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Background: The intestinal cytochrome P450 3A (CYP 3A) and P-glycoprotein (P-gp) present 

a barrier to the oral absorption of saquinavir (SQV). Resveratrol (RESV) has been indicated 

to have modulatory effects on P-gp and CYP 3A. Therefore, this study was to investigate the 

effects of RESV on P-gp and CYP 3A activities in vitro and in vivo on oral SQV pharmacoki-

netics in rats.

Methods: In vitro, intestinal microsomes were used to evaluate RESV effect on CYP 

3A-mediated metabolism of SQV; MDR1-expressing Madin–Darby canine kidney (MDCKII-

MDR1) cells were employed to assess the impact of RESV on P-gp-mediated efflux of SQV. 

In vivo effects were studied using 10 rats randomly assigned to receive oral SQV (30 mg/kg) 

with or without RESV (20 mg/kg). Serial blood samples were obtained over the following 

24 h. Concentrations of SQV in samples were ascertained using high-performance liquid 

chromatography-tandem mass spectrometry analysis.

Results: RESV (1–100 μM) enhanced residual SQV (% of control) in a dose-dependent manner 

after incubation with intestinal microsomes. RESV (1–100 μM) reduced the accumulation 

of SQV in MDCKII-MDR1 cells in a concentration-dependent manner. A double peaking 

phenomenon was observed in the plasma SQV profiles in rats. The first peak of plasma SQV 

concentration was increased, but the second peak was reduced by coadministration with RESV. 

The mean AUC
0–∞ of SQV was slightly decreased, with no statistical significance probably due 

to the high individual variation.

Conclusion: RESV can alter the plasma SQV concentration profiles, shorten the T
max

 of SQV. 

RESV might also cause a slight decrease tendency in the SQV bioavailability in rats.

Keywords: resveratrol, saquinavir, P-glycoprotein, CYP 3A, pharmacokinetic

Introduction
The standard treatment for the human immunodeficiency virus (HIV)/acquired 

immunodeficiency disease recommended by the World Health Organization includes 

at least three drugs in combination: two nucleoside reverse transcriptase inhibitors 

and one protease inhibitor (PI) or non-nucleoside reverse transcriptase inhibitor. This 

treatment is commonly termed highly active antiretroviral therapy.1 Saquinavir (SQV), 

as with other PIs, exerts its pharmacological activities by binding to the active site of 

viral protease enzyme, leading to the formation of immature virus particles. Although 

SQV is highly effective in blocking HIV-1 infection, SQV efficacy in clinical practice 

is limited, mainly due to its low and highly variable oral bioavailability, which is ~4% 

with a coefficient of variation (CV) .100%.2,3 Multiple factors contribute to the low 

oral bioavailability of SQV, including poor solubility characteristics, extensive first 
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pass metabolism and P-glycoprotein (P-gp) transport. After 

oral administration, SQV is extensively metabolized before 

systemic absorption by cytochrome P450 3A (CYP 3A) 

in the small intestine.4 In addition, SQV is a substrate for 

P-glycoprotein (P-gp) transporters with high affinity.5 The 

P-gp on intestine epithelia actively extrudes SQV from 

enterocytes back into the intestinal lumen, leading to a sig-

nificant reduction in systematic plasma drug levels.5 Thus, 

coadministration of SQV with drug or diet that may inhibit 

or induce CYP 3A or/and P-gp activities should be viewed 

with caution.

Resveratrol (RESV) is a kind of stilbenes mainly found 

in red grapes, berries, and peanuts.6 RESV and its potential 

health benefits have attracted increasing interest since red 

wine consumption was found to be associated with low 

incidence of cardiovascular disease in the French despite 

a high-fat diet, which is popularly known as the “French 

paradox” phenomenon.7,8 During the past few years, RESV 

has been reported to exert various beneficial pharmacological 

effects, such as anti-inflammatory,9 anti-atherogenic,10 and 

anticarcinogenic11 activities. In addition, RESV exhibits anti-

HIV-1 activity.12 Recent results suggest a synergistic inhibition 

of HIV-1 by the combination of RESV and decitabine.13

Given its multiple beneficial pharmacological effects, 

introducing RESV as a supplemental agent into HIV-1 ther-

apy seems reasonable. However, RESV has been indicated 

to modulate P-gp and CYP 3A activities,14,15 suggesting it 

may alter the pharmacokinetics (PK) or bioavailability of 

concomitant drugs that are P-gp or/and CYP 3A substrates, 

such as SQV. Whether, and to what extent, RESV influ-

ences intestinal P-gp-mediated efflux or CYP 3A-mediated 

metabolism of SQV remains unclear. To our knowledge, no 

data are available concerning the impacts of RESV on the PK 

of SQV. Therefore, we conducted this study to investigate 

the effects of RESV on P-gp and CYP 3A activities and its 

impacts on the PK of SQV in rats.

