generalized epilepsy, we must 

ensure the claim data set includes these findings or reconsider 

the eligibility criteria and question of interest.

In true randomized controlled trials, expected engage-

ment in follow-up may be defined and measured during the 

recruitment process, while it is often problematic in observa-

tional analyses. The analysis of retrospective data using the 

causal inference framework can combat this issue by exam-

ining the contact level between individuals and their health 

care providers prior to baseline. It would not be appropriate 

simply to exclude those with missing outcome data due to 

lack of follow-up (ie, biased censored data).47

Treatment strategies
Most randomized controlled clinical trials compare treatment 

strategies under ideal conditions (ie, controlled). Pragmatic 

clinical trials compare treatment strategies under real-world 

conditions. For instance, the treatment strategies are often 

controlled (eg, placebo vs active drug), but compliance with 

monitoring schedules or study protocol may not be. In using 

retrospective data in which neither treatment strategies nor 

outcomes assessment are controlled, we need to analyze the 

data in a way that emulates a random assignment of treat-

ment strategies (termed here emulated trials using the causal 

inference framework).

The use of a natural experiment created by changes in the 

patent protection of a new drug, such as levetiracetam, is an 

example of how we can emulate a random allocation of treat-

ment strategies (ie, an assumption that patent-status changes 

lead to changes in the unit prices and formulary placement, 

and that the changes are unrelated to any individual patient’s 

clinical status). In this example, an observational trial using 

the causal inference approach will use the changes in pre-

scribing patterns due to more availability of the drug as an 

independent instrument of treatment allocation, which is a 

factor not influenced by other predictor variables (eg, patient’s 

clinical status). To illustrate the feasibility of this example, 

we analyzed anti-seizure prescription fills (phenytoin vs. 

levetiracetam) by Medicare beneficiaries aged 65+ years in 

2007 and 2010, using data from the Medicare Part D pro-

gram (Figure 1 and Table 4). In addition, we examined the 

changes in unit prices (levetiracetam lost its patent protection 

in 2009). In this example, the shift in prescribing patterns 

identifies two groups using levetiracetam’s expiration year: 

1) patent protected (older) – most patients received older 

drugs, and 2) patent expired (newer) – most patients received 

newer drugs. Analysis of retrospective data using the causal 

inference approach will then assess outcomes over a 2-year 

Table 2 Summary of protocol of target trial to estimate effect 
of epilepsy therapy (old- vs new-generation antiepileptic drug 
[AED]) on 1-year risk of seizure recurrence

Eligibility criteria Patients with new diagnosis of epilepsy 
2009–2014 older than 65 years with no 
AED use in previous 2 years

Treatment strategies: 
new- vs old-generation 
AED

Initiate therapy with an old- vs new-
generation AEDa and remain on it during 
the 1-year follow-up period

Assignment 
procedures

Participants will be randomly assigned (ie, 
natural experiment) to either strategy at 
baseline, and will be aware of the strategy 
to which they have been assigned

Follow-up period Starts at randomization and ends at 
diagnosis of seizure recurrence, death, 
loss to follow-up, or 1 year after baseline, 
whichever occurs first

Outcome Seizure recurrence diagnosed at office 
visits or emergency rooms by a primary 
care physician, neurologist, or emergency 
physician within 1 year of baseline

Causal contrasts of 
interest

Intention-to-treat effect, per protocol effect

Analysis plan Intention-to-treat effect estimated via 
comparison of 1-year seizure-recurrence 
risk among individuals assigned to each 
treatment strategy. Per-protocol effect 
estimation requires adjustment for pre- and 
postbaseline prognostic factors associated 
with adherence to the strategies of interest. 
All analysis will be adjusted for pre- and 
postbaseline prognostic factors associated 
with loss to follow-up. This analysis plan 
implies that the investigators prespecify and 
collect data on the adjustment factors

Note: aOld = AED marketed before 1992, new = AED marketed after 1992.
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panel: 2008–2009 (patent protected) and 2011–2012 (patent 

expired), as in Figure 2.48,49

Assignment procedures
Randomized controlled clinical trials are frequently based 

on blind assignment, whereas analysis of retrospective data 

using the causal inference framework, termed here “emulated 

target trials”, often include participants whose treatments 

are known to study investigators.48,50 The goal is to compare 

realistic treatment strategies in persons who are aware of 

care received.

