
© 2016 Shah et al. This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php  
and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you 

hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission 
for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php).

Drug Design, Development and Therapy 2016:10 3837–3850

Drug Design, Development and Therapy Dovepress

submit your manuscript | www.dovepress.com

Dovepress 
3837

O r i g i n a l  R e s e a r c h

open access to scientific and medical research

Open Access Full Text Article

http://dx.doi.org/10.2147/DDDT.S114962

Smart nanocrystals of artemether: fabrication, 
characterization, and comparative in vitro and 
in vivo antimalarial evaluation

Syed Muhammad Hassan 
Shah1

Farhat Ullah2

Shahzeb Khan2,3

Syed Muhammad Mukarram 
Shah4

Marcel de Matas5

Zahid Hussain6

Muhammad Usman Minhas7

Naser M AbdEl-Salam8

Khaled Hafez Assi3

Mohammad Isreb3

1Department of Pharmacy, Sarhad 
University of Science & Information 
Technology, Peshawar, 2Department 
of Pharmacy, University of Malakand, 
Chakdara, Pakistan; 3Institute of 
Life Sciences Research, School of 
Pharmacy, University of Bradford, 
West Yorkshire, 4Department of 
Pharmacy, University of Swabi, KPK, 
Pakistan; 5SEDA Pharmaceutical 
Development Services, The BioHub 
at Alderley Park, Cheshire, UK; 
6Faculty of Pharmacy, Department of 
Pharmaceutics, Universiti Teknologi 
MARA, Selangor, Malaysia; 7Faculty 
of Pharmacy & Alternative Medicine, 
The Islamia University of Bahawalpur 
Pakistan, Bahawalpur, Pakistan; 8Riyadh 
Community College, King Saud 
University, Riyadh, Saudi Arabia

Abstract: Artemether (ARTM) is a very effective antimalarial drug with poor solubility and 

consequently low bioavailability. Smart nanocrystals of ARTM with particle size of 161±1.5 nm 

and polydispersity index of 0.172±0.01 were produced in ,1 hour using a wet milling technology, 

Dena® DM-100. The crystallinity of the processed ARTM was confirmed using differential 

scanning calorimetry and powder X-ray diffraction. The saturation solubility of the ARTM 

nanocrystals was substantially increased to 900 µg/mL compared to the raw ARTM in water 

(145.0±2.3 µg/mL) and stabilizer solution (300.0±2.0 µg/mL). The physical stability studies 

conducted for 90 days demonstrated that nanocrystals stored at 2°C–8°C and 25°C were very 

stable compared to the samples stored at 40°C. The nanocrystals were also shown to be stable 

when processed at acidic pH (2.0). The solubility and dissolution rate of ARTM nanocrystals 

were significantly increased (P,0.05) compared to those of its bulk powder form. The results of 

in vitro studies showed significant antimalarial effect (P,0.05) against Plasmodium falciparum 

and Plasmodium vivax. The IC
50

 (median lethal oral dose) value of ARTM nanocrystals was 

28- and 54-fold lower than the IC
50

 value of unprocessed drug and 13- and 21-fold lower than 

the IC
50

 value of the marketed tablets, respectively. In addition, ARTM nanocrystals at the same 

dose (2 mg/kg) showed significantly (P,0.05) higher reduction in percent parasitemia (89%) 

against P. vivax compared to the unprocessed (27%), marketed tablets (45%), and microsuspen-

sion (60%). The acute toxicity study demonstrated that the LD
50

 value of ARTM nanocrystals 

is between 1,500 mg/kg and 2,000 mg/kg when given orally. This study demonstrated that 

the wet milling technology (Dena® DM-100) can produce smart nanocrystals of ARTM with 

enhanced antimalarial activities.

Keywords: artemether, milling, smart nanocrystals, nanosuspension, in vitro dissolution, 

antimalarial activity

Introduction
Until the middle of the 20th century, malaria was a disease without any effective 

treatments. Even today, malaria remains endemic in specific regions of the world, 

with large numbers of deaths related to this disease.1 According to the latest World 

Health Organization (WHO) report, which was released in October 2015, there were 

438,000 deaths due to malaria, with ~214 million cases of malaria also diagnosed 

between the years 2000 and 2015.

It has become evident from the recent report that the global rates of infection and 

mortality in the period 2000–2015 have been declining to 37% and 60%, respec-

tively. In 2015, the highest number of malaria cases with .90% of the reported 

deaths being ascribed to malaria were reported in Sub-Saharan Africa. Among the 
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deaths, ~70% of the victims were children whose ages 

were ,5 years. However, in the period 2000–2015, the death 

tolls have been decreasing owing to the introduction of new 

antimalarial therapies.2

Malaria is caused by a parasitic protozoan (a unicellular 

microorganism) of the genus Plasmodium. Plasmodium 

falciparum (malaria tropica), Plasmodium vivax (malaria 

tertian), and Plasmodium malariae and Plasmodium ovale 

(malaria quaterna) are the species responsible for transmission 

of the disease in humans.3 The parasite is transmitted into 

the circulatory system from the bite of an infected female 

Anopheles mosquito. It then travels to the liver where it matures 

and reproduces.4–6 According to the recent WHO report, the 

prevalence of malaria due to P. vivax and P. falciparum is 

increasing every year, with P. vivax being responsible for 

transmitting ~75% (previously 64%) of malarial infections. 