Materials and methods
Chemicals and reagents
RESV (purity .98%) was purchased from FeiYu Biotechnol-

ogy Corporation (Nantong, People’s Republic of China). SQV 

was purchased from USP (Rockville, MD, USA). Chemical 

structures of RESV and SQV are shown in Figure 1. Pooled 

Sprague-Dawley rat (male) intestine microsomes were obtained 

from Xenotech LLC (Kansas City, KS, USA). Verapamil 

(VER) fluid injection (50 mL/branch) was obtained from 

HeFeng Pharmaceutical Co. Ltd (Shanghai, People’s Republic 

of China). BCA Protein Assay Kit was purchased from 

Solarbio (Beijing, People’s Republic of China). Ketoconazole 

(KET) (purity .99%) was purchased from the National Insti-

tutes for Food and Drug Control (Beijing, People’s Republic 

of China). Dulbecco’s Modified Eagle’s Medium was from 

Gibco (Shanghai, People’s Republic of China). Phosphate-

buffered saline (PBS) and other reagents or solvents used 

were commercially available and of reagent grade.

Animals
Male Sprague-Dawley rats were purchased from the Academy 

of Military Medical Sciences (Beijing, People’s Republic of 

China). Rats were housed in well-ventilated cages at room 

temperature (24°C±2°C) and 40%–60% relative humidity. 

Rats were kept on a 12 h night cycle (lights on from 

Figure 1 Chemical structures of resveratrol (A) and saquinavir (B).
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6 am to 6 pm). The animals were housed with free access 

to laboratory food and water ad libitum. Rats weighing 

300–350 g (8–9 weeks old) were used in the PK study.

In vitro metabolism experiment
An in vitro experiment was conducted to assess the effect 

of RESV on intestinal CYP 3A-mediated metabolism of 

SQV. The procedures used are similar to previously reported 

methods.16,17 All incubations were performed in triplicate in 

100 μL of 100 mM PBS (pH 7.4) containing 1 mM nicotin-

amide adenine dinucleotide phosphate, 0.8 mg/mL intestinal 

microsomal protein and modulator (10 μM KET, or 1, 10, 

or 100 μM RESV). The microsomes (replaced with equal 

volume of buffer in the control group) and KET or RESV 

were mixed and incubated at 37°C for 5 min. Nicotinamide 

adenine dinucleotide phosphate was then added to initiate 

the reaction, and the mixture further incubated at 37°C for 

15 min. The reaction was terminated by the addition of 

100 μL ice-cold acetonitrile. Residual SQV was measured 

with the high-performance liquid chromatography tandem 

mass spectrometry (HPLC-MS/MS) analysis method 

described in the drug assay section below.

In vitro cell accumulation experiment
Cell accumulation experiment to assess the effect of RESV 

on P-gp mediated efflux of SQV. MDR1-expressing Madin–

Darby canine kidney (MDCKII-MDR1) cells were kindly 

provided by Prof Su Zeng. MDCKII-MDR1 cells were 

cultured in Dulbecco’s Modified Eagle’s culture Medium 

supplemented with 10% fetal bovine serum (Gibco, USA), 

100 units/mL penicillin, and 100 mg/mL streptomycin. Cells 

were incubated at 37°C and 5% CO
2
 atmosphere.

MDCKII-MDR1 cells were incubated with 50 μΜ SQV 

in the absence or presence of various concentrations (1, 10, 

33, and 100 μΜ) of RESV, the vehicle (0.5% dimethylsul-

foxide), or the positive control (50 μΜ VER) at 37°C for  

4 h. Cell viability was assessed through a 3-(4,5-dimethyl-2- 

thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assay.18 

Results showed that agents at concentrations adopted in this 

study did not exert significant damage on MDCKII-MDR1 

cell variability. After 4 h incubation, cells were washed 

with cold PBS, suspended in 1 mL distilled water, and then 

collected into a tube. Cells in each tube were broken using 

an ultrasonic cell disruption system at 0°C, and centrifuged 

(13,400× g for 5 min at 4°C). The supernatant fraction was 

then transferred into a tube and frozen at -20°C until analysis. 