It is necessary to fine-tune baseline confounding factors, 

ensuring comparability among the groups in order to mimic 

the random assignment of strategies. Comparability here 

means that the confounders are symmetrically distributed 

among the groups, which is the principal advantage of ran-

domization. An asymmetrically distributed confounding fac-

tor leads to a confounding bias and thus erroneously derived 

associations between exposure and outcome. For instance, 

concurrent use of a benzodiazepine may confound the asso-

ciation between a new AED (eg, phenytoin vs placebo) and 

seizure control. In this scenario, comparable groups should 

have the use of benzodiazepine symmetrically distributed.

Confounding bias is especially a challenge when the target 

trial aims to compare an active treatment to no treatment (ie, 

not even placebo).The accepted modes of fine-tuning baseline 

confounders to ensure that sure potential confounders are 

symmetrically distributed include matching, stratification or 

regression, standardization or inverse probability weighting, 

g-estimation, doubly robust methods, and propensity-score 

matching. Hernán and Robins42 can be referred for a detailed 

description of each of these methods.44,45,50,51 However, this 

issue does not appear often in epilepsy-related trials, as only 

a small portion of epileptic patients decline treatment.52 

Moreover, with the use of indirect approaches, such as 

“natural experiments”, we can accurately alert ourselves of 

confounding biases (Figure 2 and Table 3).

The term “natural experiment” in population-based 

research means an event not under the control of research-

ers, but which researchers can use to study the association 

between the occurrences of the event on outcomes. Typical 

examples involve the introduction of free services previously 

unaffordable, such as with the Patient Protection and Afford-

able Care Act in the US, or a new drug, which represent a 

new event independent of patient baseline comorbid condi-

tions or severity. Nevertheless, it is possible that even after 

balancing measured confounders, the analysis might still be 

confounded by unmeasured variables. In our example, it is 

possible that differing degrees of generosity of any Medicare 

supplemental insurance (eg, patient cost-sharing, as deter-

mined by Medigap insurance) could affect the likelihood 

that patients receive the proper treatment.53 This is a major 
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Figure 1 Changes in antiepileptic-drug choice (patterns of use and cost).
Notes: From 2007 to 2010, there were substantial changes in the use and the costs of phenytoin and levetiracetam. Phenytoin: 32% decrease in fills/person-year with 32% 
decrease in mean cost/day. Levetiracetam: 27% increase in prescriptions filled/person-year with 70% decrease in mean cost/day.

Figure 2 Natural experiment created by expiration in patent protection.
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threat to using causal inference approaches, with patient 

cost-sharing levels (or overall insurance generosity) being 

an unmeasured confounder.

