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Abstract: Molecular modeling has been employed in the search for lead compounds of chemo-

therapy to fight cancer. In this study, pharmacophore models have been generated and validated 

for use in virtual screening protocols for eight known anticancer drug targets, including tyrosine 

kinase, protein kinase B β, cyclin-dependent kinase, protein farnesyltransferase, human protein 

kinase, glycogen synthase kinase, and indoleamine 2,3-dioxygenase 1. Pharmacophore models 

were validated through receiver operating characteristic and Güner–Henry scoring methods, 

indicating that several of the models generated could be useful for the identification of potential 

anticancer agents from natural product databases. The validated pharmacophore models were 

used as three-dimensional search queries for virtual screening of the newly developed AfroCancer 

database (~400 compounds from African medicinal plants), along with the Naturally Occur-

ring Plant-based Anticancer Compound-Activity-Target dataset (comprising ~1,500 published 

naturally occurring plant-based compounds from around the world). Additionally, an in silico 

assessment of toxicity of the two datasets was carried out by the use of 88 toxicity end points pre-

dicted by the Lhasa’s expert knowledge-based system (Derek), showing that only an insignificant 

proportion of the promising anticancer agents would be likely showing high toxicity profiles. A 

diversity study of the two datasets, carried out using the analysis of principal components from 

the most important physicochemical properties often used to access drug-likeness of compound 

datasets, showed that the two datasets do not occupy the same chemical space.

Keywords: anticancer, natural products, medicinal plants, pharmacophore, toxicity, virtual 

screening

Introduction
In spite of the enormous efforts and progress in the field of cancer research, cancer 

is the second most common disease-related cause of human mortality, only next to 

myocardial infarction.1 According to the recent World Health Organization reports, 

cancer alone is responsible for ~7.6 million deaths (~13% of all deaths) annually,2 

and it is estimated that the threat of cancer-related diseases will worsen if no measures 

are taken.3 Additionally, plant-derived NPs have played a significant role in drug 

discovery, by being an important source of several clinically useful drugs,4–8 including 

anticancer agents.9

A cancerous growth is often defined as any malignant tumor. A neoplasm or tumor 

is an abnormal mass of tissue whose growth exceeds that of normal tissues and whose 

growth is uncoordinated with that of the latter. Such cancerous growth continues in 

the same manner after cessation of the stimuli that had initiated it.9,10 The methods of 

cancer treatment include radiation therapy, surgery, and chemotherapy. However, the 
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first two treatment methods are only successful at the early 

localized stages of the disease, while chemotherapy is the 

main treatment method for malignancies because it has the 

ability to cure widespread cancer even at the later stages. 

In the search for lead compounds of cancer chemotherapy and 

prevention, research groups have often resorted to medicinal 

plants, based on their ethnobotanical uses in the treatment of 

several cancer-related symptoms and ailments.9,11–25 This is 

because local and traditional knowledge has been the start-

ing point for many successful drug development projects 

over the last few decades, as recorded in several literature 

references.9,10,16–18,26–28 The African flora, for example, is 

known to contain promising anticancer agents, both based on 

traditional knowledge and isolated bioactive metabolites that 

have tested positive against a number of cancer cell lines.29–31 

In silico methods of drug discovery programs have proven 

to be useful in quickly providing lead compounds from 

enormous databases and also help in lead optimization. This  

justifies the development of compound libraries, particularly 

“focused” library scaffolds of compounds that have shown 

some potency in experimental assays against a particular disease 

or a drug target. A recent study showed that ~400 compounds 

from the African medicinal plants, with demonstrated in vitro  

and/or in vivo anticancer, cytotoxic, and antiproliferative 

activities, have been identified.32 This dataset (AfroCancer) 

has been compared with a larger dataset of ~1,500 compounds 

contained in the Naturally Occurring Plant-based Anticancer 

Compound-Activity-Target (NPACT) database and with 

the much larger dataset contained within the Dictionary of 

Natural Products.32–34 The drug-likeness properties of these 

plant-derived anticancer datasets have been explored in the 

previous studies, proving to be interesting starting points 

for anticancer lead discovery.32,33 It is noteworthy that 

approximately half of known anticancer drugs are either 

NPs or NP-related synthetic compounds.35–37 Despite the 

enormous potential of NPs from the African flora,38–40 little 

has been done to exploit them into real marketable drugs.41 

This calls for efforts from within the continent for laying the 

groundwork for anticancer drug discovery projects from the 

floral matter.

