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Abstract: Tedizolid phosphate has high activity against the Gram-positive microorganisms 

mainly involved in acute bacterial skin and skin structure infections, such as strains of Staphylo-

coccus aureus (including methicillin-resistant S. aureus strains and methicillin-sensitive S. aureus 

strains), Streptococcus pyogenes, Streptococcus agalactiae, the Streptococcus anginosus group, 

and Enterococcus faecalis, including those with some mechanism of resistance limiting the use 

of linezolid. The area under the curve for time 0–24 hours/minimum inhibitory concentration 

(MIC) pharmacodynamic ratio has shown the best correlation with the efficacy of tedizolid, 

versus the time above MIC ratio and the maximum drug concentration/minimum inhibitory 

concentration ratio. Administration of this antibiotic for 6 days has shown its noninferiority 

versus administration of linezolid for 10 days in patients with skin and skin structure infections 

enrolled in two Phase III studies (ESTABLISH-1 and ESTABLISH-2). Tedizolid’s more favor-

able safety profile and dosage regimen, which allow once-daily administration, versus linezolid, 

position it as a good therapeutic alternative. However, whether or not the greater economic cost 

associated with this antibiotic is offset by its shorter treatment duration and possibility of oral 

administration in routine clinical practice has yet to be clarified.

Keywords: tedizolid, tedizolid phosphate, acute bacterial skin and skin structure infections, 

oxazolidinone, linezolid resistance

Introduction to the management of acute bacterial 
skin and skin structure infections
An acute bacterial skin and skin structure infection (ABSSSI) is defined as “a bacterial 

infection of the skin with a lesion size area of at least 75 cm2 (lesion size measured by 

the area of redness, edema, or induration).”1 This definition was included in a guidance 

document prepared by the US Food and Drug Administration (FDA) with the aim of 

guiding the development of new antimicrobial agents for ABSSSI. ABSSSIs include 

cellulitis and/or erysipelas, wound infection, and major cutaneous abscesses.

In recent years, there has been a considerable increase in the number of emergency 

department visits that may be attributed to bacterial skin and skin structure infections 

(SSSIs).2 This type of infection was diagnosed in 1.2 million visits in 1993 versus 3.4 

million visits in 2005 (95% confidence interval [CI]: 2.8–4.1; P,0.001) in a study 

conducted in emergency departments in the USA.2 At the same time, SSSIs were 

diagnosed in 1.35% (95% CI: 1.07–1.64) of all emergency department visits in 1993 

versus 2.98% (95% CI: 2.40–3.56) in 2005 (P,0.001).2

The microorganisms commonly involved in ABSSIs are Streptococcus pyogenes 

and Staphylococcus aureus strains, including methicillin-resistant strains. Streptococcus 

spp., Enterococcus faecalis, and Gram-negative bacteria must also be considered to 

a limited extent.1
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The reported increase in the number of SSSIs paralleled 

the emergence of methicillin-resistant S. aureus (MRSA) 

strains in the community.2 In a study conducted in eleven 

emergency departments in the USA in August 2004, MRSA 

strains were isolated in 59% of patients with an SSSI (range: 

15%–74%).3 MRSA was the main microorganism isolated 

in ten of the eleven emergency departments included in the 

study. A total of 216 (99%) of the 218 MRSA strains ana-

lyzed had characteristics of community-acquired MRSA. 

Among them, the USA 300 strain was isolated in the major-

ity of cases (212 [98.1%]). These results were reproduced 

in a subsequent prevalence study conducted in 12 hospital 

emergency departments in the USA in August 2008.4 How-

ever, variability based on site was lower in this year (range: 

38%–84%).

At the same time, the prevalence of MRSA in SSSIs was 

46% in 96 patients with these infections enrolled in a study 

conducted in an emergency department in a Los Angeles 

hospital.5 The rate of MRSA SSSIs increased from 29% 

in 2001–2002 to 64% in 2003–2004. The prescription of 

antibiotics with activity against community-acquired MRSA 

strains has paralleled this microorganism’s epidemiology. 

From 1993 to 2001, this was limited, but in 2005, it increased 

to 38% (95% CI: 30–45; P,0.001).2

The data from studies conducted in Europe have shown 

a similar situation.6 In a study conducted at 106 sites in 

19 European countries, S. aureus strains were isolated in 

32.6% of 3,000 strains associated with SSSIs.7 More than 

50% of these corresponded to MRSA strains.

The increase in the prevalence of community-acquired 

MRSA strains has greatly impacted the selection of empiri-

cal antibiotic treatment for ABSSSIs (Table 1). Thus, for 

treating an abscess, the Infectious Diseases Society of 

America guidelines recommend, in addition to incision and 

drainage, administering an antibiotic active against MRSA 

when the initial antibiotic treatment has failed or when the 

patient has immunosuppression or systemic inflammatory 

response syndrome and hypotension.8 In the case of cellulitis 

and erysipelas, including an antibiotic with activity against 

MRSA, as well as against streptococcus, is recommended 

when the infection is associated with penetrating trauma or 

when there is evidence of MRSA infection, MRSA coloniza-

tion, parenteral drug use, or systemic inflammatory response 

syndrome.8 Finally, including an antimicrobial agent active 

against MRSA in the treatment of surgical wound infections 

is recommended in patients with risk factors for infection by 

this microorganism (nasal colonization or prior infection, 

hospitalization, or recent antibiotic administration).8

These guidelines were published before the FDA 

approved other antibiotics with activity against Gram-positive  

microorganisms, including MRSA, in ABSSSIs. These 

include tedizolid, belonging to the oxazolidinone family, and 

dalbavancin and oritavancin, both belonging to the lipogly-

copeptide group. The therapeutic role of these compounds 

was evaluated in a previous review.9 Tedizolid’s different 

pharmacological and microbiological characteristics and 

efficacy in SSSIs will be discussed throughout this review. 

Regarding lipoglycopeptides, both oritavancin and dalba-

vancin may be suitable alternatives in patients with a history 

of prior catheter-related complications and patients who are 

candidates for receiving antibiotic treatment on an outpatient 

basis or with low adherence to oral antibiotic treatment.9 In 

addition, oritavancin is the only glycopeptide that shows 

activity against vanA-mediated vancomycin-resistant 

Enterococcus spp., which positions this antimicrobial agent 

as a good treatment option in infections caused by these 

microorganisms.9 However, some issues related to these 

compounds remain to be clarified.9 Notable among them is 

the absence of safety data related to the long-term administra-

tion of multiple doses of these antimicrobial agents, which 

Table 1 Empirical treatment of acute bacterial skin and skin 
structure infections

Type of acute bacterial skin or skin structure infection

Abscess
Mild Incision and drainage
Moderate 1.	Incision and drainage

2.	Cotrimoxazole or doxycycline
Severe 1.	Incision and drainage

2.	Vancomycin, daptomycin, linezolid, 
telavancin, or ceftaroline

Cellulitis/erysipelas
Mild Oral treatment: penicillin VK, 

cephalosporin, dicloxacillin, or 
clindamycin

Moderate IV treatment: penicillin, ceftriaxone, 
cefazolin, or clindamycin

Severe Vancomycin + piperacillin/tazobactam
Surgical wound infection

Clean surgery of the trunk,  
head and neck, or limbs

1.	Incision and drainage
2.	Cefazolin or penicillin active 

against MSSA
3.	Vancomycin, linezolid, daptomycin, 

telavancin, or ceftaroline if risk 
factors for MRSA

Surgery of the axilla, gastro
intestinal tract, perineum,  
or female genital tracta

1.	Cephalosporin + metronidazole
2.	Levofloxacin + metronidazole
3.	Carbapenem

Note: aAntibiotics active against Gram-negatives and against anaerobes, such as a 
cephalosporin or fluoroquinolone combined with metronidazole.
Abbreviations: MRSA, methicillin-resistant Staphylococcus aureus; MSSA, methicillin-
sensitive S. aureus; IV, intravenous.
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is very important for being able to identify their positioning 

in ABSSSIs.9 However, studying this issue will not be free 

from complications in the case of some compounds such as 

oritavancin and dalbavancin, given that they are administered 

in one, or one or two doses, respectively.

Pharmacology
Tedizolid phosphate (TR-701) is an inactive synthetic com-

pound that is rapidly hydrolyzed by phosphates in the body 

to the active compound tedizolid (TR-700), whose chemical 

structure is (R)-3-(4-(2-(2-methyltetrazole-5-yl)pyridine-

5-yl)-3-fluorophenyl)-5-hydroxymethyl oxazolidinone-2-

one.10,11

Similar to linezolid, tedizolid has a class pharma-

cophore group, the 3-(3-fluorophenyl)-oxazolidinone ring 

(ring A), which places these antimicrobial agents in the 

oxazolidinone family.