Only 25% (previously 36%) of these infections are caused 

by P. falciparum, but with both stated species being reported 

among the most common in Pakistan.7

It has become evident from the current study that 70% 

of malaria cases in Pakistan are caused by P. vivax. In addi-

tion, Khyber Pakhtunkhwa (KP) and Federally Administered 

Tribal Areas of Pakistan have been reported as the most 

vulnerable zones for P. vivax and P. falciparum, which has 

been accentuated by free movement of the Afghan refugees 

and internally displaced people (WHO report).8 It has also 

been reported that the local residents of KP and Federally 

Administered Tribal Areas are immunologically more 

resistant to malarial infections compared to the migrating 

Afghani population.9

A number of medications have been used to treat malaria, 

including quinine, quanidine, chloroquine, primaquine, halo-

fantrine (related quinolone), and pyrimethamine.10 However, 

the parasite is reported to have evolved to be resistant to 

most of these drugs. Under these circumstances, the use of 

artemisinin and its derivatives such as dihydroartemisinin, 

artesinuate, arteether, artemether (ARTM), and lumefantrine 

has been suggested by the WHO. A report published by the 

WHO in 2010 revealed that the numbers of deaths attributed 

to malaria in 2010 was markedly reduced owing to the use of 

artemisinin derivatives either individually or in combination 

therapies.11 Among the artemesinin derivatives, ARTM and 

its partner drug lumefantrine have been reported to be the 

most effective drugs to treat malaria.12–15

Artemisinin was originally isolated from the Chinese 

herb (qinghaosu), which is also known as Artemisia annua. 

The important part of its structure is the 1,2,4-trioxane ring 

(Figure 1), which is the active pharmacophore of this com-

pound and responsible for its antimalarial activity.16

ARTM shows rapid onset of schizontocidal action, 

and its metabolism in the liver produces the demethylated 

derivative dihydroartemisinin. It has demonstrated a sig-

nificant antimalarial activity against both P. falciparum 

and uncomplicated malaria. It has also been reported to be 

very effective against cerebral malaria.17 The therapeutic 

response of this important active pharmaceutical ingredi-

ent (API), however, has been reported to be adversely 

affected by its erratic oral bioavailability due to its poor 

water solubility.18 Although this compound is a potent and 

lipid-soluble derivative of artemisinin,19,20 its poor water 

solubility (133±4 µg/mL) and low bioavailability (,40%) 

are considered to be major barriers to the development of a 

commercial dosage form.21

Currently, the commercially available dosage forms of 

ARTM are tablets, capsules, and injections. In addition to 

the poor water solubility, another issue associated with the 

parenteral formulations includes pain on injection, which 

leads to subsequent poor compliance.22 This pain might be 

caused by precipitation of the drug at the injection site. It 

is, therefore, important that a suitable dosage form needs 

to be designed, which addresses the issues of low aque-

ous solubility.

To date, a range of methods to address the issue of 

poor water solubility have been explored, including solid 

dispersions,23 solubilization,24 emulsions,25 microemulsions,26,27 

micronization,28 micelles,29 salts, liposomes,30,31 and inclusion 

complexes using cyclodextrin.32 The literature, however, sug-

gests that none of these approaches were particularly effec-

tive at addressing the issues of low aqueous solubility, while 

having other limitations around manufacturing complexity 

and physical stability.23,33–35

In this study, we report the use of an alternative 

approach for delivering drugs with low aqueous solubility. 

This involves the reduction of particle size of drugs down 

to submicron sizes. This provides the potential to drive 

Figure 1 Chemical structure of ARTM.
Abbreviation: ARTM, artemether.
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dissolution through increasing the surface area of the drug 

that is in contact with the media.36–40

In this regard, Freundlich–Ostwald and other research-

ers have reported that reducing the radius of particles can 

lead to increased solubility.41–43 This enhanced solubility is 

more pronounced for particles ,1 µm.44 To the best of our 

knowledge, hitherto nanocrystals of ARTM, which is a very 

promising drug delivery approach, have not been reported. 

This article therefore discusses the utility of a novel size 

reduction system (Dena® DM-100) previously reported by 

Plakkot et al45 for the rapid production of smart nanocrystals 

of ARTM with enhanced dissolution, solubility, long-term 

physical and chemical stability, and enhanced in vitro and 

in vivo antimalarial performance, against the dominant 

malaria-causing species in Pakistan, which include P. vivax 

and P. falciparum.

Materials and methods
Materials
ARTM was kindly gifted by the Shanghai Institute of 

Material Medica, Shanghai, China (batch no: 110916 from 

Chengdu Wagott Pharmaceutical Co., Ltd., Chengdu, China), 

hydroxypropyl methylcellulose (HPMC 6cps, batch no: 

8028213) and polyvinylpyrrolidon (PVP-K30, batch no: 

08297052G0) were purchased from BASF (Ludwigshafen, 

Germany), sodium lauryl sulfate (SLS) (batch no: 08421LE) 

was purchased from Sigma-Aldrich (St Louis, MO, USA). 

Distilled water was produced in the University of Bradford 

laboratories.

Preparation of ARTM nanosuspension
ARTM nanosuspensions were produced using the Dena® 

(DM-100 size reduction machine.46 This machine is composed 

of fast-moving conical rotor inside a conical sleeve. The 

grinding media (0.2 µm, yttrium-reinforced zirconium beads) 

housed inside indentations in the conical rotor and the narrow 

gap between the rotor and outer sleeve. Turbulence and high 

shear generated within the narrow gap provides potential 

for shearing and rupturing the particles, which results in the 

production of ultrafine powders in the submicron size range. 

The processed suspension continuously recycles through 

the apparatus through a stainless steel screen that prevents the 

contamination of product and retains the grinding media.

ARTM powder was suspended in 250 mL of an aqueous 

solution consisting of HPMC 6cps (0.5%, w/w), PVP-K30 

(0.5%, w/w), and SLS (0.1%, w/w). ARTM suspensions were 

produced at the concentrations of either 2.5% (w/w) or 10% 

(w/w). In both suspensions, with solid loads of 2.5% and 10%, 

the pH was adjusted to 2.0 using HCl. In addition, the impact 

of milling time on particle size distribution of the ARTM 

was investigated at both low and high solid loads (2.5% and 

10%). The suspensions were processed for 60 minutes by 

recycling through the size reduction chamber. Samples were 

collected periodically using the sampling port, and particle 

size was measured using the Zetasizer Nano-ZS instrument 

(Malvern Instruments, UK), at the intervals of 5, 10, 15, 30, 

45, and 60 minutes.