The application of in silico (computer-based) modeling 

in the search for lead compounds is a promising endeavor in 

drug discovery, since it often accelerates the process and cuts 

down costs.42 Virtual screening methods are useful because, in 

principle, they narrow down the number of compounds to be 

actually tested in biological assays. This is practicable when 

the in silico scoring methods are sufficiently able to discrimi-

nate between active and inactive ones.43,44 The approaches of 

docking,45–47 quantitative structure-activity relationship,48,49 

and pharmacophore searching47,49–53 have been previously 

employed with relative success in anticancer lead generation 

programs. The previous in silico modeling efforts targeting 

NPs from the African flora have been focused on the building 

of datasets for virtual screening30,54–56 and pharmacokinetic 

profiling of the derived datasets.30,57–59 The aim of the current 

study was to employ molecular modeling methods to access 

the toxicity profiles of the aforementioned datasets32,33 of 

promising plant-derived anticancer agents and to evaluate 

the performance of derived pharmacophore models for vir-

tual screening, in a quest to identify new and/or promising 

anticancer lead compounds from the African flora.

Materials and methods
Data collection and analysis
The dataset for naturally occurring compounds with prom-

ising anticancer properties (AfroCancer) has been recently 

described.32 The compounds of the NPACT database were 

downloaded from the official webpage (http://crdd.osdd.

net/raghava/npact/)34 and prepared for virtual screening as 

previously described.33

Pharmacophore modeling approach
All pharmacophore modeling was carried out using the 

LigandScout software (Inte:Ligand, Vienna, Austria).60 

All protein–ligand complexes in this study were retrieved 

from the protein databank61 and prepared as previously 

described.32 The datasets of active compounds against each 

drug target were identified from the literature sources cited 

in the Results section (Table 1). Small molecule modeling 

of the compounds active against each target was carried 

out using the Molecular Operating Environment (MOE) 

(Montreal, QC, Canada) software62 running on a Linux 

workstation with a 3.5  GHz Intel Core 2 Duo processor 

(San Jose, CA, USA). The three-dimensional (3D) struc-

tures were generated using the builder module of MOE, and 

energy minimization was subsequently carried out using the 

MMFF94 force field63 until a gradient of 0.01 kcal/mol was 

reached. In generating the 3D structures, both R and S forms 

of stereoisomers were generated in the case of racemic mix-

tures. Additionally, the ligand databases were given a pre-

liminary treatment using the LigPrep software (Schrödinger 

LLC, NY, USA).64 Protonation states at biologically relevant 

pH were correctly assigned (group I metals in simple salts 

were disconnected, strong acids were deprotonated, strong 

bases were protonated, and explicit hydrogens were added), 

and conformers were generated. The generated conformer 

www.dovepress.com
www.dovepress.com
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datasets were further inspected visually, eg, piperazines 

were mono- or diprotonated taking into account the 

neighboring groups; piperidines, pyrrolidines, and tertiary 

aliphatic amines were charged positively always; pyrimi-

dones were also represented as hydroxy pyrimidines; and 

for ethylenediamines, both neutral and monoprotonated 

forms were generated. The 3D structures of the compounds 

and conformers were then saved as individual .mol2 files, 

subsequently included into a MOE database (.mdb) file and 

exported to the .ldb file, which is suitable for use in virtual 

screening workflows using the LigandScout software.60 The 

performance of a pharmacophore model in virtual screen-

ing experiments is often tested by its ability to discriminate 

between known active compounds and decoys (supposed 

to be inactive). Such enrichment tests were performed on 

the set of active compounds (training set) and later used to 

screen for hits from the AfroCancer and NPACT libraries, 

using the generated pharmacophore models. In order to avoid 

artificial enrichment in assessing the performances of the 

generated pharmacophore models in virtual screening, decoy 

libraries were generated using the commercially available 

database Directory of Useful Decoys, Enhanced (DUD-E; 

http://dude.docking.org),65 ie, 50 decoys per active ligand. 