The amount of protein in cells was measured using a BCA 

Protein Assay Kit (Solarbio). The intracellular accumulation 

of SQV was quantified as the concentration ratio (μg/mg 

protein), which was calculated by dividing the apparent 

uptake amount of SQV by protein content.

In vivo PK experiment
An in vivo experiment was conducted to assess the effects of 

RESV on SQV PK profiles in rats. The study protocol was 

approved, and adhered to the guidelines of the Animal Ethics 

Committee of Beijing Children’s Hospital. We designed 

the PK study based on previously reported SQV in vivo 

studies.19,20 Rats were fasted for 12 h prior to experiments 

with free access to water. They were then randomized into 

two groups: a control group (SQV 30 mg/kg, oral, aqueous 

suspension) and a RESV treatment group (SQV 30 mg/kg 

plus RESV 20 mg/kg, oral, aqueous suspension). SQV was 

suspended in solvent (20% ethanol, 30% propylene glycol, 

and 50% saline) at a concentration of 6 mg/mL; RESV was 

suspended in saline with 30% polyethylene glycol 400 at 

20 mg/mL concentration. Each conscious animal was orally 

administrated an appropriate volume of suspension (30 mg/

kg SQV or 30 mg/kg SQV +20 mg/kg RESV). Blood samples 

were taken from the posterior orbital venous plexus into hepa-

rinized Eppendorf tubes at 0, 0.25, 0.5, 1, 2, 4, 8, 12, and 24 h 

after drug administration. Rats were given food 4 h after blood 

samples were obtained. Blood samples were immediately 

centrifuged and the obtained plasma samples were stored at 

-20°C until the time for LC-MS/MS analysis.

Drug assay
We used a validated HPLC-MS/MS analysis method21 to 

measure the concentrations of SQV in samples from the 

metabolism study, cell accumulation study, and PK study. 

Briefly, ritonavir was selected as the internal standard. The 

internal standard (200 μL, 20 ng/mL) was first added into the 

20 μL buffer sample or 50 μL plasma sample prior to further 

extraction with 3 mL methyl tert-butyl ether. The upper layer 

(2.8 mL) was carefully transferred into another clean tube 

and then evaporated to dryness at 40°C under a gentle stream 

of nitrogen. The dry residue was reconstituted with 200 μL 

mobile phase (CH
3
CN/H

2
O, 76.65:23.35 [v/v], containing 0.2 

mM NH
4
COOH). After vortex mixing, the extracted samples 

were centrifuged (13,400× g for 5 min at 4°C) and the super-

natant (10 μL) was injected into the HPLC/MS-MS system.

The HPLC/MS-MS analysis was carried out on a Restek 

C18 (150×2.1 mm ID) column (Bellefonte, PA, USA) with 

the mobile phase at a flow rate of 300 μL per minute. 
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SQV (retention time, 3.63 min) and ritonavir (retention time, 

2.67 min) were analyzed by fragmentation of the parent 

compound and quantification of resulting fragments. The 

monitoring ions of SQV and ritonavir were m/z 671.4/570.4 

and m/z 721.4/296.2, respectively. The lower limit of quan-

tification of SQV was 1 ng/mL in extracted samples. The 

precision and accuracy of the quality control samples at 

three concentration levels (low, middle, and high: 3, 50, and 

150 ng/mL, respectively) were within 15% relative standard 

deviation and 15% relative error, respectively.

PK analysis
The PK parameters of SQV in plasma were determined by 

noncompartmental method using WinNonlin version 6.4 

(Pharsight Corporation, Mountain View, CA, USA). The 

area under the plasma concentration–time curves (AUC) 

from time 0 to 24 h (AUC
0–t

) was determined using the 

linear trapezoidal rule. The terminal elimination half-life 

(t
1/2

) was calculated as ln2/λ
z
 using the slope (λ

z
) from a 

linear regression analysis of the terminal phase of the plasma 

concentration–time curve on a semilog scale. The AUC from 

time zero to infinity (AUC
0–∞) was calculated using the linear 

trapezoidal rule, formulated as AUC
0–∞ = AUC

0–t
 + C

t
/λ

z
, 

where C
t
 was the last measured concentration in plasma. 