Both compounds have a lateral chain at C-5 of ring A 

that grants them greater potency against microorganisms 

susceptible to this family of antibiotics (Gram-positive micro-

organisms and mycobacteria). However, there are structural 

differences between the two antimicrobial agents. The C-5 

methylcetamide chain of the linezolid oxazolidinone ring is 

replaced by a hydroxymethyl group in tedizolid. This struc-

tural modification was initially associated with a decrease in 

its potency. Subsequently, it was observed that the addition 

of the methyltetrazole ring to D not only offset this lower 

activity of tedizolid but also increased its antimicrobial 

potency versus linezolid.12

In addition, after evaluating several prodrugs with the 

aim of increasing the bioavailability of tedizolid, it was 

found that phosphorylation at C-5 (monophosphate ester) 

increased water solubility and stability in the pH range 

from 3 to 7 and facilitated rapid hydrolysis by nonspecific 

endogenous phosphatases.13

In addition, it will also represent an improvement in 

the interaction profile with monoamine oxidase (MAO) 

(Figure 1). As a result, it is administered in the form of tedi-

zolid phosphate both orally and intravenously.

Mode of action
Similar to linezolid, tedizolid exerts its bacteriostatic activity 

by inhibiting bacterial protein synthesis by binding to the 

23S rRNA of the 50S ribosomal subunit, thus preventing the 

formation of the 70S ribosomal initiation complex formed 

by binding the 50S, 70S, and N-formylmethionine-tRNA 

subunits. It interrupts the translation process by blocking 

the alignment of aminoacyl-tRNA at the peptidyl transferase 

site, thereby interrupting peptide elongation and the start of 

protein synthesis.14–17

Pharmacokinetics
The use of tedizolid phosphate, the phosphorylated prodrug, 

increased the solubility of tedizolid, the active compound in 

Figure 1 Structure–activity differences between tedizolid and linezolid.
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water, which increased its bioavailability, given its lipophilic 

character.18 Following oral administration, tedizolid phosphate 

is rapidly converted to the active drug tedizolid by apical alka-

line phosphatases, nonspecific enzymes located in the mem-

branes of multiple cells in the body. Without these enzymes, 

intestinal absorption of the prodrug would be limited.19

The bioavailability of tedizolid following administration 

of a single oral dose of tedizolid phosphate 200 mg was 

91.5%.20 The pharmacokinetics of tedizolid phosphate in 

healthy subjects was similar following oral and intravenous 

administration, so it is not necessary to perform a dose 

adjustment when switching from the intravenous route to 

the oral route.20

Lower bioavailability values have been reported in other 

studies that have included populations from far eastern coun-

tries such as the People’s Republic of China (85.5% [90% CI: 

69.3–105])21 and Japan (82.6% [90% CI: 77.9–87.6]).22

Although one study observed a delay in absorption and 

lower maximum drug concentration (C
max

) values following 

administration of a single dose of tedizolid phosphate 600 mg 

together with food, the area under the curve (AUC) and t
1/2

 

parameters remained unchanged, and so tedizolid phosphate 

may be administered with or without food.23

After analyzing the parameters from seven clinical 

trials, Flanagan et al24 established that the pharmacokinetics 

of tedizolid fits a two-compartment model with sigmoidal 

absorption, absolute bioavailability, and linear elimination.

An initial study by Flanagan et al20 sought to determine 

the pharmacokinetics of single escalating doses or multiple 

escalating doses of intravenous tedizolid phosphate as well 

as determine its oral bioavailability in healthy subjects.

First, the pharmacokinetics of single escalating doses 

of tedizolid phosphate administered intravenously (placebo 

or tedizolid phosphate 100, 200, or 400 mg) was studied. 

Second, placebo or tedizolid phosphate 200 or 300 mg was  

administered intravenously on a double-blind basis once daily 

for 7 days. Third, the absolute bioavailability of a 200 mg 

dose of oral tedizolid versus a 200 mg dose of intravenous 

tedizolid was evaluated. The two administrations were sepa-

rated by a 7-day washout period.

Following intravenous administration of tedizolid phos-

phate 200 mg, plasma tedizolid phosphate concentrations 

reached a plateau at 15 minutes and subsequently its plasma 

levels decreased rapidly until arriving at plasma concentra-

tions below the detection limit 2 hours after the start of the 

infusion. At the same time, plasma tedizolid phosphate levels 

were undetectable following oral administration of 200 mg 

of the antimicrobial agent. In addition, either tedizolid 

phosphate was not detected in urine or only 0.005% of the 

administered dose was detected.

The results of the aforementioned studies led to sub-

sequent studies seeking to study the pharmacokinetics of 

tedizolid, the active compound.20

Unlike tedizolid phosphate, the plasma concentration 

of tedizolid increased in an escalating manner following 

administration of single ascending doses of tedizolid 

phosphate intravenous (100–400 mg).20 A dose-dependent 

increase of tedizolid was observed for tedizolid’s C
max

 

(1.2–5.1 μg/mL). Similar results were observed for mean 

AUC
0–t

 and AUC
0–∞, suggesting linear pharmacokinetics.

The mean steady-state apparent volume of distribution 

(V
dss

) was 61.2–74.5 L, and the mean of the elimination kinetic 

parameters was 9.3–13.4 hours for t
1/2

 and 4.8–5.8 L/h for 

clearance (Cl). In these cases, the parameters were dose 

independent.

However, oral administration of single escalating doses 

of tedizolid phosphate (200, 400, 600, 800, and 1,200 mg) 

under fasting conditions (10 or more hours before and 4 

hours after administration of the drug) yielded escalating 

C
max

 values, but they were no longer proportional to the 

administered dose. By contrast, AUC values did retain this 

proportionality, mainly with the administration of lower 

doses. The t
1/2

 was higher at 10 hours for all administered 

doses.23

Tedizolid phosphate reached the steady state in 3 days,21 

and once reached, it accumulated minimally and predictably. 

Drug accumulation ratio calculated in day 3 for C
max

 was 

1.16 (17.7%; range: 0.861–1.61) after intravenous admin-

istration. Similarly, the accumulation of tedizolid was 28% 

following intravenous administration of tedizolid phosphate 

200 mg once daily for 7 days in a different study.20 Tedizolid 

exposure was slightly greater on day 7 than on day 1 (C
max

 

3.0 [0.7] mg/mL and 2.3 [0.6] µg/mL, respectively; AUC
0–24

 

29.2 (6.2) mg×h/mL and 22.3 [4.2] mg×h/mL, respectively). 

On day 1, tedizolid’s Cl was 6.4 (1.2) L/h and its V
d
 was 77.6 

(15.9) L. On day 7, tedizolid’s Cl was 5.9 (1.4) L/h and its V
d
 

was 80.1 (21.0) L. Again, these values were not proportional 

to the administered dose. The mean 24-hour urine recovery 

of tedizolid was approximately 1% on both day 1 and 7.20

After administering multiple doses of oral tedizolid 

phosphate (200, 300, or 400 mg for 21 days under fasting 

conditions), dose-proportional increases in tedizolid C
max

 

and AUC values at day 15 (200 mg) or at day 21 (300 and 

400 mg) were observed.23 This contrasted with the kinet-

ics of linezolid after administering doses of 600 mg every 

12 hours for 21 days under fasting conditions, given that 
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with linezolid a greater accumulation at steady state was 

observed (~72%).23 Linezolid steady-state C
min

 were 3.9 

and 8.02 mg/L, after multiple oral doses of 375 and 625 mg 

given every 12 h for 14 days, respectively.25 C
max

 were 13.2 

and 18.8 mg/L, respectively.

In the previous, tedizolid Cl was generally independent 

of both dose and the number of doses administered, while 

oral Cl of linezolid Cl decreased with the number of admin-

istrations.23 Clearance values at steady state were 10–30% 

lower with multiple oral administration and 11–19% lower 

with multiple intravenous administration compared with 

single dose.26 Values for t
1/2

 of linezolid 600 mg were 3.80 

(1.67) hours on day 1 and 5.75 (1.15) hours on day 21.23 

Mean tedizolid t
1/2

 was approximately 2-fold higher than 

that of linezolid.