Characterization of ARTM nanocrystals
Particle size measurement
Particle size of the ARTM nanosuspensions was determined 

using dynamic light scattering (DLS), Zetasizer Nano-ZS 

instrument. For 10% (w/w) nanosuspension, 1 mL of the 

sample was further diluted in water (1:3). Sample analysis 

of the low feed nanosuspension (2.5%, w/w) was, however, 

carried out without further dilution. For all measurements, 

water was selected as dispersant, and temperature was kept as 

25°C. Disposable sizing cuvettes were used for the analysis of 

all samples; all measurements were made in triplicate (n=3), 

and results were reported as mean ± SD.

Zeta potential measurements
The zeta potential of nanosuspensions was determined 

using the Zetasizer Nano-ZS instrument. The samples for 

zeta potential measurements were prepared according to 

the reported method of Plakkot et al.45 The original samples 

of the produced nanosuspensions were further diluted in the 

dispersion medium. One milliliter of the sample was taken 

for 2.5% nanosuspension, while only 0.2 mL of 10% (w/w) 

formulation was used, which was further diluted in 10 mL 

of the dispersion medium. All the samples were analyzed in 

triplicate (n=3), and results were presented as mean ± SD.

Determination of the loading content of ARTM
The nanosuspensions were evaluated for active content using 

a Waters 2695, high performance liquid chromatography 

(HPLC) system connected to the ultraviolet detector. The 

Ultra™ II (C18 5 µm, 250×4.6 mm column) was used, and 

the temperature was set at 30°C. The solvent system used as 

the mobile phase for ARTM assay consisted of acetonitrile 

and buffer (20:80, v/v; 5 mL of triethylamine diluting to 100 

by using water), and the pH was adjusted to 3±0.05 with 

orthophosphoric acid. The flow rate of the mobile phase was set 

at 1 mL/min and was analyzed at a wavelength of 216 nm.

Scanning electron microscopy (SEM)
The morphology of unprocessed ARTM was evaluated using 

the SEM (Quanta 400 SEM; FEI Company, Cambridge, UK). 
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ARTM images were taken at various magnifications. The 

particles of ARTM were sputter coated with gold prior to the 

morphological studies.

Transmission electron microscopy (TEM)
TEM (TEM-1200Ex; Japan Electron Optics Laboratory 

Corporation, Tokyo, Japan) was used to evaluate ARTM 

nanocrystals at 120 kV. Nanosuspensions of ARTM were 

deposited on 200 mesh copper grid, which was coated with 

formvar/carbon (code no: S162), followed by drying the 

samples at room temperature. The samples were stained 

negatively with the magnesium uranyl acetate (2%) solution 

due to the low conductivity of the API.

Differential scanning calorimetry (DSC)
The melting point and heat of fusion of unprocessed and pro-

cessed ARTM was determined using DSC (Q2000 series; TA 

Instruments, New Castle, UK). The machine was calibrated 

with indium 99% (MP at 156.6°C) and zinc (MP at 419.5°C). 

Under the stream of nitrogen gas, the raw powder and milled 

samples (nanocrystals) of ARTM were then scanned at a flow 

rate of 50 mL/min with temperature ranging from 25°C to 

200°C at a heating rate of 10°C/min.

Powder X-ray diffraction (PXRD) studies
Crystallinity of the raw and processed ARTM recovered 

from nanosuspensions was evaluated using the PXRD (D-8, 

powder diffractometer; Bruker, Kahsruhi, Germany). The 

samples loaded into silicon wells were scanned in the 5°–50° 

2θ range at the rate of 10 2θ/min, at wavelength 1.542 Å 

with 1 mm slit using Cu Kα as a radiation. The PXRD was 

calibrated using a corundum standard.

Solubility studies
The solubility studies were also carried out for the ARTM 

nanocrystals. Samples were isolated from nanosuspensions 

at the concentration of 10% (w/w) by centrifugation using 

the method previously reported by Van Eerdenbrugh et al,47 

Gao et al,48 and Thakkar et al.49 Approximately 1.5 mL of the 

ARTM nanosuspension was filled into a centrifugation tube 

and stored for 24 hours. The sample was then centrifuged 

using a sigma centrifuge (model: Sigma 0II5982IIII; Scientific 

Laboratory Supplies Limited, Wilford, Nottingham, UK) at 

14,800 rpm for 1 hour. The supernatant layer was taken 

and filtered through 0.02 µm filter (syringe filter: 20 nm; 

Whatman International Ltd, Dassel, Germany) to ensure 

that any undissolved API .0.02 µm (eg, the nanoparticles) 

was separated from dissolved drug. The supernatant was 

then analyzed for the ARTM content using the HPLC 

method as previously described. The solubility study of 

unprocessed ARTM in pure water and stabilizer solution 

(HPMC, 0.5% [w/w]; PVP-K30, 0.5% [w/w]; SLS, 0.1% 

[w/w]) was also carried out to assess the nanocrystals effect 

on saturation solubility of ARTM. Sufficient quantity of 

ARTM in pure water and stabilizer solution was placed 

in vials and sonicated for 2 hours followed by the use the 

same procedure as mentioned for nanocrystals.

Stability studies
Physical stability of the produced ARTM nanosuspensions 

was also carried out in the present study and was monitored 

by measuring particle size and zeta potential with time. 