The apparent systemic clearance (CL/F) was calculated as: 

CL/F = dose/AUC
0–∞.

Statistical analysis
The data for analysis of variance and Student’s t-test were 

normally distributed as assessed by Shapiro–Wilk test. One-

way analysis of variance with Duncan’s multiple range test 

was used for statistical comparisons for the in vitro studies. 

For the in vivo study, AUC
0–∞, C

max
, t

1/2
, CL/F, and MRT

0–∞ 

were transformed into a logarithmic form and analyzed 

with independent-samples Student’s t-test; the time to C
max

, 

T
max

, was analyzed with Wilcoxon rank sum test. Statistical 

analyses were done with IBM SPSS Statistics for Windows, 

version 20.0 (IBM Corp, Armonk, NY, USA). A P-value 

of ,0.05 was considered significant.

Results
RESV inhibits intestinal CYP 3A-mediated 
metabolism of SQV
The effects of RESV at various concentrations on the residual 

SQV presence after 15 min of metabolism are shown in 

Figure 2. The residual SQV in 0 μM RESV group (61.5% of 

control) was significantly lower than those in control (without 

CYP 3A) and KET (CYP 3A inhibitor) group (P,0.01). 

Residual SQV increased with RESV in a dose-dependent 

manner, with 67.5%, 70.7%, and 94.3% of control in the 

presence of 1, 10, and 100 μΜ RESV, respectively, suggest-

ing a concentration-dependent inhibitory effect on intestinal 

CYP 3A-mediated SQV metabolism.

RESV stimulates P-gp mediated efflux of 
SQV
The effects of RESV at various concentrations on accumula-

tions of SQV in MDCKII-MDR1 cells are shown in Figure 3. 

Figure 2 Effect of RESV on the intestinal CYP 3A mediated metabolism of SQV.
Notes: Data are presented as mean ± SD, n=3. Significant differences were 
determined by one-way ANOVA with Duncan’s multiple range test, **P0.01 
compared with the control group (no CYP 3A); ##P0.01 compared with the 0 μM 
RESV group.
Abbreviations: ANOVA, analysis of variance; CYP 3A, cytochrome P450 3A; 
RESV, resveratrol; SD, standard deviation; SQV, saquinavir; KET, ketoconazole.

Figure 3 Effect of RESV on the accumulation of SQV in MDCKII-MDR1 cells.
Notes: Data are presented as mean ± SD, n=4. Significant differences were 
determined by one-way ANOVA with Duncan’s multiple range test, *P,0.05; 
**P,0.01 compared with the control group.
Abbreviations: ANOVA, analysis of variance; MDCK, Madin–Darby canine kidney; 
RESV, resveratrol; SD, standard deviation; SQV, saquinavir; VER, verapamil.
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The treatment of 50 μΜ VER, a P-gp inhibitor served as a 

positive control; intracellular accumulation of SQV increased 

by nearly 200%, implying the experiment provides a reliable 

in vitro model for assessing P-gp regulatory effects. Sig-

nificant decreases of SQV intracellular concentration were 

observed in the presence of 10 (P,0.05), 33 (P,0.01), and 

100 μΜ RESV (P,0.01), a percent change with RESV dose 

of -58.1%, -71.2%, and -75.5%, respectively. This finding 

indicates that RESV stimulates P-gp-mediated efflux of SQV 

in a concentration-dependent manner.

The time profiles of the intracellular accumulation of 

SQV in the presence of RESV (33 μΜ) or VER (50 μΜ) 

are illustrated in Figure 4. The accumulation time profile of 

SQV reached steady state at 4 h after initiation of incubation. 

Compared with controls, intracellular concentrations of SQV 

decreased (P,0.01) in RESV treatments continuously after 

2 h co-incubation, indicating a time-dependent stimulatory 

effect on the P-gp-mediated efflux of SQV.

RESV alters SQV PK profiles in rats
In vivo plasma concentration–time profiles of SQV in rats 

after receiving a single oral dose of SQV (30 mg/kg), with 

or without RESV (20 mg/kg), are shown in Figure 5. Wide 

interindividual variability was observed. In addition, a 

double peak phenomenon was observed, with the first peak 

in plasma levels reached at ~0.5 (control group) or 0.25 h 

(RESV treatment group), and the second peak at ~4 h (both 

groups). The profile of plasma SQV concentrations was 

significantly affected by coadministration of RESV. The first 

peak in the plasma drug profile in RESV treatment group 

was significantly higher than that in the control group, while 

the second one was significantly lower. The SQV plasma 

concentration curve declined more rapidly in the presence 

of RESV. (Composite curves graphed plasma SQV profiles 

for the control and treatment groups were displayed in 

Supplementary materials.)