The active drug tedizolid is a lipophilic compound 

with high penetration in plasma, interstitial fluid, muscle 

and adipose tissue, epithelial lining fluid, and pulmonary 

alveolar macrophages, and this is based on data from studies 

performed using microdialysis. Thus, plasma concentrations 

of tedizolid may be used as a direct surrogate for tissue 

concentrations.24,27,28 The ratio of penetration into the epithe-

lial lining fluid and alveolar macrophages (AUC
0–24

/fAUC
0–24

) 

were approximately 40-fold and 20-fold, respectively, in 20 

healthy adults.27

One study involved administering a single dose of 

tedizolid in both animals and humans.29 In vitro plasma pro-

tein binding of tedizolid was 97.7% in rats, 92.6% in mice, 

78% in dogs, and 84.6% in humans.29

The V
d
 of tedizolid was more than double the value 

observed with linezolid (V
d
: 101 L versus 40–50 L).29 

After the dose, 87.6% of radioactivity was recovered at 

96 hours, and 99.5% of radioactivity was recovered at 

288 hours. Recovery in feces was 81.5%, and recovery in 

urine was 18%. In both feces and urine, tedizolid accounted 

for only 3% of recovery, whereas, in plasma, it was the 

main form.

Similar to another study in healthy adults, it showed 

plasma protein binding ranging from 86.1% to 91.9%.27 

This plasma protein binding was considerably higher than 

that of linezolid (31%).25

Tedizolid is mainly metabolized by the liver. Tedizolid 

sulfate is the major isolated metabolite in both feces (69% 

[56.81–79.49%]) and urine (10% [7.17–14.2%]). This 

metabolite’s antimicrobial activity is very limited. Other 

minor isolated metabolites were carboxy tedizolid and 

desmethyltedizolid. Among these, only desmethyltedizolid 

seemed to retain antimicrobial activity.29

Regarding the formulation of oral tedizolid phosphate, 

Flanagan et al23 demonstrated similar pharmacokinetics after 

administration of tedizolid phosphate powder form from a 

capsule or tablet formulation. Kennedy et al30 evaluated the 

stability and recovery of the dose contained in the tedizolid 

phosphate capsule after it was crushed and dispersed in 

water. The recovery of tedizolid phosphate was greater than 

93% of the initial dose after simulating its passage through 

two different types of nasogastric tubes. The reconstituted 

solution remained stable for 4 hours at room temperature, 

with minimal degradation of the initial administered dose. 

These findings ensure the possibility of crushing the tablet 

for patients with swallowing problems.

Special populations
Pharmacokinetic studies conducted by Flanagan et al24 

in different populations (healthy adults, patients with 

ABSSSIs and patients with different degrees of organ dam-

age enrolled in Phase I and III trials) indicated that none of 

the “clinical covariates” (age, sex, race, body mass index 

[BMI], renal failure, or hepatic failure) significantly affected 

tedizolid exposure.

The pharmacokinetic behavior of tedizolid showed 

no variation after it was evaluated in adolescent subjects 

(12–17 years).31 Mean tedizolid AUC values for adolescents 

were within 15% of previously reported adult values after 

oral or intravenous administration of a single dose of 200 mg 

tedizolid phosphate (geometric mean ratio (90% CI) of AUC 

adolescents/AUC adults after 200 mg of single dose oral 

administration was 0.847 mg×h/mL [0.736–0.975]).

Mean C
max

 value was similar to adults after oral admin-

istration of a single dose of 200 mg. However, this value 

was ~43% higher in adolescents after intravenous admin-

istration than in adults (3.66 mg/mL versus 2.55 mg/mL, 

respectively).

There are no data in populations under 12 years of age. 

These results are in contrast with the pharmacokinetic data for 

linezolid in a population between 3 months and 16 years of 

age, in which availability of linezolid was age-dependent and 

Cl and V
d
 were higher compared to the adult population (mean 

values for Cl and V
d
 were 0.34±0.15 L/h/kg and 0.73±0.18 L/

kg, respectively). This led to the need to apply a special dos-

age regimen in this age-group (10 mg/kg 2–3 times/d).32

At the same time, the pharmacokinetic data for admin-

istering a single dose of tedizolid 200 mg to 40 subjects 

over 65 years of age versus 14 subjects ranging from 18 to 

45 years of age demonstrated an approximately 9% increase 

in the geometric mean ratio of the C
max

 and an approximately 
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13% increase in the geometric mean ratio of the AUC.33 No 

discontinuation of treatment because of adverse events was 

required. For all these reasons, similar to linezolid,25 no 

dose adjustment seems necessary for oral administration of 

tedizolid phosphate in those over 65 years of age.

One study evaluated the pharmacokinetics of tedizolid 

in obese patients (BMI $30 kg/m2) and severely obese 

patients (BMI $35 kg/m2).34 According to the results, the 

pharmacokinetics was similar to those observed in nonobese 

patients, independently of the degree of obesity, and so a dose 

adjustment is not required in this population.

According to the results of this study, only ideal body 

weight (IBW) showed a statistically significant relationship 

to the pharmacokinetics of tedizolid.34 However, this finding 

was not considered to be clinically significant. Regarding 

linezolid, one study in 20 healthy obese volunteers (BMI: 

30–54.9 kg/m2) demonstrated similar exposure to the anti-

microbial agent after administering five doses of 600 mg 

IV every 12 hours (AUC for the 12 hour dosing interval 

was 130.3±60.1 mg×h/mL for moderately obese patients 

and 109.2±25.5 mg×h/mL for morbidly obese patients; 

P=0.032).35 This finding suggested that it is not necessary to 

adjust the dose of linezolid in people with a weight #150 kg.35 

Another study compared the pharmacokinetics of linezolid in 

five obese adults (BMI .35 kg/m2) before and after Roux-

en-Y gastric bypass surgery (RYGBS).36

According to the results, serum exposure for the anti-

microbial agent was approximately 50% lower than that 

of the nonobese population, which suggested that obese 

patients could require a personalized dose adjustment. These 

differences were maintained when the pharmacokinetic 

parameters were compared prior to the surgical procedure 

with population data (mean [SD] AUC
0–∞ with oral linezolid 

before RYGBS was 41.6 [20.9] mg×h/L compared with 98.9 

[24.7] mg×h/L after RYGBS [P0.001]).36 However, there is 

still no dosage regimen for oxazolidinones in obese people, 

given that pharmacokinetics in this population is commonly 

unpredictable and determined by other comorbidities such 

as renal failure.37

Regarding renal failure,38 the pharmacokinetics of 

administering a single dose of IV tedizolid was similar 

in patients with severe renal impairment without dialysis 

(estimated glomerular filtration rate ,30 mL/min/1.73 m2)39 

and in the control group.

In addition, it was observed that exposure to tedizolid 

was 25% lower in patients with end-stage renal failure than 

that observed in patients with renal failure who did not 

require hemodialysis and in the control group made up of 

healthy subjects. The authors observed no significant dif-

ferences when they compared exposure to tedizolid prior to 

or subsequent to dialysis (C
max

 geometric mean ratio 1.148 

[90% CI: 1.053–1.252]; AUC
0–∞ geometric mean ratio 0.913 

[90% CI: 0.827–1.007]). The dosage loss of the antimicro-

bial agent was lower than 10% in subjects who received 

tedizolid prior to dialysis. This finding paralleled tedizolid’s 

high degree of plasma protein binding, and its elimination 

was less than the 30% observed with linezolid. Thus, its 

pharmacokinetics is independent of the time of administra-

tion with respect to dialysis (before or after). In this regard, 

it differs from linezolid, which should be administered after 

this technique.40

The authors concluded that no dose adjustment is required 

in patients with any degree of renal failure. In this regard, 

it is similar to linezolid, which does not seem to require an 

adjustment in the different stages of renal failure, even though 

approximately 35% of it is excreted by the kidneys (total 

apparent oral Cl of linezolid ranged from 92.5 to 109.6 mL/

min in subjects with 24 hour urinary creatinine clearance 

of 10–39 mL/min, 40–80 mL/min, or 80 mL/min).25,41 

However, having renal function deterioration has been 

associated with higher plasma concentrations of linezolid 

and the development of adverse events such as thrombo-

cytopenia.42 Therefore, follow-up or even monitoring of 

the plasma concentration of linezolid when possible could 

be advisable in these patients.43 Linezolid has also been 

observed to be related to an insufficient plasma concentration 

(minimum drug concentration [C
min

] ,2 mg/L) in patients 

with an estimated glomerular filtration rate higher than 

80 mL/min/1.73 m2.44

This lower exposure to tedizolid in patients with end-

stage chronic renal disease was examined again in a post 

hoc analysis of the data presented.45 To do this, AUC was 

determined for patients with different stages of renal failure 

and correlated with age, sex, and BMI. In addition, IBW was 

calculated for each participating subject. The mean (standard 

deviation) AUC
0–∞ value was 23.27 (7.50) mg×h/mL in the 

end-stage renal disease patients, 29.99 (8.97) mg×h/mL in the 

severe renal impairment patients, and 32.43 (9.53) mg×h/mL 

in the control patients. Exposure to tedizolid was inversely 

proportional to IBW, which explained the lower AUC values 

in patients with end-stage renal disease who showed higher 

IBWs. The authors attributed the lower concentrations of 

tedizolid in these patients with end-stage chronic renal 

disease to the fact that they had a higher IBW. This covari-

ate yielded greater variability in the pharmacokinetics of 

tedizolid, more than a different behavior on the part of the 
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antibiotic in this population, and therefore they confirmed that 