Chemical stability of ARTM was assessed by the determi-

nation of the active content using HPLC for samples stored 

for 7 days both in acidic media and in water. In addition, 

the ARTM nanosuspension with high solids load (10%) was 

subjected to long-term (90 days) stability studies at 2°C–8°C, 

25°C, and 40°C. The purpose of this study was to determine 

the extent of the particle growth through aggregation and 

Ostwald ripening. The particle size of stored samples was 

monitored at regular intervals including 10, 15, 30, 45, 60, 

75, and 90 days using DLS.

Dissolution studies
The in vitro drug release of ARTM nanocrystals was 

compared with micronized ARTM (mean particle size 

8.0±2.50 µm) produced using the FPS Spiral Jetmill (FPS, 

Italy), raw ARTM API powder, marketed tablets (20 mg), and 

the microsuspension (6.0±3.0 µm) prepared by crushing the 

tablet using a pestle and mortar followed by sonication in the 

same dispersion medium used for ARTM nanosuspensions. 

Dissolution tests were performed using the USP apparatus II 

(paddle method) at 100  rpm, which has been reported by 

Umapathi et al.21 The dissolution medium (1,000 mL) chosen 

for dissolution testing was composed of phosphate buffer at 

pH 7.2 and 1% sodium dodecyl sulfate, which has previously 

been reported by Pawar et al.50

For determination of the amount of drug dissolved, 5 mL 

aliquots were collected from the dissolution bath at specified 

time intervals (0, 2, 5, 10, 15, 30, 45, and 60 minutes) at 

37°C±1°C using the syringe filter (0.2 µm). The dissolution 

media were then supplemented with 5 mL of fresh dissolu-

tion medium to maintain sink conditions. This small-size 

syringe filter has been previously reported as being effective 

for use in dissolution studies of nanocrystals.39,51 The drug 

content of each sample was analyzed using reverse phase 
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HPLC (the method has been described in the “Materials and 

methods” section).

Microbiological examination and in vitro  
antimalarial assay
Giemsa-stained smears were examined to identify the 

Plasmodium species by a skilled microbiologist of Teaching 

Hospital (Hayat Abad Medical Complex [HMC] Peshawar, 

Peshawar, Pakistan). In vitro antimalarial assays were under-

taken for the ARTM nanosuspension, unprocessed ARTM, 

and marketed tablets (20  mg) against identified species, 

ie, P. falciparum and P. vivax. The culture was maintained 

as described by Trager and Jensen.52 Stock solutions of 

the ARTM were prepared in solvent at concentrations of 

0.1–20 ng/mL for the ARTM nanosuspension, unprocessed 

ARTM, and marketed tablets with the concentrations of 

1–70 ng/mL. The culture (P. vivax 2%–3% and hematocrit 

2%–3%) was exposed to various concentrations of the 

nanosuspensions, unprocessed API, and marketed tablets 

for 72 hours (37°C, 5% CO
2
). Lytic buffer comprising Tris 

pH 7.5 (20 mM), EDTA (5 mM), saponin (0.008%), triton 

X-100 (0.08%), and syber green-I was added to each well 

followed by incubation for 3 hours in the dark in incubators 

at room temperature. Parasites in the thin films were counted 

against 250 erythrocytes each, with slides being read in 

triplicate. The mean parasitemia was calculated from the 

triple-read replicate tests.

The mean parasitemia in the drug-free control wells 

served as the parameter of optimum and relative growth 

inhibition in the drug wells and was calculated on the basis 

of formula as suggested by Fidock et al.53 All the plates were 

read under fluorescence and IC
50

 was determined.

Activity
Mean parasitemia treated

Mean parasitemia cont
= −100

rrol
×100







�

(1)

In vivo antimalarial activity
In vivo studies were carried out according to the ethical 

committee of the University of Malakand and relevant 

Bye-Laws 2008 (Scientific Procedure Issue-1). In house, 

male Swiss albino mice aged between 4 weeks and 6 weeks 

with body weight 30±5 g were used. The protocol for in 

vivo studies was designed based on the 4 days suppressive 

studies of Peters.54

P. vivax (HMC-147) collected from the Teaching Hospital 

was used. Experimental animals were infected by introduc-

ing parasitemia intraperitonealy at concentrations of 106 by 

diluting mice blood in buffer using acid citrate dextrose.  

The animals were divided into ten groups (n=6 per group). 

After postinfection starting from day 0 to day 3, ARTM 

nanosuspensions, microsuspensions, marketed tablets 

(20 mg), and unprocessed API (raw powder) were given in 

the form of a suspension by oral gavage at concentrations of 

2 mg/kg. Blood was withdrawn from the tail vein on day 4 

postinfection. Methanol was used to fix the blood smear 

followed by staining with Giemsa stain. In the experiment, 

untreated control mice were used to check any change in the 

susceptibility of host for infection and for procedural errors. 

Parasites were counted from each slide as percent paracitemia 

after counting 250 red blood cells using the formula reported 

by Fidock et al.53

Acute toxicity studies of ARTM nanosuspension
Acute oral toxicity studies were conducted for ARTM 

nanosuspensions to estimate the lethal dose (LD
50

) using 

male Swiss albino mice (n=8) weighing 35±5  g. ARTM 

nanosuspensions were given in several doses (500, 1,000, 

1,500, and 2,000 mg/kg) by oral gavage. The doses were 

decided as per the main test specified in the Organization for 

Economic Cooperation and Development Guideline 420.55 

After administering the ARTM nanosuspensions at the above 

doses, the toxic effects and number of deaths were observed 

over the period of 24 hours. The protocol for this study was 

carried out according to the requirements of, and approved 

by, the Ethical Committee of the University of Malakand and 

relevant Bye-Laws 2008 (Scientific Procedure Issue-1).