Simplified Molecular Input Line Entry System strings of the 

active compounds were provided for the DUD-E decoy gen-

eration tool, and 50 decoys per active ligand were generated 

based on similar physical properties of active compounds, 

such as molecular weight (MW), Log P, H-bond donors 

(HBDs) and H-bond acceptors (HBAs), number of rotatable 

bonds, and net molecular charge. The motivation behind 

using decoys with similar one-dimensional physicochemi-

cal properties but dissimilar two-dimensional topology is to 

avoid artificial enrichment in assessing the performances of 

the generated pharmacophore models in virtual screening.

Both libraries of active compounds and decoys were run 

through or “fitted into” the generated pharmacophore models. 

The poses were scored (ranked) using the pharmacophore fit 

score function implemented in LigandScout.60 In general, true 

positive (TP)/false positive (FP) hit rates, true negative (TN)/

false negative (FN) hit rates, enrichment factor (EF), good-

ness of hits, and the receiver operating characteristic (ROC) 

curve–area under the ROC curve (AUC) are among the most 

common quality parameters used in the pharmacophore 

model evaluation experiments. To assess the performance of 

each pharmacophore scoring scheme used in this study, some 

important measures were considered, eg, the percentage yield 

of active compounds (Y
a
), percentage actives, and Goodness 

of a Hit list (Güner–Henry [GH] scoring). The percentage 

yield of actives was defined as the ratio of actives found in 

the hit list to the total number of compounds in the hit list, 

given by the following equation:

	
% yield of actives

TPs

TPs FPsa
( )Y =

+
×100

	
(1)

where the TPs are defined as bioactive compounds that 

are correctly recognized by the pharmacophore model and 

the FPs are defined as inactive compounds that fit into the 

pharmacophore model. The percentage of actives represent 

the ratio of active compounds in the hit list (TPs) to the total 

Table 1 Description of selected human anticancer drug targets used to generate the structure-based pharmacophores in this study

PDB code Drug target class or role Resolution of X-ray 
crystal structure

Bioactive ligands References

1IEP Tyrosine kinase 2.10 Å Pyrido[2,3-d]pyrimidine derivatives (eg, PD173955, PD173956, 
PD180970, and imatinib) and phenylamino-pyrimidines

73–76

2JDO PKB β 1.80 Å 4-amino-1-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)piperidine-4-
carboxamides, 4-(4-aminopiperidin-1-yl)-7H-pyrrolo[2,3-d]
pyrimidines, and 6-phenylpurine

77–79

2XMY CDK responsible for regulating 
transcription

1.90 Å 2-Anilino-4-(thiazol-5-yl)pyrimidines 80

3E37 Protein farnesyltransferase 1.80 Å Ethylenediamines 81
3PE1 and 
3PE2

Human protein kinase 1.60 Å and 1.90 Å, 
respectively

7-(4H-1,2,4-Triazol-3-yl)benzo[c][2,6]naphthyridines, 
ethylenediamines, 4-(thiazol-5-yl)benzoic acid derivatives, 
substituted N-phenylthieno[3,2-c]quinolin-4-amines, and 
pyrimido[4,5-c]quinoline-8-carboxylic acids

82–85

4ACM Glycogen synthase kinase 1.63 Å Sulfonamide pyrazines 86, 87
4BBG Cell cycle regulator, critical for 

the assembly of the mitotic spindle
2.50 Å S-Trityl-l-cysteine-based inhibitors 88

4PK5 Indoleamine 2,3-dioxygenase 1 2.79 Å Imidazothiazole derivatives 89

Abbreviations: PDB, Protein Data Bank; PKB, Protein kinase B; CDK, cyclin-dependent kinase.
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number of actives in the dataset (training set), given by the 

following equation:

	
% yield

TPs
= ×

A
100

	
(2)

where A is the total number of compounds in the dataset of 

actives. The sensitivity (S
e
), specificity (S

p
), and EF para

meters shown in Equations 3–5, respectively, were computed 

and used as indicators of the GH score (Equation 6),66–68 

ie, goodness of hit (GH score):

	
S

e

TPs

TPs FNs
=

+ 	
(3)

	
S

p

TNs

TNs FPs
=

+ 	
(4)

	
EF a=

Y

A D/ 	
(5)

	
GH = ⋅ + ⋅





3

4

1

4
Y S S

a e p

	
(6)

where FNs are bioactive compounds that are not recognized 

by a model, TNs are inactive compounds that do not fit 

into the pharmacophore model, and D is the total number 

of compounds in each dataset (actives + decoys). The GH 

score ranges from 0 to 1, where a value of 1 signifies an 

ideal model and a value of 0 signifies a null model. The ROC 

curve is a graphical plot of the TP rate (S
e
) versus FP rate 

(1-S
p
), while the AUC is an important method of measuring 

the performance of the test. The equation for computing the 

AUC is shown as follows:

	
AUC

e p p
= − − − −

=
∑ S S x S x
x

N

2

1 1 1( )[( )( ) ( )( )]x
	

(7)

where S
e
 (x) is the percent of the TPs versus the total posi-

tives at rank position x and (1-S
p
)(x) is the percent of the FPs 

versus the total negatives at rank position x.

In silico toxicity assessment methods
Toxicity prediction was carried out using Lhasa’s expert 

knowledge-based predictive tool, Derek software Version 

3.0.1 (Lhasa Ltd, Leeds, UK),69 running on Nexus 1.5.0 plat-

form. The two datasets (AfroCancer and NPACT) were input 

in .sdf format. The chosen species was human beings, and 88 

toxicity end points were predicted. A full list of the predicted 

end points has been provided in the Supplementary materials. 

The toxicity prediction run was carried out for both AfroCancer 

and NPACT datasets, and the results were analyzed.

Diversity analysis of the AfroCancer 
and NPACT datasets
Diversity analysis was done by the principal component anal-

ysis (PCA) method [68] implemented in the MOE package.62 

A number of simple descriptor parameters for the two datasets 

(AfroCancer and NPACT) were generated using the molecu-

lar descriptor calculator included in the QuSAR module of 

the MOE package.62 The computed descriptors include the 

MW, number of rotatable single bonds, lipophilicity (log P), 

solubility (log S), number of HBAs, number of HBDs, total 

hydrophobic surface area, total polar surface area, number 

of oxygen, number of chiral centers, number of rings, and 

number of Lipinski violations. In order to select the optimum 

number of molecular descriptors for the molecules of both 

datasets, QuSAR-Contingency (a statistical application in 

MOE) was employed. The dimensionality of the best selected 

descriptors, obtained from QuSAR-Contingency, was fur-

ther reduced by linear transformation of the data by PCA.70 

This resulted in a new (smaller) table of descriptors that are 

uncorrelated and normalized (mean =0 and variance =1). All 

computed descriptors were employed in the PCA, while the 

minimum variance was set at 98% for the final set of principal 

components retained. The 3D plots of the best three principal 

components (PCA1, PCA2, and PCA3) for both datasets 

were plotted on the same set of coordinate axes, with PCA1 

on the x-axis, PCA2 on the y-axis, and PCA3 on the z-axis, 

each point on a dataset in the coordinate axes representing a 

molecule. In order to analyze the diversity of the scaffolds 

in both datasets, the compounds were fragmented using the 

retrosynthetic combinatorial analysis procedure algorithm.71 

The LibMCS program of JKlustor was used for maximum 

common substructure clustering of the two datasets.72 The 

frequency of occurrence of each scaffold in the two datasets 

was computed and ranked. The most common substructures 

(most common substructure selection [MCSS]) of the two 

datasets were then tabulated and compared.