it is not necessary to adjust the doses in renal disease.45

The same authors studied the pharmacokinetics of 

tedizolid after administering a single dose of oral tedizolid 

phosphate 200 mg in patients with moderate or severe 

hepatic failure according to the Child–Pugh classification.38 

They observed minimal differences in the pharmacokinetic 

parameters calculated both between patients with moderate 

hepatic failure and severe hepatic failure and between these 

patients and their controls. The parameter with the most 

variation was the AUC
0–∞ value, which was 34% higher in 

patients with severe hepatic failure (geometric mean ratio 

1.341 [90% CI: 0.927–1.939]) and 22% higher in patients 

with moderate hepatic failure compared to their controls 

(geometric mean ratio 1.216 (90% CI: 0.862–1.716). These 

slight increases in exposure to tedizolid were not associated 

with clinical significance, given its good tolerance, and 

so the authors concluded that it is not necessary to adjust 

the dose of tedizolid in this group of patients. Similarly, 

exposure to linezolid increased by 1.3 times in subjects 

with mild-to-moderate hepatic failure compared to healthy 

subjects. However, this increase was not associated with the 

need for dose titration in this population.46

Pharmacodynamics
The pharmacodynamic behavior of neither tedizolid phos-

phate nor tedizolid has been fully established. One of the 

main studies that sought to evaluate this behavior involved 

tedizolid phosphate/tedizolid dose fractionation studies in a 

neutropenic mouse model with a thigh infection caused by 

methicillin-sensitive S. aureus (MSSA) and MRSA strains.47 

It also compared their activity in vivo versus linezolid. The 

total dose of tedizolid phosphate was provided as equivalent 

doses of tedizolid. The AUC
0–24

/minimum inhibitory con-

centration (MIC), T.MIC, and C
max

/MIC free drug ratios 

were calculated for daily doses of tedizolid phosphate of 

10, 20, 36, and 72 mg/kg/24 h, fractionated into one, two, or 

four daily doses. According to the results, the AUC
0–24

/MIC 

pharmacodynamic ratio achieved the best correlation with 

the efficacy of tedizolid (r2: 0.984), versus the T.MIC ratio 

(r2: 0.624) and the C
max

/MIC ratio (r2: 0.757). Thus, a value 

for the AUC
0–24

/MIC ratio of 49.3 for tedizolid and 105.9 for 

tedizolid phosphate resulted in stasis and in a 1-log CFU/g 

reduction of the bacterial concentration in the thigh at 24 

hours against the ATCC 33591 MRSA strain. At the same 

time, a value for the AUC
0–24

/MIC ratio of 43.1 for tedizolid 

and 56.9 for tedizolid phosphate resulted in stasis and in a 

1-log CFU/g reduction of the bacterial concentration in the 

thigh at 48 hours against the ATCC 33591 MRSA strain. 

In addition, it was estimated that a value for the AUC
0–24

/

MIC ratio of 307.6 for TR-700/TR-701 would result in a 

4.53-log CFU/g reduction and a 5.92-log CFU/g reduc-

tion in the bacterial concentration in the thigh at 24 and 48 

hours, respectively. By contrast, a value for the AUC
0–24

/

MIC ratio of 35.7 obtained after administering 120 mg/kg 

of linezolid did not result in stasis. In addition, no greater 

microbiological effect of linezolid was observed at 48 hours 

versus at 24 hours.

Furthermore, a dose fractionation study was conducted 

for TR-701/TR-700 and for linezolid against an MSSA 

strain and against a community-acquired MRSA strain. 

The linezolid doses evaluated resulted in a lower reduction 

of the bacterial load versus the same doses of TR-701/700 

for both S. aureus strains. Regarding the MRSA strain, 

the 150-mg/kg linezolid dose yielded a value for the 

AUC
0–24

/MIC ratio of 44.6, while stasis was achieved with a 

TR-701/TR-700 dose of 33.8 mg/kg, corresponding to a value 

for the AUC
0–24

/MIC ratio of 44.0. The difference between 

the two dosage regimens roughly corresponded to a 1.1-log 

CFU/g higher reduction in the bacterial load for TR-701/700. 

Regarding the MSSA strain, the 40.6-mg/kg TR-701/700 

dose, corresponding to a value for the AUC
0–24

/MIC ratio of 

52.8, resulted in stasis, while the 150-mg/kg linezolid dose 

(AUC
0–24

/MIC of 44.6) did not achieve this state.

Subsequently, another study was conducted in a nonneu-

tropenic mouse model with an infection caused by the ATCC 

33591 MRSA strain (used in the aforementioned study) with 

the aim of evaluating the impact of granulocytes on the anti-

microbial activity of TR-700.48 According to the results, the 

presence of granulocytes considerably increased the activity 

of TR-700. Thus, administration of TR-701 at an equivalent 

dose of 1,600 mg daily in humans did not result in stasis at 

72 hours when it was administered to the neutropenic model. 

However, the equivalent dose in humans of 3,200 mg daily 

resulted in a reduction of 2.75 log CFU/g in the bacterial load 

(killing rate) at 72 hours, of 1.73 log CFU/g at 48 hours, and 

of 1.0 log CFU/g at 24 hours.

Moreover, administering TR-701 at an equivalent dose 

of 1,200 mg daily in humans resulted in the maximum effect 

at 24 hours in the nonneutropenic model, while this was 

observed with the 800 mg daily dose at 48 hours. Finally, 

the 200 mg daily dose in the nonneutropenic mouse resulted 

in an effect near the maximum at 72 hours. Practically, no 

differences were observed with the 3,200 mg daily dose.

From these studies, it appears that the value for the 

AUC
0–24

/MIC ratio should be lower in immunocompetent 
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animal models.49 Thus, a value for the AUC
0–24

/MIC ratio 

of 3 was extrapolated in immunocompetent animals based 

on a value of 50 in a neutropenic model.

Given this, a Monte Carlo simulation was performed with 

the aim of estimating the probability of obtaining a value for 

the AUC
0–24

/MIC ratio of 3 based on pharmacokinetic param-

eters in humans.50 The estimated probability approached zero 

when the microorganism’s MIC was 2 μg/mL or higher. 

Moreover, the probability was above 98% when the micro-

organism’s MIC was 0.5 μg/mL or lower.

Review of microbiology
In general, tedizolid shows high activity against Gram-positive 

microorganisms, including those with limited sensitivity 

to linezolid and other commonly used antibiotics in the 

treatment of infections caused by these bacteria. Tedizolid-

susceptible Staphylococcus spp. and group A, B, C, and G 

Streptococcus strains were considered to be those against 

which the antibiotic’s MIC
90

 was 0.5 mg/L or lower. Resistant 

strains were considered to be those whose MIC
90

 was above 

this value.51 Tedizolid-susceptible Streptococcus anginosus 

group strains were considered to be those against which the 

antibiotic’s MIC
90

 was 0.25 mg/L or lower. Resistant strains 

were considered to be those whose MIC
90

 was above this 

value.51 No MIC
90

 breakpoints were established for Gram-

positive anaerobic microorganisms.51 As with linezolid, 

tedizolid activity against Gram-negative microorganisms is 

very limited.52,53

Gram-positive microorganisms
Tedizolid shows high activity in vitro against strains of 

S. aureus (including MRSA and MSSA strains), S. pyogenes, 

Streptococcus agalactiae, the Streptococcus anginosus 

group (including S. anginosus, Streptococcus intermedius, 

and Streptococcus constellatus), and E. faecalis (FDA fact 

sheet). Tedizolid’s MIC is 0.5 mg/L or lower against these 

microorganisms and achieves a value of 0.25 mg/L or lower 

in the case of S. anginosus group strains (FDA fact sheet). 