Statistical analysis
Data were presented as mean ± SD. Data were analyzed using 

either paired t-tests or independent t-test and analysis of vari-

ance (ANOVA) followed by Tukey’s post hoc analysis. For 

particle size, zeta potential, drug content, solubility, stability, 

and dissolution studies, a P-value of ,0.05 was considered 

to indicate a significant difference between the tested groups. 

Dissolution data for the different formulations were also ana-

lyzed using Statistics 8.1 software (Tallahassee, FL, USA).

Results and discussion
Preparation of ARTM nanocrystals and 
the impact of processing conditions
The initial size of the unprocessed ARTM was in the size 

range of 25–30 µm and 120–135 µm (Figure 2A). Figure 2C 

shows a rapid size reduction of ARTM 800–900 nm within 

the first 5 minutes of milling at different processing condi-

tions. It became evident that a processing time of 45 minutes 

was sufficient to achieve maximum attainable size reduction 
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of the particles. The average size of the particles and poly-

dispersity index (PDI) of ARTM for the high concentration 

suspension (10%, w/w) were found to be 161.3±1.5 nm and 

0.172±0.01, respectively, after 60 minutes (Figure 2C). For 

the low concentration feedstock (2.5%, w/w) prepared both 

in water and at acidic pH (2.0), the particles were reduced 

to sizes ,250 nm within 60 minutes. The average particle 

size and PDI values were shown to be 245.5±2.0 nm and 

0.150±0.02, respectively (Figure 2C). TEM images clearly 

show uniform size distribution of the ARTM nanocrystals 

with size ,200  nm (Figure 2B). All the particles shown 

in TEM images appear to show a defined morphology 

typically associated with crystalline material with no 

spherical particles present. The high concentration ARTM 

suspension (10%, w/w) showed the smallest particle size of 

161.3±1.5 nm compared to those from the low concentration 

feedstock (2.5%, w/w), which had shown an average particle 

size of 245.5±2.0 nm (Figure 2C).

Stenger and Peukert56 reported that, in wet milling pro-

cesses, increasing the milling time increases the shear stress, 

resulting in further reduction in the particle size. In concen-

trated suspensions, the high stresses and self-attrition forces 

can potentially cause greater size reduction compared to the 

dilute suspensions. Furthermore, particles are more likely 

to collide and interact with the milling medium (beads) 

resulting in more efficient size reduction. Smaller particles 

have therefore been achieved for the higher concentration 

suspension.

The HPLC results show that no new peaks relating to 

degradation products were observed on the chromatograms. 

Furthermore, no substantial aggregation or crystal growth 

was observed for the nanosuspensions prepared at acidic 

pH (2.0) when stored for 7 days. This suggests that the nano-

crystals will remain stable during residence in the stomach 

following administration of the nanosuspensions to humans, 

for which typical stomach residence time (20 minutes on an 

empty stomach) is far shorter than the period over which 

stability was monitored (7 days) (Table 1).

The percentage of the active agent content of ARTM 

nanosuspensions (2.5%, w/w) and (10%, w/w) in both water 

Figure 2 Scanning electron micrographs of unprocessed ARTM (A); transmission electron micrographs of ARTM nanocrystals (B); impact of milling time on particle size 
reduction (C); and Zeta potential values of different ARTM nanocrystals (D).
Abbreviation: ARTM, artemether.
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and acidic pH 2.0 was monitored for 7 days. For all four 

formulations, the percent recovery of the active content did 

not change significantly (Table 2), which shows that the 

stability of the drug substance in nanosuspension form is 

adequate under the conditions tested. In addition, no deg-

radation was observed for both high and low concentration 

nanosuspensions of ARTM in water and at acidic pH 2.0 

over 7 days (Table 2).

Measurements of zeta potential have also been reported 

to predict physical stability of formulated nanosuspensions. 

The zeta potential measurements are dependent on both the 

surface chemistry of the drug particles and the composition of 

the stabilizer medium. A range of zeta potential values have 

previously been reported to give stable nanosuspensions, 

which include ±30 mV and ±20 mV for electrostatically and 

sterically stabilized systems, respectively.57,58 In addition, 

a minimum zeta potential value of ±20 mV has been pro-

posed to deliver adequate stability of nanosuspensions when 

using both ionic and nonionic polymers and surfactants as 

stabilizers.59

In this study, the values of zeta potential of ARTM 

nanosuspensions were found to be within the reported range 

(±20  mV) (Figure 2D). No significant differences were 

observed between the tested formulations.

The zeta potential results demonstrated that the combina-

tion of HPMC 6cps, PVP, and SLS is sufficient to stabilize 

nanosuspensions at the selected concentrations. This com-

bination of polymers and surfactants has previously been 

shown to stabilize drug nanocrystals manufactured using 

the same top down manufacturing technology.60 In addition, 

Khan et al reported that the combination of HPMC, PVP, 

and SLS was very effective at stabilizing nanosuspensions 

with the excipients being adsorbed onto the surfaces of both 

crystallized and milled nanoparticles.39

Physical stability studies of ARTM nanocrystals at 

2°C–8°C, 25°C, and 40°C for 90  days demonstrated that 

nanocrystals stored at 2°C–8°C and 25°C (Figure 3A and B) 

showed improved stability compared to the samples stored 

at 40°C (Figure 3C). The nanocrystals stored at 2°C–8°C 

exhibited adequate stability (Figure 3A) with no marked 

changes in key nanosuspension characteristics. The nano-

suspensions stored at 2°C–8°C and 25°C maintained their 

PDI values, and there was no significant difference (P.0.05, 

paired t-test, one-way ANOVA) in the mean values of particle 

size after 90 days storage, which suggests that a homogenous 

particle size distribution has been achieved after milling, 

which facilitates the avoidance of Ostwald ripening in the 

nanosuspensions.61

Temperature has previously been reported to demonstrate 

marked influence on the physical stability of the suspen-

sions, with elevated temperatures increasing the kinetic 

energy of the suspended particles leading to increased 

interparticle interactions. The strong van der Waals forces 

acting between the nanoparticles lead to increased agglom-

eration and subsequent destabilization of the suspensions.62 

Freitas and Müller63 suggested that nanosuspensions should 

be stored at a temperature range of 2°C–8°C to achieve 

maximum stability.