Overall rationale of the modeling 
methods
Data related to the protein–ligand complexes73–89 used to 

generate pharmacophore models for virtual screening are 

listed in Table  1. The biological significance of the drug 

targets for which the pharmacophore models were generated 

has been discussed in our previous study.32 Pharmacophore-

based virtual screening is often an efficient method for the 

identification of potentially new lead compounds for further 
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development from a virtual database.66–68 Molecules that 

satisfy the features of the pharmacophore models used as 

the 3D query are retained as hits. In this study, 3D phar-

macophore models were generated and validated, while the 

best pharmacophore models were used as a 3D search query 

for retrieving potent molecules from the AfroCancer and 

NPACT chemical databases, which could be proposed for 

bioassays. The performance of each pharmacophore model 

was evaluated using ROC analysis,90 based on their ability 

to selectively capture diverse active compounds against the 

chosen targets from a large list of decoys or inactives. The 

numbers of conformers of actives and decoys for each tar-

get and characteristics for GH or “goodness of hit” scoring 

(eg, S
p
, S

e
, EF, Y

a
, and % yield of actives) are listed in Table 2. 

In this study, the GH method was used to assess the phar-

macophore models generated. This is because this method 

has been previously used to quantify model selectivity (best 

model), accuracy of hits, and the recall of actives from a 

molecule dataset consisting of known actives and inactives 

with relative success.91–93 The GH score has been applied for 

quantifying model selectivity and covering the activity space 

from database mining successfully47,93–98 and for evaluating 

the effectiveness of similarity search in databases contain-

ing both structural and biological activity data.92 GH scoring 

contains a coefficient used to penalize excessive hit list size 

when evaluating hit lists. This coefficient is calibrated by 

weighting the score with respect to the yield and coverage. 

The GH scores were computed following Equation 7, and 

Table 2 Summary of performances of pharmacophore models in virtual screening study

PDB code Actives Decoys Hit rate Total hits TP FP TN

1IEP 45 2,250 0.52 12 9 3 2,247
2JDO 19 950 16.41 159 4 155 795
2XMY 14 700 4.20 30 7 23 677
3E37a 10 500 40.78 208 6 202 298
3E37b 10 500 44.71 228 5 223 277
3E37c 10 500 10.98 56 2 54 446
3PE1d 274 15,250 4.31 669 206 463 14,780
3PE1e 274 15,250 0.30 47 41 6 15,237
3PE2 274 15,250 6.19 960 11 949 14,294
4ACM 42 2,150 3.51 77 23 54 2,096
4BBGf 76 3,800 3.12 121 48 73 3,726
4BBGg 76 3,800 2.40 93 45 48 3,751
4BBGh 76 3,800 4.02 156 63 93 3,706
4PK5i 29 1,450 5.34 79 6 73 1,377
4PK5j 29 1,450 5.47 81 6 75 1,375

FN Ya % yield Se Sp EF GH

1IEP 36 75.00 20 0.20 0.99 3,825 0.75*
2JDO 15 2.51 21 0.21 0.84 128 0.32
2XMY 7 23.33 50 0.50 0.97 1,190 0.58*
3E37a 4 2.88 60 0.60 0.60 147 0.93*
3E37b 5 2.19 50 0.50 0.55 112 0.79*
3E37c 8 3.57 20 0.20 0.89 182 0.29
3PE1d 68 30.79 75 0.75 0.97 1,744 0.71*
3PE1e 233 87.23 15 0.15 0.99 4,940 0.26
3PE2 263 1.15 4 0.04 0.94 65 0.54*
4ACM 19 29.87 55 0.55 0.97 1,559 0.57*
4BBGf 28 39.67 63 0.63 0.98 2,023 0.57*
4BBGg 31 48.39 59 0.59 0.99 2,467 0.46
4BBGh 13 40.38 83 0.83 0.98 2,059 0.75*
4PK5i 23 7.59 21 0.21 0.95 387 0.29
4PK5j 23 7.41 21 0.21 0.95 378 0.29