These values demonstrate activity that is generally 

two to four times higher than that of linezolid. 54–59 In one 

study, tedizolid’s MIC range was 0.125–0.5 mg/L against 

MRSA strains from SSSIs, while linezolid’s MIC range 

was 0.25–4 mg/L.54 The most effective drugs against MRSA 

were tedizolid (MIC
90

 of 0.5 mg/L), linezolid (MIC
90

 of 

2 mg/L), and vancomycin (MIC
90

 of 2 mg/L). Similar results 

were observed in other studies, where vancomycin’s MIC
90

 

and tedizolid’s MIC
90

 for both MRSA and MSSA were 

2 mg/L,55 and 0.5 mg/L,55,56 respectively. Lower values have 

been reported, with tedizolid’s MIC
90

 for both MRSA and 

MSSA of 0.25 mg/L, compared with a MIC
90

 of 2 mg/L for 

linezolid.57,58

The MIC
90

 for both methicillin-resistant (MRSE) and 

methicillin-susceptible S. epidermidis (MSSE) was 0.5 mg/L 

against 74 clinical isolates of this microorganism (MIC 

range 0.06–0.5 mg/L).55 The MIC
90

 values were 0.25 and 

0.5 mg/L for S. epidermidis and other coagulase-negative 

staphylococci included in other study, respectively.56 These 

values were lower than those for vancomycin (MIC
90

 

was 4 and 2 mg/L for MRSE and MSSE, respectively)55 

or linezolid (MIC
90

 was 1 mg/L for S. epidermidis and  

2 mg/L for other coagulase-negative staphylococci).56

At the same time, tedizolid’s MIC range was 0.25–0.5 mg/L 

for Enterococcus spp. strains, while linezolid’s MIC range 

was 0.5–2 mg/L.54 Tedizolid MIC
90

 value was 0.5 mg/L 

against 873 enterococci included in other study while lin-

ezolid’s MIC
90

 was 2 mg/L.56

Finally, tedizolid’s MIC range was 0.25–0.5 mg/L for 

S. agalactiae strains and 0.125–0.5 mg/L for S. pyogenes 

strains, while linezolid’s MIC range was 2–4 mg/L for 

S. agalactiae strains and 1–2 mg/L for S. pyogenes strains.54 

Tedizolid MIC
90

 values for S. agalactiae, S. pyogenes, and 

other β-hemolytic streptococci were each 0.25 mg/L, whereas 

linezolid’s MIC
90

 was 1 mg/L.56,58

Although tedizolid has high activity in vitro against 

Gram-positive microorganisms, this activity is very limited 

against biofilm-forming bacteria.55 Similar to linezolid, tedi-

zolid could show synergistic activity with rifampin.

Mechanisms of resistance to tedizolid
Various mechanisms of resistance against oxazolidinones 

have been reported. Notable among them are mutations in the 

genes that encode 23S rRNA60,61 or the ribosomal proteins L3 

(rplC) and L4 (rplD)62–64 and horizontal transmission of the 

chloramphenicol–florfenicol resistance (cfr) gene.65,66

In general, the microorganisms that show resistance 

against oxazolidinones because of mutations in the chro-

mosomal genes that encode 23S rRNA or the L3 and L4 

ribosomal proteins show cross-resistance to tedizolid (FDA 

fact sheet). However, in the absence of these chromosomal 

mutations, the presence of the cfr gene did not result in resis-

tance to tedizolid in the limited number of S. aureus strains 

evaluated (FDA fact sheet). It has been observed that the 

frequency of spontaneous mutation that grants resistance to 

tedizolid is approximately 10-10 (FDA fact sheet).

Similar values were observed in another study that sought 

to evaluate the potential of one strain of MSSA and another 
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six alleles. In both S. aureus and E. faecium and E. faecalis 

strains, a correlation has been reported between successive 

accumulation of the G2576T mutation in the different copies 

of the gene that encodes the 23S rRNA and a gradual increase 

in the level of resistance to linezolid.68,69 In this study, tedi-

zolid’s MIC against the aforementioned strains ranged from 

8 to 64 mg/L. Moreover, the S. epidermidis strain had the 

L101V, H146Q, V154L, and A157R mutations in the gene 

that codes for the L3 protein, and the 71G72 insertion and 

the N158S mutation in the gene that codes for the L4 protein. 

Among them, the L101V mutation and the N158S mutation 

seem to be associated with a lower impact on the develop-

ment of resistance to oxazolidinones.

Finally, the NRS127 S. aureus strain had a deletion of 

the serine in position 145 of the gene that codes for L3, the 

IDRL-0025 S. aureus strain had the G152D mutation, and 

the NRS271 S. aureus strain had the Q3K mutation in the 

gene that codes for this protein.

In addition to the aforementioned mechanisms of resis-

tance, a new mechanism of resistance to oxazolidinones was 

recently identified in E. faecalis and E. faecium strains.70 

This mechanism consists of the presence of the optrA gene, 

located in plasmids, which codes for an ABC transporter that 

grants resistance to phenicols as well as to oxazolidinones. 

With the aim of finding out the prevalence of this gene, 595 

Enterococcus spp. strains from humans and 290 strains from 

animals were included. The optrA gene was identified in 12 

(2%) of the strains from humans and in 46 (15.9%) of the 

strains from animals. These data highlight the significance 

of monitoring the use of florfenicol in the production of 

animal feed. In addition, they emphasize the importance of 

monitoring the presence of this gene in Enterococcus spp. 

strains with a high MIC for linezolid and tedizolid, in addition 

to cfr gene carrier status and mutations at the 23S rRNA.

Gram-positive microorganisms with 
limited susceptibility versus commonly 
used antibiotics
Tedizolid has shown high activity in vitro against strains 

of Gram-positive microorganisms with limited sensitivity 

to commonly used antibiotics in infections caused by these 

microorganisms.56,57,71 Tedizolid activity was four to eight 

times higher than that observed with linezolid in one study 

that included 302 MRSA strains and 220 vancomycin-

resistant (VR) Enterococcus spp. strains.71 Tedizolid MIC
90

 

values for heterogenous vancomycin-intermediate MRSA 

(n=120), vancomycin-intermediate MRSA (n=100), and 

daptomycin-non-susceptible MRSA (n=75) were 0.5 mg/L 

strain of MRSA to develop resistance against tedizolid and 

linezolid by analyzing the spontaneous mutation rates and 

serial passage of these strains in media with an escalating 

concentration gradient of these oxazolidinones.62 The 

median spontaneous mutation rate that resulted in a reduc-

tion in sensitivity to tedizolid was 1.1×10-10 for the MSSA 

strain and 1.9×10-10 for the MRSA strain. These values 

were approximately 16 times lower than those reported for 

linezolid because a median spontaneous mutation rate of 

2.0×10-9 was found for the MSSA strain and 3.0×10-9 was 

found for the MRSA strain. The mutant strains selected 

through exposure to tedizolid had the T2500A mutation and 

the coupled T2571C/G2576T mutation at the 23S rRNA, 

while the mutant strains selected through exposure to lin-

ezolid had the G2447T, G2576T, and T2500A mutations. In 

addition, mutations were identified in the rplC gene, which 

encodes the L3 ribosomal protein, and the rplD gene, 

which encodes the L4 ribosomal protein. The Gly152Asp, 

Gly155Arg, Gly155Arg/Met169Leu, and ΔPhe127-His146 

mutations were identified in L3, and the Lys68Gln mutation 

was identified in L4.

In addition, serial passage of the MSSA and MRSA 

strains was performed in a concentration gradient of tedizolid 

and linezolid. Following 30 passages in these media, tedi-

zolid’s MIC against the MSSA strain remained at 0.5 μg/mL, 

while linezolid’s MIC increased from 2 to 128 μg/mL. 

A reduction in sensitivity to linezolid was observed follow-

ing five passages in a medium with linezolid, associated with 

the Gly155Arg mutation in L3. Subsequent passages in this 

medium resulted in mutant MSSA strains with the G2447T 

mutation in the rRNA or the G2447T mutation coupled 

with the Gly152Asp mutation in L3. Similarly, against the 

MRSA strain, tedizolid’s MIC increased by eight times 

(from 0.25 to 2 μg/mL), while linezolid’s MIC increased 

32 times (from 1 to 32 μg/mL). The reduction in sensitivity 

to these antibiotics in the MRSA strain was associated with 

the Lys68Gln mutation in L4 and the G2576T mutation in 

the rRNA in the case of linezolid and the double T25761C/

G2576T mutation at the 23S rRNA in the case of tedizolid.

Recently, another study sought to characterize the mecha-

nism of resistance against oxazolidinones of 27 strains of 

Gram-positive linezolid-resistant microorganisms, as well as to 

evaluate the microbiological activity of tedizolid against these 

bacteria.67 Altogether, five S. aureus strains, 21 E. faecium 

strains, and one S. epidermidis strain were included.