Table 1 Effect of various ARTM concentrations (2.5% and 10%) in water and at pH 2.0 on the mean particle sizes (nm) of ARTM 
nanocrystals in nanosuspension

Formulation conditions Average particle sizes of ARTM with ± SD (nm)

Day 0 Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

Water concentration: 2.5% 245.5±0.21 247.5±0.31 248.45±0.01 249.0±0.02 249.5±0.13 250.25±0.12 250.65±0.01 251.25±0.21
pH (2.0) concentration: 2.5% 237.40±0.05 239.70±0.06 245.85±0.03 250.40±0.21 256.5±0.32 260.80±0.4 262.90±0.20 267.54±0.3
Water concentration: 10% 161.6±1.2 163.25±1.0 164.5±2.2 165.0±1.5 165.30±2.0 165.5±2.7 166.0±3.0 167.55±1.5
pH (2.0) concentration: 2.5% 154.75±2.3 158.23±3.2 163.58±2.0 170.87±3.0 178.44±1.5 180.76±1.0 185.74±2.5 188.57±1.2

Note: Experiments were performed in triplicates (n=3), and data are presented as mean ± SD.
Abbreviations: ARTM, artemether; SD, standard deviation.

Table 2 Effect of various ARTM concentrations (2.5% and 10%) in water and at pH 2.0 on active contents of ARTM nanocrystals

Formulation conditions Active contents of ARTM nanocrystals (% active content ± SD)

Day 0 Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

Water concentration: 2.5% 90.02±0.21 88.50±0.31 87.25±0.01 87.15±0.02 87.13±0.13 87.10±0.12 87.08±0.01 87.00±0.21
pH (2.0) concentration: 2.5% 89.50±0.05 88.45±0.06 88.28±0.03 88.20±0.21 88.18±0.32 88.12±0.4 88.10±0.20 88.05±0.3
Water concentration: 10% 92.05±1.2 89.75±1.0 89.50±2.2 88.52±1.5 88.38±2.0 88.25±2.7 88.20±3.0 88.10±1.5
pH (2.0) concentration: 10% 90.50±2.3 89.55±3.2 89.40±2.0 89.35±3.0 89.20±1.5 89.18±1.0 89.15±2.5 89.10±1.2

Note: Experiments were performed in triplicates (n=3), and data are presented as mean ± SD.
Abbreviations: ARTM, artemether; SD, standard deviation.
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DSC and PXRD studies
DSC and PXRD results for the milled ARTM particles 

revealed that ARTM maintained its physical form and 

crystallinity after size reduction. For both nanocrystals and 

unprocessed ARTM, a single sharp melting endotherm was 

observed (Figure 4A). However, the melting temperature 

of the raw ARTM API appeared to show a slightly higher 

melting temperature (86.56°C) than the nanosuspensions 

(83.78°C). The endothermic peak of the processed samples 

was also slightly broadened. These differences can be caused 

by the particle size difference between the two samples. The 

DSC profile can be strongly affected by the particle size 

Figure 3 Physical stability of ARTM nanocrystals in terms of monitoring the particle size and PDI at various time points on storage at (A) 2°C–8°C, (B) 25°C, and (C) 40°C.
Abbreviations: ARTM, artemether; PDI, polydispersity index.

° θ

Figure 4 DSC thermogram of milled and unprocessed ARTM (A) and PXRD patterns of unprocessed and milled ARTM (B).
Abbreviations: ARTM, artemether; DSC, differential scanning calorimetric; PXRD, powder X-ray diffraction.
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and packing density.64,65 Additionally, broadening of the 

DSC peaks can be caused by the presence of impurities or 

traces of the polymers remaining on the surface of the drug 

particles.65 The PXRD analysis of both unprocessed and 

processed ARTM produced sharp X-ray chromatograms, 

which confirmed that after milling ARTM maintained its 

crystalline nature (Figure 4B). However, PXRD peaks 

for the unprocessed samples showed greater intensity and 

sharper peaks.

These data suggested that both unprocessed ARTM and 

the particles isolated from the nanosuspension were crystal-

line in nature. The reduced intensity peaks observed for the 

milled ARTM are probably related to the smaller particle 

size of the samples coupled with the presence of traces of the 

amorphous polymeric stabilizing agent, which contributes to 

some diffuse scatter.38,39,66 Smaller particles are well known to 

demonstrate peak broadening with the reduced sharpness of 

peaks often leading to the disappearance of some peaks.64 In 

addition, the relatively small sample sizes used for the nano-

suspensions raise the risk that fewer particles are exposed to 

the X-rays, which in turn also leads to reduced peak intensity 

with lower resolutions of peaks.

Solubility studies
The solubility profile of ARTM nanocrystals and unpro-

cessed ARTM in pure water and stabilizer solution is 

shown in Figure 5. The solubility of ARTM nanocrystals was 

found to be 900±2.4 µg/mL, giving an ~3–6-fold increase 

in solubility, compared to the solubility of unprocessed 

ARTM in stabilizer solution (321±2.0  µg/mL) and pure 

water (145±3.0 µg/mL). These differences in solubility were 

shown to be statistically significant (P,0.05, paired t-test, 

one-way ANOVA).