Furthermore, information sources previously believed 

to be impractical for large-scale research can be used to 

lessen the impact of unmeasured confounding. For example, 

manual medical-chart review may be eliminated with the 

use of novel technologies for natural language and advanced 

image processing. Machine-learning tools and new computer-

science techniques may function to help investigators identify 

combinations of variables that work together to decrease 

confounding when compared to traditional methods.54

Negative- or positive-control outcomes prove to be an 

adequate check for confounding bias when the magnitude of 

their effect is not zero but approximately known. In a nega-

tive-control outcome, the exposure to a drug is not expected 

to be associated with the control outcome. For instance, 

AEDs do not affect the risk of developing lung cancers based 

on prior knowledge and safety drug trials. One can use the 

rate of hospitalizations for lung cancer after exposure to 

phenytoin vs levetiracetam as a negative-control outcome. In 

that case, the primary hypothesis is that the effect of initiat-

ing an antiseizure drug is unlikely to be related to the risk of 

hospitalizations for lung cancer or related risk factors (eg, 

smoking). In this example, if the patients receiving phenytoin 

prove to be more likely to develop lung cancer (ie, a result 

with no reasonable biological explanation), then this indi-

cates a residual confounding (eg, physicians systematically 

chose to give phenytoin to potentially sicker patients).54 In a 

positive-control outcome strategy, the outcomes are known 

to be affected by the drug. In that case, lack of an association 

between the exposure and the outcome should raise concern 

for residual confounding. For instance, patients on phenytoin 

should have frequent drug-level monitoring (ie, expected 

frequent lab work orders), while patients on levetiracetam 

are not required to have any drug-level monitoring, unless 

there is a concern for noncompliance with treatment. If the 

rate of drug-level monitoring proves to be greater on the 

levetiracetam arm, there may be residual confounding (eg, 

physicians systematically chose to give levetiracetam to 

potentially noncompliant patients). In every case, negative 

or positive outcomes are identified a priori. Tan et al provide 

a framework for selecting control outcomes and a series of 

examples from previous studies.54

Outcome
In our example, we examine treatment-specific event rates 

suggesting seizure recurrence within 1 year. We can create 

two variables to measure events suggestive of seizure recur-

rence: 1) epilepsy-related ER visit rates within the 1-year 

study period, and 2) epilepsy-related outpatient physician-

visit rates. In this example, epilepsy-related health care 

may be defined as an event associated with an International 

Classification of Diseases (ICD)-9 code 345.x, an AED 

code, or an epilepsy-specific event code.3,54–57 Independent 

outcome validation is recommended, as studies without it 

have been shown to result in misleading effect estimates. In 

our example, rate of seizure recurrence among phenytoin 

users may vary as a function of fluctuations in drug levels, 

resulting in more frequent office visits related to safety 

monitoring relative to levetiracetam users. Such a factor 

could cause an inflated estimation of seizure recurrence in 

the phenytoin group without biological basis. Unfortunately, 

because most treating physicians are aware of the treatment 

received by their patients, observational data alone cannot 

be used to create a trial with systematic and blind-outcome 

ascertainment, unless the outcome ascertainment is indepen-

dent of treatment history.

Causal contrast(s) of interest
Several measures of causal effect are of particular inter-

est in true randomized trials. Typical examples include the 

intention-to-treat effect (ie, the comparative effect of being 

Table 3 Treatment allocation based on a natural experiment

Treatment 
allocation

Treatment allocation Outcome 
assessment

Patent protected 
(before 2009)

Majority of patients receiving 
phenytoin (2007–2008)

Seizure frequency 
(2009–2010)

Patent expired 
(after 2009)

Majority of patients receiving 
levetiracetam (2010–2011)

Seizure frequency 
(2012–2013)

Notes: Measurement of prescription patterns before and after patent serves as 
one such natural experiment, in which changes in the effective antiepileptic-drug 
choice set are used as an independent instrument of treatment allocation. The 
natural experiment allows for identification of two groups using levetiracetam’s 
expiration year (2009): 1) patent protected – most patients received older drugs 
(eg, phenytoin), and 2) patent expired – most patients received newer drugs (eg, 
levetiracetam). The outcomes can now be assessed over a 2-year panel: 2009–2010 
(patent protected) and 2012–2013 (patent expired).

Table 4 Changes in the anti-epileptic drug choice (demographics 
of the sample)

2007 Calendar 
Year

2010 Calendar  
Year

Subjects >4M >4M
Female 60% 59%
Low income subsidy 31% 31%
Dual eligible beneficiarya 19% 8%
Age (mean, SD) 70 (12) 70 (13)
Risk scoreb 1.08 0.98

Note: aDual eligible beneficiary for Medicare-Medicaid, brisk score refers to part D 
risk adjustment score based on diagnoses. Part D refers to the Medicare files that 
contains information about medication fills.
Abbreviation: M, million.
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placed in a certain treatment strategy at baseline) and per 

protocol effect (ie, the comparative effect of following up 

with the treatment strategies in the study protocol).58,59 In 

the analysis of retrospective data using the causal inference 

approach, It is important to estimate both the intention-to-

treat effect and the per protocol effect.