The PK parameters of SQV are summarized in Table 1. 

Oral coadministration of RESV (20 mg/kg) decreased mean 

AUC
0–∞ of SQV by ~31%, but this change had no statistical 

significance (P.0.05). The mean CL/F of SQV was increased 

by ~51% with no statistical significance (P.0.05). The T
max

 

of SQV was significantly shortened (from ~4 h to ~0.25 h, 

P,0.01) by coadministration with RESV, but C
max

 was not 

significantly affected (P.0.05).

Discussion
This study includes both in vitro and in vivo experiments to 

explore the interaction between RESV and SQV. In vitro, 

Figure 5 Plasma concentration–time curves of SQV.
Notes: Mean plasma concentration–time curves of SQV after a single oral dose 
administration of SQV (30 mg/kg) with or without oral coadministration of RESV 
(20 mg/kg). Each point represents the mean ± SD, n=5.
Abbreviations: RESV, resveratrol; SD, standard deviation; SQV, saquinavir.

Table 1 Pharmacokinetic parameters of SQV after an oral dose 
of 30 mg/kg with or without oral coadministration of RESV 
20 mg/kg

Parameter (unit) SQV (30 mg/kg, oral)

Control RESV (20 mg/kg, oral)

AUC0–∞ (ng⋅h/mL) 258.06±126.79 177.92±90.52
Cmax (ng/mL) 59.42±35.23 64.66±24.37
Tmax (h) 4 (0) 0.25 (0)**
t1/2 (h) 6.34±1.73 5.77±0.56
MRT0–∞ (h) 6.73±1.95 5.60±1.11
CL/F (L/h/kg) 134.91±53.90 203.67±87.17
RBa (%) 100 68.95

Notes: Data are presented as mean ± SD except for Tmax, for which the median 
(interquartile range) is reported. n=5 for each group. **P,0.01 compared with 
control group. aRelative bioavailability (RB%) = AUCcoadmin/AUCcontrol ×100.
Abbreviations: AUC, area under the curve; CL/F, clearance; h, hours; max, 
maximum; RESV, resveratrol; SD, standard deviation; SQV, saquinavir; t1/2, terminal 
elimination half-life; MRT, mean residence time.

Figure 4 Effect of RESV on the accumulation of SQV in MDCKII-MDR1 cells.
Notes: Data are presented as mean ± SD, n=4. Significant differences were 
determined by one-way ANOVA with Duncan’s multiple range test, **P,0.01 
compared with the control group.
Abbreviations: ANOVA, analysis of variance; MDCK, Madin–darby canine kidney; 
RESV, resveratrol; SD, standard deviation; SQV, saquinavir; VER, verapamil.
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RESV inhibited metabolism of SQV by rat intestinal 

CYP 3A, which is fairly consistent with the findings of 

previous studies.14,15,22,23 On the other hand, RESV showed 

stimulatory effects on the P-gp-mediated efflux of SQV. 

In vivo, RESV led to a greater peak in plasma SQV in the 

first hour after dosing, but a decreased level of SQV relative 

to the control after 2 h.

In order to investigate the impact of RESV on intesti-

nal P-gp-mediated efflux, another major barrier for SQV 

absorption, we evaluated the accumulation of SQV in 

MDCKII-MDR1 cells in the presence or absence of RESV. 

MDCKII-MDR1 cells are MDCK cells transfected with the 

human MDR1 gene; they express P-gp but do not express 

other efflux transporters, such as BCRP and MRP2.24 

MDCKII-MDR1 cells are commonly employed as an in vitro 

model for intestinal epithelium.25–27 Results in the accumula-

tion study suggest that RESV stimulates the P-gp-mediated 

efflux of SQV.