The IDRL-10060, NRS271, and NRS119 S. aureus strains 

and all E. faecium strains had the G2576T mutation at the 

23S rRNA. This mutation was identified in at least five of the 
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versus 4, 4, and 2 mg/L for linezolid, respectively.71 When 

only the linezolid-resistant MRSA strains were evaluated 

(n=7), tedizolid MIC ranged from 0.063 to 1 mg/L. Three 

of these strains had a MIC of 1 mg/L versus tedizolid and 

all lacked the cfr gene, so the reduction in sensitivity to 

tedizolid could be attributed to an alternative mechanism, 

such as mutations in the 23S ribosomal RNA or in L3 and L4 

ribosomal proteins.

The 98.3% of all staphylococci strains were inhibited by 

tedizolid MIC value of 0.5 mg/L. Rates of susceptibility to 

other common antimicrobials were: clindamycin (32.3%), 

levofloxacin (19.9%), oxacillin (0%), tigecycline (98.9%), 

and trimethoprim/sulfamethoxazole (79.1%). 

Tedizolid MIC
90

 values for VR E. faecium (n=120) and 

E. faecalis (n=100) were 1 mg/L and 0.25 mg/L, respectively. 

These values were two dilutions lower for E. faecium and 

three dilutions lower for E. faecalis compared with linezolid. 

When linezolid-resistant enterococcal strains were evaluated 

(10 E. faecium strains), tedizolid MIC values ranged from 1 

to 4 mg/L (linezolid MIC values ranged from 8 to 32 mg/L). 

None of these 10 strains was cfr positive. Similarly, among 

daptomycin-non-susceptible VR enterococcal strains (25 E. 

faecium strains), tedizolid MIC values ranged from 0.25 to 

4 mg/L (56% with MIC values 1 mg/L) (linezolid MIC 

range was 1 to 32 mg/L).

Tedizolid’s MIC was 0.5 mg/L against three of four 

S. aureus strains that were linezolid resistant owing to being 

cfr gene carriers, and 1 mg/L for the fourth strain carry-

ing this gene.56 These values were 16–32 times lower than 

those observed with linezolid. However, tedizolid showed 

no activity against three strains that were linezolid-resistant 

owing to a mutation at the 23S rRNA (one strain carrying 

a mutant G2405A allele and two mutant G2576T alleles, 

one strain carrying three mutated G2576T alleles, and one 

strain carrying four mutated G2576T alleles). Tedizolid’s 

MIC against these strains was 2 mg/L, and linezolid’s MIC 

against these strains was 16 mg/L.

Tedizolid MIC values were 4 mg/L for four of five 

linezolid-resistant S. epidermidis strains and 8 mg/L for the 

remaining strain (linezolid MIC values ranged from 32 to 

128 mg/L).56

In another study, tedizolid maintained its activity against 

linezolid-resistant coagulase-negative Staphylococcus strains 

when the mechanism involved was cfr gene carrier status.57 

However, higher MICs for tedizolid were observed when the 

mechanism of resistance identified was the G2576T muta-

tion. Finally, linezolid’s MIC was 2–5 doubling dilutions 

higher than that of tedizolid against Staphylococcus spp. and 

linezolid-resistant Enterococcus spp. strains included in 

another study.67 Tedizolid’s MIC ranged from 1 to 8 mg/L 

against five linezolid-resistant S. aureus strains, while 

linezolid’s MIC ranged from 8 to 64 mg/L. At the same 

time, tedizolid’s MIC was 1 to 4 mg/L against 21 linezolid-

resistant E. faecium strains, while linezolid’s MIC was 8 to 

64 mg/L. Finally, tedizolid’s MIC was 2 mg/L against the 

linezolid-resistant S. epidermidis strain included in the study, 

while linezolid’s MIC was 32 mg/L.

In general, although activity of tedizolid is higher 

against linezolid-resistant Gram-positive microorganisms, 

limited sensitivity to tedizolid must be considered when 

the mechanisms of resistance involved are mutations in the 

genes that code for the 23S rRNA, the rplC gene, and/or the 

rplD gene.56,57,67,71

Anaerobic microorganisms
Tedizolid shows excellent activity against anaerobic Gram-

positive microorganisms.54 Tedizolid’s MIC range against 

these microorganisms was four to eight times lower than 

that observed with linezolid.

Clinical efficacy
A limited number of studies have evaluated the efficacy of 

tedizolid in ABSSSIs. To date, one Phase II study and two 

Phase III studies have been completed. All were conducted 

according to the FDA guidance document for the develop-

ment of new compounds in ABSSSIs.

Phase II study
A Phase II, randomized, double-blind, clinical trial sought 

to evaluate the efficacy of tedizolid phosphate administered 

at doses of 200, 300, and 400 mg once daily for 5–7 days 

in patients with SSSIs.72 Subsequently, the microbiological 

activity of tedizolid and linezolid and the microbiological 

efficacy of tedizolid against isolated Gram-positive microor-

ganisms in cultures from patients enrolled in the aforemen-

tioned study were evaluated.58

Between September 2008 and January 2009, a total of 

192 patients were randomized; 188 of them received at 

least one dose of tedizolid phosphate and had a diagnosis 

of complicated SSSI (modified intention-to-treat [IIT] and 

clinical modified IIT, respectively).72 In addition, another 

three study populations were identified: the microbiologi-

cal modified intention-to-treat (mMITT) population, which 

comprised patients enrolled in the clinical modified IIT 

population who also had isolation of a Gram-positive micro-

organism at baseline, and the clinically evaluable population, 
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which comprised those patients who received the minimum 

requirement of study drug and were clinically evaluated at 

the test-of-cure (TOC) visit. Finally, the microbiologically 

evaluable (ME) population was made up of those patients 

included in both the clinically evaluable population and the 

mMITT population. Thus, 164 patients were included in 

the clinically evaluable population, 154 were included in 

the mMITT population, and 133 were included in the ME 

population.

The clinical cure rate at the (TOC) visit (7–14 days 

after the end of treatment [EOT]) in clinically evaluable 

patients was 98.2% for the group that received tedizolid 

phosphate 200 mg and 94.4% for the group that received 300 

or 400 mg of the antibiotic. No differences were observed 

based on the type and size of the lesion or the seriousness 

of the infection.

S. aureus strains were isolated in 139 (90.3%) of the 

154 patients included in the mMITT population; 112 (80.6%) 

of these were MRSA strains.58

Similarly, S. aureus strains were isolated in 119 (89.5%) of 

the 133 patients included in the ME population; 94 (79.0%) 

of these were MRSA strains.58 In this group, a similar rate 

of microbiological eradication was observed for all tedi-

zolid dose groups at the TOC visit. A value of 97.7% was 

achieved when all isolated microorganisms were taken into 

account, a value of 97.9% was achieved when only MRSA 

strains were taken into account, and a value of 95.7% was 

achieved for MSSA strains.58 When only S. aureus strains 

were considered, the clinical cure rate in the ME population 

was 96.6% at the TOC visit, and reached a value of 96.9% 

when only MRSA strains were considered and a value of 

95.7% for MSSA strains.58

Phase III studies
ESTABLISH-1
A randomized, double-blind, double-dummy, multicenter, 

multinational study designed with the aim of establishing the 

noninferiority of once-daily oral administration of tedizolid 

phosphate 200 mg for 6 days versus oral administration of 

linezolid 600 mg every 12 hours for 10 days in the treat-

ment of ABSSSIs.73 The main objective of the study was to 

evaluate early clinical response to treatment at 48–72 hours 

after the first dose of study antibiotic in the ITT analysis set. 

Secondary objectives included evaluating clinical response 

in the ITT analysis set and in the clinically evaluable analy-

sis set both at the EOT (day 11) and at 7–14 days from the 

EOT. The clinically evaluable analysis set included all 

patients included in the ITT analysis set who complied with 

the protocol without major violations and who completed 

specific evaluations for a particular objective. A total of 

667 patients aged 18  years or older were randomized to 

receive tedizolid phosphate or linezolid between August 12, 

2010 and September 30, 2011 and formed the ITT analysis 

set. At the same time, the clinically evaluable analysis set 

both at the EOT and at 7–14 days from the EOT was formed 

by 559 patients. In the ITT analysis set, the clinical response 

rates at 48–72 hours were 79.5% (95% CI: 74.8%–83.7%) 

of 332 patients in the tedizolid phosphate group and 79.4%  

(95% CI: 74.7%–83.6%) of 335 patients in the linezolid 

group (a treatment difference of 0.1% [95% CI: –6.1%–6.2%]). 