Analysis plan
In a true randomized trial, the intention-to-treat effect is 

estimated by conduction of an intention-to-treat analysis 

comparing the results of the groups assigned to each treat-

ment strategy. Unfortunately, when observational data 

already exist, performing an intention-to-treat analysis is 

nearly impossible. The closest analog to an intention-to-treat 

analysis is a comparison of treatment-strategy initiators. This 

comparison mimics the intention-to-treat analysis in target 

trials at baseline, whether or not individuals continue with 

the strategies thereafter.

Data on AED-choice set is analogous to intention-to-

treat analysis. Data on patients who are prescribed but have 

not started treatment (ie, evidence of prescription, but no 

evidence of dispensing) would be analogous to a per proto-

col analysis. In our example, we may control for potential 

confounders by including them as covariates in multivariable-

adjusted regression models. These covariates might include 

patient, physician, insurance, and area traits, as well as 

additional measures, such as exposure to other drugs (eg, 

antiseizure-drug polypharmacy, antiseizure-drug indication).

As in traditional regression analysis, we may also control 

for potential confounders by using a propensity score-

matching strategy. This model calculates propensity scores 

using a logistic regression model to estimate the probability 

of an antiseizure-drug choice. Covariates related to the anti-

seizure-drug prescription should be included in the regression 

model used to compute the propensity score. Each patient 

who was prescribed phenytoin is then matched to a patient 

with a similar propensity score who received levetiracetam.45 

We must also be aware that drug exposure, as well as covari-

ates, are likely to change during the 1-year follow-up period, 

which could result in a confounding of treatment effective-

ness. When this occurs, the investigator(s) should turn to 

the per protocol effect for evidence of confounding.58 In our 

example, the impact of these assumptions can be addressed 

by using inverse-probability-of-treatment weighting. In this 

method of analysis, we calculate the parameters of a marginal 

structural model of time to seizure recurrence and develop a 

Fine–Gray competing-risk model as a modified risk set that 

accounts for outcome events due to competing risks.45 Then, 

we develop estimations of additional outcomes, such as cost 

for epilepsy care, and explore additional deterministic and 

probabilistic sensitivity analysis. Hernán and Robins42 can 

be referred for a comprehensive description of each of these 

terms and methods.44,45,50,51

Finally, unmeasured confounders in observational stud-

ies may result in biased effect estimates, which present a 

major threat to causal inference approaches. As outlined in 

the “Assignment procedures” section, differences in care 

access are possible (eg, patient cost-sharing), which could 

affect the likelihood that patients receive proper treatment.53 

Several approaches can evaluate the likelihood of this threat: 

1) comparing 2011–2012 data to earlier periods, assessing 

the potential magnitude and impact of this bias, as described 

earlier; 2) using additional data, such as national surveys, to 

estimate the local area percentage use of specific insurance 

plans; 3) focusing on the subgroup of beneficiaries who 

have insurance plans that guarantee negligible cost-sharing; 

and 4) increasing the number of measured traits, eg, using a 

high-dimensional propensity score.

In practice, as the number of measured traits increases, 

the probability that there are relevant unmeasured factors 

influencing key variables will decrease.59 Basic information 

on unmeasured variables is captured by a collection of mea-

sured traits, including patient and physician traits, which are 

associated with the unmeasured factor. For example, sicker 

patients tend to have more contact with physicians, and 

appear to have a greater likelihood of receiving antiseizure 

drugs.60 Validation of the observational data using a subset 

of longitudinal medical records is warranted. Two other 

considerations should be borne in mind: defining time zero 

and specifying a grace period.