Notes: a3E37-I model is a four-point pharmacophore centered on two HBAs and two hydrophobic centers; b3E37-II model is a three-point pharmacophore centered on 
two HBAs and one hydrophobic center; c3E37-III model is a three-point pharmacophore centered on two HBAs and one hydrophobic center; d3PE1-I model is a six-point 
pharmacophore centered on one HBD, three HBAs, and two hydrophobic centers; e3PE1-II model is a four-point pharmacophore centered on one HBD, one HBA, and 
two hydrophobic centers; f4BBG-I model is a four-point pharmacophore centered on one positive ionizable group; g4BBG-II model is a four-point pharmacophore similar to 
the 4BBG-I model, except that an HBD replaces the positive ionizable group in the former model; h4BBG-III model is almost identical to 4BBG-I, but separated by exclusion 
volumes; i4PK5-I model is a three-point pharmacophore centered on one HBD and two hydrophobic centers; and j4PK5-II model is an almost identical model to 4PK5-I, but 
separated by exclusion volumes. *GH score .0.50.
Abbreviations: PDB, Protein Data Bank; TP, true positive; FP, false positive; TN, true negative; FN, false negative; EF, enrichment factor; GH, Güner–Henry; HBA, H-bond 
acceptor; HBD, H-bond donor.
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the values are listed in Table 2, ranging from 0 to 1, with 

0 indicating a null model and 1 a perfect model (containing 

only actives and no decoys).68 For a good model, the GH 

value is expected to be .0.7.47 The most promising models 

have been marked with an asterisk (*) on the respective 

GH score value. Finally, the ROC curve is a function of 

S
e
 versus the S

p
, and the AUC value is an important method 

of measuring the performance of the test.

Results and discussion
Assessment of pharmacophore 
models generated
For the 1IEP target, for example, the best derived pharma-

cophore model was composed of a combination of an HBA 

(Acc) feature located on the carbonyl of the native ligand 

separated from an HBD (Don1) and two hydrophobic cen-

ters (Hyd1 and Hyd2), respectively, by 4.97 Å, 4.14 Å, and 

3.64  Å (Figure  1). The second HBD feature (Don2) was 

located between the two hydrophobic centers, with respec-

tive distances of 2.90 Å and 3.80 Å from Hyd1 and Hyd2 

(Figure 1). Scoring of this pharmacophore model using the 

pharmacophore fit score implemented in LigandScout58 

resulted in the identification of nine out of the 45 generated 

active conformers in the hit list composed of only 12 hits 

(hit rate =0.52; Table 2). Even though the hit rate is weak, 

the Y
a
, % yield, S

e
, S

p
, EF, and GH scores are, respectively, 

75%, 20%, 0.20, 0.99, 3,825, and 0.75 (Table 2).

Two separate high-performance pharmacophore models 

were generated for the 3PE1 target (I and II; Figure 2) with 

the common features comprising the HBD (Don), the acceptor 

(Acc2), and the hydrophobic center (Hyd2; Figure 2A and B). 

Even though the pharmacophore model 3PE1-I was composed 

of many more features (as shown in Figure 2A, C and D) than 

the 3PE1-II (Figure 2B and E), the first model gave a much 

higher yield, selectivity, and GH score. Meanwhile, the second 

model performed better in terms of Y
a
 values because it scored 

up to 41 out of the 47 compounds in the hit list, even though a 

total of up to 274 compounds were present in the original list 

of actives. The performance of this human protein kinase phar-

macophore model was also tested for the Protein Data Bank 

code 3PE2 (with only three features, one corresponding to the 

common acceptor in models 3PE1-I and 3PE1-II; Figure 3). 

The specificity of this pharmacophore model was comparable 

with that of the earlier models (3PE1-I and 3PE1-II), while 

the GH score was midway between that of the 3PE1 models. 