Despite water-soluble polymers and surfactants such 

as HPMC, PVP, and SLS being well known to increase 

the solubility of drug compounds,67,68 the comparison of 

the solubility profile of the nanosuspension with that of the 

unprocessed ARTM dissolved in these same surfactants 

clearly demonstrates that the nanocrystals provide a sub-

stantially increased saturation solubility of ARTM. This 

phenomenon we believe is ascribed to the marked reduction 

in particle size (=1,000 nm) and the greatly increased surface 

area of the particles.

Another possible explanation for the increase in solubility 

is the production of substantial surface amorphicity follow-

ing the particle being subject to a high energy comminution 

process. The results of DSC and X-ray studies, however, 

show that the ARTM remains predominantly crystalline 

after size reduction.

The impact of nanonization on the drug and its saturation 

solubility can be described by the following Freundlich–

Ostwald equation:69

	
S S

M

r RT
= α γ

ρ
exp

2



 �

(2)

where S is the saturation solubility of nanoparticles, Sα is 

the saturation solubility of the large crystals, γ is the solid 

medium interfacial tension, M represents the molecular 

weight of the substance, r is the radius of particles, ρ rep-

resents the density, R is the gas constant, and T represents 

the temperature. According to this equation, drug solubility 

will be greater for reduced particle radius. However, Müller 

et al44 reported that this type of effect is not considerable for 

larger particles and is more pronounced for the particles in 

the submicron size range.

Dissolution studies
The results of comparative in vitro dissolution studies of 

different formulations of ARTM are shown in Figure 6. 

The figure shows a substantial increase in dissolution rate 

of the ARTM nanocrystals compared to the marketed tablets 

(20  mg), unprocessed API (raw drug substance), micro-

suspension (6.0±2.5 µm), and micronized ARTM powder 

(8.0±2.5 µm).

Figure 6 also shows that ~.70% of drug nanocrystals of 

ARTM are dissolved in the first 2 minutes compared to the 

unprocessed API (0.5%) and the commercial tablets (2.2%). 

Increases in the dissolution rate of 32- and 140-fold were 

Figure 5 Solubility studies of ARTM nanocrystals, unprocessed ARTM in pure 
water, and stabilizer solution.
Abbreviation: ARTM, artemether.
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observed for nanocrystals compared to the commercial tab-

lets (20 mg) and unprocessed ARTM powder, respectively. 

This significant (P,0.05, paired t-test, one-way ANOVA) 

increase in the dissolution rate of ARTM nanocrystals dem-

onstrated that ARTM nanocrystals maintained their surface 

area with no marked agglomeration occurring after comple-

tion of the size reduction process.

The relationship of surface curvature, vapor pressure, and 

the particle size can be illustrated by the following Kelvin 

equation:

	

Ln
P

P

Mr

rRT
r

∞

=
2γ

ρ
�

(3)

where P
r
 is the vapor pressure of a particles having the 

radius r. P∞ is the vapor pressure of an infinitely large par-

ticle, γ  is the surface tension, R is the gas constant, T is the 

absolute temperature, M represents the molecular weight, and 

ρ is the density of the particle. Based on this mathematical 

expression, nanosized particles having larger surface curva-

ture demonstrate noticeably higher vapor pressure compared 

to the bigger micronized particles. Molecular transfer from 

liquid to gas is similar to the transfer of molecules from solid 

phase to liquid medium. In this case, the dissolution pressure 

can be converted to vapor pressure that is expected to be 

enhanced for smaller submicron particles.70

In addition to the enhanced solubility of nanosized 

particles, the following Prandtl equation demonstrates an 

important relationship between particle size and hydrody-

namic boundary layer (hH);

	 hH = k L V( / )/ /1 2 1 2

� (4)

where hH is the hydrodynamic boundary layer, k is a constant, 

L is the length of the surface in the direction of the fluid flow, 

and V is the relative velocity of the liquid surrounding the 

particles.71 When used in combination with the following 

Noyes–Whitney equation, it is clear that dissolution velocity 

will have a tendency to increase with reducing the diffusion 

boundary thickness:

	

d

d
s xc

t
AD

C C

h
=

−



 �

(5)

where dc/dt is the rate of drug dissolution, A is the drug sur-

face area accessible for dissolution, D is the drug diffusion 

coefficient, C
s
 is the saturation solubility of the drug, C

x
 is 

the bulk concentration, and h is the thickness of the boundary 

layer adjacent to the dissolving drug surface.

In vitro antimalarial activity
P. falciparum and P. vivax were confirmed using optical 

microscopy. The in vitro antimalarial activity of ARTM 

nanocrystals showed significant (P,0.05) activity against 

P. falciparum and P. vivax at the very low concentrations of 

0.7 ng/mL and 0.3 ng/mL, respectively (amount of ARTM 

in nanosuspension was 10%, w/w). However, the vehicle/

control comprising aqueous stabilizer (HPMC 6cps, PVP-

K30, and SLS) solution showed no activity against the tested 

strains. The IC
50

 values of the ARTM nanosuspension against 

P. falciparum and P. vivax were 28- and 54-fold lower than 

those of the unprocessed ARTM (20.0 ng/mL and 16.3 ng/mL) 

and 13- and 21-fold lower than those of the marketed ARTM 

tablets (9.0  ng/mL and 6.3  ng/mL), respectively. The 

enhanced in vitro performance of nanoformulation against the 

selected strains (P. falciparum and P. vivax) is encouraging, 

and it is because of the smaller particle size, which provides 

immense surface area resulting in an enhanced dissolution 

rate and consequently marked absorption.72

In vivo antimalarial activity
The in vivo antimalarial potential of ARTM with respect to 

antimalarial activity and reduction in the total parasitemia for 

a range of different pharmaceutical presentations including 

nanocrystals, unprocessed API, and marketed tablets is 

Figure 6 Comparative dissolution profile of ARTM nanocrystals, microsuspension, 
micronized drug, marketed tablets, and raw ARTM.
Abbreviation: ARTM, artemether.
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shown in Figure 7A and B. As shown in Figure 7A, the 

highest parasitemia was observed in control group on day 4 

(receiving vehicle). The highest parasitemia observed in the 

control group confirmed that the chosen animal model for 

the current study was valid and accurate.