Findings of the effect of RESV on P-gp from previous 

studies are controversial. For example, Choi et al found that 

RESV significantly reduced rhodamine123 efflux via P-gp in 

MCF-7/ADR cells that overexpress P-gp, and significantly 

increased the drug exposure of orally administered nicar-

dipine in rats.28 In contrast, Yang et al reported that RESV 

exerted a stimulatory effect on P-gp, resulting in a reduction 

of cyclosporine oral bioavailability in rats.15 These findings 

suggest that RESV exerts stimulatory/inhibitory effects on 

P-gp depending on the substrate. It seems likely that the 

substrate-dependent modulation results from complicated 

interactions between substrates involving P-gp substrate 

binding sites. The binding sites for any particular P-gp 

substrate may be the same or distinct from those for another 

substrate.24,29–32 This may lead to competition between sub-

strates that bind identical sites or to a positive cooperative 

effect between substrates that bind different sites.32,33 In this 

case, the latter could explain the stimulation of RESV on 

P-gp-mediated efflux of SQV.

In the PK study, rats were used as the animal model 

mainly due to the similarity in basic intestinal structures 

and physiology of rats and humans.34 We observed a high 

interindividual variability in the SQV plasma concentration–

time profiles, which is generally consistent with previous PK 

studies in rats.35,36 Moreover, we noticed a double peak phe-

nomenon in plasma SQV profiles in the presence and absence 

of RESV. Similar double peaking phenomena were also docu-

mented in multiple SQV PK studies involving rats35,37,38 and 

humans.39–41 Several physiological mechanisms can generate 

the double peaking phenomenon, including enterohepatic 

recycling, gastric emptying, small intestinal transit, and 

site-specific absorption.42 However, since no double peak 

has been observed after intravenous dosing of SQV,35,39,40 the 

second peak cannot be explained by enterohepatic recycling. 

Similarly, because the increase phase of SQV plasma profiles 

started earlier than food intake, it seems unlikely that gastric 

emptying plays an important role. Here, we speculate that the 

double peak phenomenon mainly results from site-specific 

intestinal absorption. SQV is one of the class II compounds 

categorized in Biopharmaceutics Classification System, with 

low solubility and high permeability.43 This property suggests 

that dissolution is a rate-limiting step for the oral absorption of 

SQV. Thus, the second peak in the SQV plasma profiles can 

be due to the increase of SQV dissolution in the more acidic 

environment of the colon compared with ileum.44 In addition, 

the regional differences in P-gp expression and activity along 

the intestine may play a significant role in causing the double 

peak.45 P-gp levels increase progressively from proximal to 

distal region in human or rodent small intestine.43,46 The ileum 

region shows significantly higher P-gp function than in other 

region.43 Therefore, we infer that after oral administration, 

SQV was absorbed rapidly in the proximal small intestine, 

and then it was transported back into the intestine lumen by 

P-gp at the ileum, resulting in a rapid rise of plasma SQV 

levels initially, followed by a decrease. After that, absorption 

increased again at the colon where P-gp expression is lower, 

leading to a second peak in the plasma SQV levels.

Overall, the mean AUC
0–∞ of SQV was decreased by 

nearly 30% by coadministration with RESV, but this change 

had no statistical significance, which might be partially due to 

the high variation between individuals. The impact of RESV 

on SQV PK profiles can be attributed to the effects of RESV 

on intestinal CYP 3A and P-gp. The distribution of CYP 3A 

in the small intestine of rats is markedly different from that of 

P-gp. CYP 3A is one of the two most abundant P450 isoforms 

(the other one is CYP 2B1) in the duodenum and jejunum 

of rat intestines but it is not present in either the ileum or 

the colon.47 It is most likely that RESV inhibits the CYP 

3A mediated metabolism of SQV, leading to an increase of 

SQV absorption in the proximal intestine. In contrast, RESV 

reduces the absorption of SQV in distal intestine (ileum and 

colon) by stimulating P-gp-mediated efflux of SQV. Overall, 

the positive effect of RESV on the absorption of SQV in the 

proximal intestine is offset by its negative effect in the distal 

intestine, eventually resulting in a nonsignificant change in 

the SQV oral bioavailability.

Conclusion
This study demonstrates that RESV can inhibit intesti-

nal CYP 3A-mediated SQV metabolism and stimulate  
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P-gp-mediated efflux of SQV. RESV can alter the SQV 

plasma concentration profiles and shorten the T
max

 of SQV. 

RESV also leads to a decrease tendency in the SQV oral 

bioavailability, but this change has no statistical significance 

probably because of the high individual variation. Further 

clinical investigations are required to assess the benefit and 

risk of the concomitant use of SQV with RESV.
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