Sustained clinical treatment response rates at the EOT were  

similar in the tezidolid phosphate and linezolid groups in 

the ITT analysis set (69.3% and 71.9%, respectively) and 

in the clinically evaluable analysis set (80.2% and 81.1%, 

respectively). Results of investigator-assessed clinical treat-

ment response 1–2 weeks after the EOT were also similar 

in the tedizolid phosphate and linezolid groups in the ITT 

analysis set (85.5% and 86.0%, respectively) and in the 

clinically evaluable analysis set (94.6% and 95.4%, respec-

tively). In addition, no differences in clinical response rate 

were observed at 7–14 days after the EOT assessed by the 

investigator based on the isolated S. aureus strain (MRSA 

strains: 75/88 [85.2%] for tedizolid phosphate versus 77/90 

[85.6%] for linezolid; MSSA strains: 73/83 [88.0%] for 

tedizolid phosphate versus 82/87 [94.3%] for linezolid; 

strains positive for the Panton–Valentine leukocidin gene: 

83/97 [85.6%] for tedizolid phosphate versus 86/102 [84.3%] 

for linezolid).

ESTABLISH-2
A randomized, double-blind, multinational, noninferior-

ity, parallel-group design study with the aim of evaluating 

the efficacy of once-daily intravenous administration of 

tedizolid phosphate 200 mg for 6 days versus intravenous 

administration of linezolid 600 mg every 12 hours for 

10 days in the treatment of ABSSSIs, with the possibility 

of sequential oral therapy.74 The main objective of the study 

was to evaluate early clinical response at 48–72 hours after 

the first dose of study antibiotic in the IIT analysis set. 

Secondary objectives included evaluating clinical response 

on day 7 (assessed by the investigator), at the EOT (deter-

mined by the schedule and assessed by the investigator) 

and at 7–14 days after the EOT (assessed by the investiga-

tor). A total of 666 patients were randomized to receive 

tedizolid (n=332) or linezolid (n=334) between September 

28, 2011 and January 10, 2013. Sequential therapy from 
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intravenous tedizolid to oral tedizolid was not inferior to 

linezolid (283 [85%] participants in the tedizolid group and 

276 [83%] of those in the linezolid group achieved early 

clinical response). Results were consistent with investigator 

assessment (Table 2).

These results were maintained when microbiologi-

cal response was evaluated at 7–14 days after the EOT in 

patients enrolled in the microbiological IIT population, which 

comprised those patients who received at least one dose 

of antimicrobial agent who also had isolation of a Gram-

positive microorganism at baseline. In total, 168 (88%) of 

192 patients enrolled in the tedizolid phosphate group versus 

177 (89%) of 199 patients enrolled in the linezolid group had 

a favorable microbiological response at 7–14 days following 

the EOT (-1.4 [95% CI: -8.0 to 5.1]). The noninferiority 

of tedizolid phosphate was maintained when the isolated 

Gram-positive microorganism corresponded to MRSA 

strains (43/53 [81.0%] versus 43/56 [77.0%]; 95% CI: 4.3 

[-11.4 to 19.8]).

With the aim of optimizing evaluation of the effi-

cacy of tedizolid and linezolid, one study conducted an 

aggregate data analysis for both Phase III trials.59 A total of 

1,333 patients were randomized to receive treatment with 

tedizolid 200 mg once daily for 6 days (n=664) or linezolid 

600 mg every 12  hours for 10 days (n=669). A total of 

1,225 patients (91.9%) completed the study; 612 of them 

belonged to the tedizolid arm and 613 of them belonged to 

the linezolid arm. In the aggregate data analysis, tedizolid 

was not inferior to linezolid in the clinical response at 

48–72 hours evaluated in the IIT population (81.6% versus 

79.4%; difference: 2.2% [95% CI: -2.0 to 6.5]). Regarding 

the secondary objectives, tedizolid was not inferior to lin-

ezolid in the clinical response determined by the schedule 

at the EOT (87.0% versus 87.9%; difference: -0.8% [95% 

CI: -4.4 to 2.7]) or in the clinical response assessed by the 

investigator at 7–14 days following the EOT (86.7% versus 

86.8%; difference: -0.1 [95% CI: -3.8 to 3.6]). The clinical 

response at 48–72 hours and at 7–14 days following the EOT 

was similarly independent of the Gram-positive microor-

ganism isolated. Regarding patients with MRSA isolation, 

114 (80.9%) of 141 patients who received treatment with 

tedizolid had a clinical response at 48–72 hours, versus 

111 (76.0%) of 146 patients who received treatment with 

linezolid. At the same time, in this group, clinical response 

was observed at 7–14 days from the EOT in 151 (84.8%) 

of 178 patients who received tedizolid versus 119 (81.5%) 

of 146 patients who received linezolid.

The noninferiority of tedizolid versus linezolid was 

also demonstrated in a post hoc analysis of Latino patients 

enrolled in the ESTABLISH-1 and ESTABLISH-2 trials.75

Currently, further clinical trials are being conducted 

with the aim of evaluating the efficacy of tedizolid in 

ABSSSIs.76

Tolerability
In a study by Leach et al,17 oxazolidinones were observed 

to be cross-linked to RNA in the peptidyltransferase center 

of mitochondrial ribosomes instead of cytoplasmic ribo-

somes. This led to the inhibition of mitochondrial protein 

synthesis, which has been associated with mitochondrial 

toxicity, and to a wide variety of adverse events, such as 

myelosuppression, lactic acidosis, optic neuropathy, and 

peripheral neuropathy.77–79

McKee et al80 evaluated the capacity of different 

oxazolidinones to inhibit mitochondrial protein synthesis 

in the heart and liver in a mouse model, and in the heart 

and bone marrow in rabbits. According to the results, mito-

chondrial inhibition was similar in all tissues.80 In addition, 

their data indicated that oxazolidinones with higher antimi-

crobial activity (lower MICs) also demonstrated a greater 

Table 2 Investigator-assessed clinical success rates

Tedizolid phosphate  
(n=332) 

Linezolid  
(n=334) 

Difference  
(95% CI) 

48–72 hours* 304 (92%) 302 (90%) 1.2% (-3.3 to 5.6) 
Day 7* 309 (93%) 308 (92%) 0.9% (-3.2 to 4.9) 
End of treatment (day 11)† 304 (92%) 301 (90%) 1.4% (-3.0 to 5.9) 
Post-therapy assessment (7–14 days after end of treatment)† 292 (88%) 293 (88%) 0.3% (-4.8 to 5.3) 
Late follow-up (18–25 days after end of treatment)‡ 262/268 (98%) 266/269 (99%) -1.1% (-3.8 to 1.3) 

Notes: Reprinted from The Lancet Infectious Diseases; 14(8); Moran GJ, Fang E, Corey GR, Das AF, De Anda C, Prokocimer P. Tedizolid for 6 days versus linezolid for 
10 days for acute bacterial skin and skin-structure infections (ESTABLISH-2): a randomised, double-blind, phase 3, non-inferiority trial; pages 696–705. Copyright 2014, 
with permission from Elsevier.74 Data are n (%), unless otherwise indicated. *Clinical success defined as improvement in overall clinical status of ABSSSI compatible with 
continuation of study drug. †Clinical success defined as resolution or near resolution of disease-specific signs and symptoms, absence or near resolution of baseline systemic 
signs of infection, and no further antibiotic treatment required for treatment of primary ABSSSI lesion. ‡Clinical success defined as no new signs or symptoms of primary 
ABSSSI after posttherapy assessment. Only assessed in patients who were clinically evaluable and deemed clinical successes at posttherapy assessment.
Abbreviations: ABSSSI, acute bacterial skin and skin-structure infection; CI, confidence interval.
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capacity for protein synthesis inhibition. However, some 

oxazolidinones that demonstrated a high capacity for inhib-

iting mitochondrial protein synthesis did not have powerful 

antibacterial activity.

Flanagan et al81 found a relationship between trough-

free concentrations (C
min

) of linezolid and a greater risk of 

adverse effects. This is because a C
min

 higher than the IC
50

 

without recovery time has been associated with mitochon-

drial toxicity.81 Similarly, an association between an higher 

C
min

 of linezolid and lower mitochondrial function has been 

observed in other studies,82 and this fact has been associated 

with a greater proportion of adverse events related to mito-

chondrial toxicity.