The different ARTM presentations demonstrated sig-

nificant antimalarial performance compared to the control 

group. ARTM nanocrystals showed (P,0.05) the highest 

reduction in the percent parasitemia (89%) in the treated ani-

mals compared to the microsuspension, unprocessed API, 

and marketed ARTM formulation. The unprocessed API, 

marketed tablets, and microsuspension were, however, 

only able to reduce the paracitemia by 27%, 45%, and 60%, 

respectively, at same dose (2 mg/kg). The antimalarial activ-

ity of ARTM nanocrystals was 3.2-, 2-, and 1.5-fold higher 

than that of the unprocessed API, marketed formulation, 

and microsuspension with no significant difference in the 

survival of experimental animals receiving ARTM nanocrys-

tals, unprocessed API, and marketed ARTM formulations 

(Table 3). These data suggest that the therapeutic window 

of this drug is reasonably high.

The enhanced antimalarial efficacy of ARTM nano-

crystals is probably related to the rapid dissolution of the 

high surface area of nanoparticles in vivo, with the oral 

bioavailability likely to be highest for this system in line 

with hypotheses described in the literature.72 In this regard, 

the dose of ARTM in nanocrystals form has the potential to 

be reduced which in turn could potentially reduce the dose-

related toxicity of this drug, with the additional opportunity 

to ameliorate the dose-related resistance problems, which 

are well known for this very potent drug.

Acute toxicity
LD

50
 (median lethal oral dose) is a statistically derived 

single dose of a substance that can be expected to cause 

death in 50% of treated animals when administered by the 

oral route. The LD
50

 value is expressed in terms of weight 

of test substance per unit weight of test animal (milligram 

per kilogram). In the acute toxicity studies, no mortality was 

observed in the groups receiving 500, 1,000, and 1,500 mg/kg 

dose of both ARTM nanosuspensions after 24 hours. How-

ever, animals of the group receiving 2,000  mg/kg were 

shown to be deceased. It can therefore be concluded that 

the LD
50

 value of ARTM nanocrystals is between 1,500 mg/

kg and 2,000 mg/kg when given orally. The LD
50

 value of 

ARTM was previously reported by Zhou et al,73 which was 

found to be .2,000 mg/kg. The high LD
50

 value of ARTM 

conventional dosage form could be due to its low solubility 

and hence low bioavailability as compared to nanoformula-

tion, which has also become evident in our solubility and 

dissolution studies.

Conclusion
A novel top down technology (Dena® DM-100) was shown 

to be very effective at producing ARTM nanocrystals 

Figure 7 Monitoring of percent parasitemia (A) and antimalarial activities (B) in different groups of mice using ARTM nanocrystals, microsuspension, marketed formulation, 
and unprocessed ARTM.
Abbreviation: ARTM, artemether.

Table 3 Number of Swiss albino mice to survive between the 
different groups at 2 mg/kg (ARTM)

Groups Number of mice alive 
by day 5

Control/ARTM unprocessed 3/8
ARTM nanosuspension 6/8
ARTM microsuspension 4/8
ARTM marketed formulation 4/8

Abbreviation: ARTM, artemether.
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(,300±2.5 nm) over a short duration (,30 min), with high 

drug concentrations and improved saturation solubility 

achieved for both the high concentration (10%, w/w) and 

low concentration (2.5%, w/w) nanosuspensions.

The smallest average particle size of ARTM (,170± 
2 nm) was achieved in 60 minutes for the high concentration 

suspensions (10%, w/w) when processed both in water and 

at pH 2.0. The combination of HPMC 6cps (0.5%, w/w), 

PVP-K30 (0.5%, w/w), and SLS (0.1%, w/w) was sufficient 

to stabilize the nanocrystals in suspension. The nanocrystals 

showed much increased dissolution rate with ~32- and ~140-

fold enhancement in the dissolution rate compared to the 

marketed tablets and the raw unprocessed ARTM.

In both the in vitro and in vivo studies, the antiplas-

modial activity of the produced ARTM nanocrystals is 

compared favorably with that of the raw unprocessed API 

and the marketed tablet product. The nanocrystals of ARTM 

demonstrated 3.2-, 2-, and 1.5-fold higher activity against 

the selected strains (P. vivax) compared to those of the 

unprocessed API, marketed tablets, and microsuspension, 

respectively. Moreover, the nanocrystals of ARTM also 

demonstrated 28- and 54-fold lower IC
50

 values compared to 

those of the unprocessed API and marketed ARTM tablets, 

respectively, against P. falciparum, while also demonstrating 

13- and 21-fold improvements for the same presentations 

against P. vivax.

These data clearly demonstrate that the nanocrystals of 

ARTM produced using a top down size reduction technology 

have superior physicochemical characteristics, which lead 

to improved in vivo antimalarial performance, compared 

to those of unprocessed API, micronized drug, and com-

mercially available ARTM tablets. The produced ARTM 

nanocrystals demonstrated rapid in vitro dissolution, which 

provided benefits in vivo drug absorption and resultant 

improved in vivo antiplasmodial activity.

This study clearly demonstrated that the Dena® DM-100 

system is able to rapidly and efficiently reduce the particle size 

to the level at which the dissolution rate and bioavailability 

of ARTM are enhanced markedly. These results suggest 

that the ARTM nanocrystal preparation could have the 

potential to demonstrate improved therapeutic performance 

in humans; hence, future work will be focused on completing 

the experimental studies, which could provide a line of sight 

to the clinical evaluation of the nanocrystal system.
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