Defining time zero
Definition of baseline, or a time zero to follow-up, is a key 

aspect of successful target-trial emulation. This is the point 

where study outcomes begin to be quantified and all eligibil-

ity criteria must be met. Start time is defined as the point at 

which treatment strategy is assigned. Any treatment strate-

gies started after randomization could cause selection bias, 

as every outcome case between randomization and time zero 

would be omitted from analysis.

When utilizing observational data, the ideal time zero 

is when a patient who meets the eligibility criteria begins a 

treatment strategy. This can become problematic, because 

one individual may meet eligibility at many different times. 

For instance, if a study aims to compare seizure prophylaxis 

during and early after craniotomy of brain tumors for patients 

on phenytoin vs levetiracetam, the follow-up start time is in 

the immediate postoperative period.58,59 The follow-up begins 
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when eligibility criteria are met, but this time may vary from 

individual to individual.

Specifying a grace period
A pragmatic trial is often designed to allow for the constraints 

faced by decision makers in practice. For example, once a 

patient and his clinician agree to initiation of AED therapy, it 

may take between a few minutes (eg, in an emergency room 

situation) to several weeks for the patient to receive the therapy 

(eg, in an outpatient setting with insurance-driven preauthoriza-

tion paperwork). Another example is the difference in titration 

schedules. One antiepileptic may require a titration schedule 

(eg, lamotrigine), where the patient remains on a subtherapeu-

tic dose until reaching a target dose within 6–8 weeks, whereas 

other AEDs have the propensity to be safely administered at 

their target dose within days to hours. A possible way to cir-

cumvent these variations would be to have the trial protocol 

dictate that a patient with the initial AED strategy is given a 

2-month grace period to confirm compliance with the protocol, 

as long as therapy is begun within a month of randomization.

If no grace period were allowed at randomization for a 

target trial aimed at examining AED therapy, then the trial 

would be inadequate, failing to adopt strategies applicable 

to clinical practice. When using grace periods in target trials 

with observational data, it is important to make this grace 

period analogous, beginning at time zero. Implementation 

of such a grace period would increase the realism of the 

strategies and the number of eligible participants from the 

observational database.

A consequence of having a grace period is that for the 

duration of the grace period, an individual’s observational 

data is consistent with more than one strategy. In our 

example, the introduction of a 2-month grace period implies 

that the strategies are redefined as initiation of phenytoin or 

levetiracetam within 2 months of eligibility. Therefore, a 

patient who starts either therapy in month 2 after baseline 

has data consistent with both strategies during months 1 and 

2. Whenever a patient’s data at baseline are consistent with 

initiation of two or more treatment strategies, one possibility 

is to assign them randomly to one of them.

Consequently, the patient will have data in line with both 

strategies during the first 2 months. If the patient dies dur-

ing this time period, how does the investigator decide which 

strategy to assign them? There are two possibilities: 1) ran-

domly assign the patient to either strategy, or 2) create two 

copies of the patient (ie, clones), with each clone assigned 

to a different strategy.34–37 When using clones, however, it is 

important to censor them once their data lose consistency 

with the strategy to which they were appointed. For instance, 

if a patient began therapy at month 2, the clone placed in the 

“never initiate therapy” strategy would be censored at that 

time. However, time-varying factors must be adjusted for 

(with inverse-probability weighting, for example) to avoid 

any bias introduced via censoring.58,59

Cloning and censoring are not perfect techniques. For 

example, the intention-to-treat effect cannot be properly 

replicated, since each individual was placed in many or all 

strategies at baseline. Therefore, contrasting based on base-

line assignment, such as an intention-to-treat analysis, can 

provide a comparison of groups with identical outcomes. 

The incorporation of a grace period at baseline can permit 

investigation of the target trial per protocol effect.

Recommendations
Neurologists and clinical neuroscience researchers should 

learn to use causal inference tools with both experimental 

and observational data. These approaches are particularly 

critical with respect to the care of elderly patients with 

epilepsy.
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