In addition to C
min

, treatment duration83 is among the 

variables related to the potential onset of adverse events 

associated with mitochondrial toxicity. Therefore, the use-

fulness of monitoring plasma levels of linezolid, mainly in 

patients with risk factors for toxicity, such as variation in its 

regular dosage regimen in certain clinical situations (use of 

high doses or continuous infusion), and hepatic and/or renal 

failure, has been established.37,84

Given these data, Flanagan et al85 evaluated the capac-

ity of the new oxazolidinone tedizolid to cause mitochon-

drial toxicity in a mouse model through pharmacokinetic 

studies. Tedizolid in vitro demonstrated more powerful 

dose- and time-dependent mitochondrial protein synthesis 

inhibition than linezolid.86 However, in the results, which 

compared the effect of several supratherapeutic doses of 

tedizolid, with plasma exposure up to eight times greater 

than human therapeutic plasma exposure versus placebo, 

there was no evidence of abnormalities in behavior caused 

by neuropathic damage or of histopathological changes in the 

central or peripheral nervous system caused by oxazolidinone 

following a detailed analysis of brain, eye, optic nerve, spinal 

cord, and peripheral nerve tissue.86

This contrasted with the development of optic and 

peripheral neuropathy observed in rats following 3 months 

of administration of linezolid at doses that provided plasma 

levels comparable to those provided by therapeutic doses in 

humans, which suggested a lower neuropathological profile 

for tedizolid versus linezolid.

Further analyses performed by the same group sug-

gested more rapid dissociation and partial migration of 

mitochondrial impairment over the course of a dosing interval 

for tedizolid versus linezolid. The pharmacokinetic profile 

of tedizolid, which allows for once-daily administration, 

and an effective therapeutic dose of 200 mg, six times lower 

than linezolid (1,200 mg), would explain this behavior.85 

However, caution is required in prolonged treatments, given 

the absence of data for tedizolid administered for periods 

longer than 21 days.

Recently, Milosevic et al87 evaluated tedizolid’s capacity 

to inhibit the expression of proteins encoded by mitochondrial 

genes in cell cultures, with the aim of simulating administra-

tion in human beings to evaluate the impact of oxazolidinone 

on mitochondrial metabolism. The authors of this study 

concluded that tedizolid caused mitochondrial metabolic 

abnormalities in vitro that were related to the dysfunction 

observed in protein expression encoded by the mitochon-

drial genome. However, the clinical impact was limited by 

fast recovery upon washout of the drug, especially when 

tedizolid was used for short periods of time and owing to its 

pharmacokinetic characteristics that allowed its administra-

tion in a single daily dose.

One of the main consequences of mitochondrial toxicity 

is potential myelosuppression. The hematological toxic-

ity of tedizolid was evaluated in detail in a study by Shorr 

et al73 that comprised 1,333 patients previously enrolled in 

two Phase III studies73,74 that compared this antimicrobial 

agent (n=664) versus linezolid (n=669). This study also 

evaluated treatment-emergent adverse events and clinical 

laboratory parameters.

Regarding hematological parameters, changes over time 

in platelet counts, neutrophil counts, and hemoglobin were 

analyzed. According to the results, a platelet count lower 

than 150,000/mm3 was observed on days 7–9 of treatment 

in 3.7% of patients who received tedizolid versus 5.8% of 

those who received linezolid. This difference increased 

to 4.9% of patients who received tedizolid and 10.8% of 

patients who received linezolid at the EOT. The authors 

believed that this difference between tedizolid and linezolid 

was substantial and paralleled the results of Phase I studies, 

in which hematological toxicity was not developed in any 

cell line following administration of tedizolid 200 mg for 

21 days.88 However, these results should be confirmed in 

prolonged treatments with tedizolid.

Regarding treatment-emergent adverse events, similar 

rates were reported in the two groups (42.8% for tedizolid 

versus 43.2% for linezolid). Only 2% of all these adverse 

events were considered to be serious, requiring discontinua-

tion of treatment in 0.5% of patients treated with tedizolid and 

0.9% of patients treated with linezolid. The most commonly 

reported adverse events were gastrointestinal abnormalities 

(16% for tedizolid versus 23% for linezolid), notably nausea 

(8.2% for tedizolid versus 12.2% for linezolid). Also reported 

were headache (6.2% for tedizolid versus 5.9% for linezolid) 
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and abscess (5.3% for tedizolid versus 3.9% for linezolid). No 

differences were observed in terms of physical examination 

or electrocardiogram data.89

Drug interactions
One characteristic shared by oxazolidinones is their capac-

ity to inhibit MAO, an enzyme responsible for the metabo-

lism of the neurotransmitters epinephrine, norepinephrine, 

and serotonin (MAO A) and dopamine (MAO B). MAO 

inhibitors may give rise to interactions with foods and other 

drugs, resulting in the so-called serotonin syndrome.90 This 

syndrome results from the accumulation of serotonin, which 

causes an increase in serotonin neurotransmission in both 

the central nervous system central and peripheral serotonin 

receptors. It is very serious, given that it may be fatal in 

some cases.

Linezolid is a competitive and reversible nonselective 

MAO inhibitor, and the onset of serotonin syndrome has been 

reported following its administration together with certain 

serotonergic drugs.91,92 Given this, the FDA indicated that 

“linezolid should generally not be given to patients taking 

serotonergic drugs unless the benefit is deemed to outweigh 

the risk.”93

Although tedizolid has shown a capacity to non

selectively inhibit MAO in in vitro studies, similar to linezolid, 

studies in a mouse model have not managed to demonstrate 

serotoninergic activity with clinical repercussions.94 However, 

owing to the short duration of the clinical trials, the limited 

number of participants, and the exclusion of other concomitant 

serotonergic drugs, some authors have not ruled out the poten-

tial onset of serotonin toxicity in the future.95

MAO inhibitors may increase blood pressure when 

they are administered together with vasoconstrictors such 

as tyramine or pseudoephedrine, and they may trigger 

hypertensive crises. The potential interaction between tedi-

zolid and oral tyramine and pseudoephedrine was evaluated 

in two randomized, double-blind, placebo-controlled cross-

over studies.94 In the first day, subjects were randomized 

to administration of tedizolid 200 mg or placebo. On the 

third day, they received tyramine at the dose required to 

cause an increase in systolic blood pressure $30 mmHg. 

According to the results, administration of tedizolid did not 

result in a potentiation of the hypertensive effect of tyramine, 

given that the sensitivity ratio reached was 1.33, 2, a ratio 

with clinical significance. Only one subject reached a sensi-

tivity ratio 2 (2.1), and palpitations were reported at some 

point in the study in 25 (83.3%) for 30 subjects enrolled. 

This effect may be attributed to tyramine. By contrast, eight 

(80%) of ten subjects who received linezolid had a ratio 2 

(range: 1.50–5.0).96

The authors concluded that it is not necessary to take 

special precautions when tedizolid is administered with 

tyramine-rich foods, given that foods do not tend to contain 

more than 40 mg of the amino acid.

When coadministration of tedizolid with pseudoephedrine 

was studied, no significant changes in blood pressure or 

heart rate were observed between the control group and 

the group that received placebo.94 The profile found was 

somewhat more beneficial than that observed with linezolid, 

which was associated with increases in blood pressure when 

it was administered together with pseudoephedrine.97

Benefits and disadvantages 
compared to other oxazolidinone 
antibiotics
Tedizolid shows higher activity than linezolid against 

Gram-positive microorganisms, including those with limited 

sensitivity against commonly used antibiotics in infections 

caused by these bacteria.

One of the characteristics of tedizolid that makes it more 

attractive is its activity against staphylococci strains that con-

tain the cfr gene, given the high capacity for transmission of 

this mechanism of resistance between strains of this species 

and other Gram-positive microorganisms.98 However, the 

frequency of the appearance of strains with this mechanism 

of resistance is limited, and for this reason, linezolid’s MIC 

against Gram-positive microorganisms has remained stable 

in recent years.99 The bioavailability of tedizolid is high, 

both orally and intravenously, similar to linezolid. However, 

tedizolid has more favorable pharmacokinetics, especially 

because of its prolonged biological half-life, which allows 

it to be administered in a single daily dose. In addition, 

administration of tedizolid seems to be associated with a 

lower risk of hematological adverse effects as well as devel-

oping serotonin syndrome when it is administered with other 

drugs related to this syndrome.

According to the results from the clinical trials, admin-

istration of tedizolid phosphate for 6 days was not inferior 

to administration of linezolid for 10 days. Currently, it is 

being evaluated whether this difference in treatment dura-

tion maintains its efficacy in other infectious diseases such 

as pneumonia, with the aim of positioning tedizolid in the 

available antimicrobial arsenal.100 Should these findings be 

confirmed, the use of tedizolid could be associated with 

reduced economic resources mainly deriving from a shorter 

hospital stay.
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