The performances of these pharmacophores reveal that the 

Figure 1 A pharmacophore model used to screen for potential active compounds against the 1IEP target.
Notes: (A) Projected within the target site (B) with highlighted pharmacophore features located on atomic centers of the native ligand, with HBDs and HBAs in blue 
and hydrophobic centers in yellow. (C) Interactions between native ligand and target site amino acid residues, with hydrophobic interactions shown in light brown, HBD 
interactions with the native ligand in green, and acceptor interactions in red. (D) Locations of centers of pharmacophore features on the native ligand showing distances 
between the centers, with distance measurements shown in red. This model led to the identification of only nine out of the 45 generated active conformers in the hit list 
composed of only 12 hits (hit rate =0.52).
Abbreviations: HBDs, H-bond donors; HBAs, H-bond acceptors.
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3PE1-I model could be suitable for initially screening a 

huge dataset, while the more specific model (3PE1-II) could 

be more suitable in cases of small datasets, which might be 

the results from a hit list derived from a primary screen of a 

large dataset using the 3PE1-I model query. The third model 

(3PE2) is rather less selective, “picking up” too many FPs, 

thus resulting in a very low S
e
 value (0.04) and rendering this 

model the least desirable of the three pharmacophores that 

could be used in screening for human protein kinase inhibi-

tors in this study.

Figure 2 Two sets of combinations of high-performance pharmacophore models for the 3PE1 target.
Notes: For (A and B), the highlighted pharmacophore features are located on the atomic centers of the native ligand, with HBDs and HBAs in blue and hydrophobic centers 
in yellow, for the two pharmacophore models (3PE2-I and 3PE1-II, with carbon atoms portrayed in cyan and gray, respectively). (C) Interactions between native ligand and 
target site amino acid residues, with hydrophobic interactions shown in light brown, HBD interactions with the native ligand in green, and acceptor interactions in red. For 
(D and E), representing 3PE1-I and 3PE1-II, respectively, the locations of centers of pharmacophore features on the native ligand show distances between the centers, with 
distance measurements shown in red. These are the best overall performing pharmacophore models in this study.
Abbreviations: HBDs, H-bond donors; HBAs, H-bond acceptors.
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Figure 3 A pharmacophore model used to screen for potential active compounds against the 3PE2 target.
Notes: (A) Projected within the target site (B) with highlighted pharmacophore features located on atomic centers of the native ligand, with HBDs and HBAs in blue 
and hydrophobic centers in yellow. (C) Interactions between native ligand and target site amino acid residues, with hydrophobic interactions shown in light brown, HBD 
interactions with the native ligand in green, and acceptor interactions in red. (D) Locations of centers of pharmacophore features on the native ligand showing distances 
between the centers, with distance measurements shown in red. This model is less selective, “picking up” too many FPs.
Abbreviations: HBDs, H-bond donors; HBAs, H-bond acceptors; FPs, false positives.

The validated model for the 4ACM target has been 

shown in Figure 4, while the remaining models are given in 

Figures S1–S5. The 4ACM model is composed of two HBAs 

centered, respectively, on the sulfonyl and pyrazine ring; 

one HBD on the amino substituent of the pyrazine ring; and 

a hydrophobic center on the benzene ring. The interactions 

between the native ligand used to generate this model and the 

target binding site residues are shown in Figure 4, while the 

distances between feature centers are shown in Figure 4D. This 

model was able to capture up to 23 out of the 42 compounds 

(% yield of actives =55%) in the original database of actives, 

with a hit rate of 3.51% from the total database of actives and 

decoys. Meanwhile, the S
e
, S

p
, and GH values for this model 

were all $0.55. It was generally observed that the best models 

were 1IEP, 2XMY, 3E37-I, 3PE1-I, 4ACM, and 4BBG-III, 

while the other models still needed refinement. The 2XMY 

model (Figure S2), for example, was able to capture seven out 

of the 14 active compounds in the original database of actives 

(50% yield of actives), with the strength of the model being the 

fact that the S
e
, S

p
, and GH scores were all $0.50. Meanwhile, 

the 3E37-I model (Figure S3-I) was able to capture six out 

of the ten active compounds in the original dataset of actives 

as the top scoring hits. Our study also involved pharmacophore 

models for the protein kinase B (PKB) β, Protein Data Bank 

code 2JDO, which has been recently explored by Vyas et al47 

in a virtual screening study, giving a much weaker model than 

reported in the previous study.

The ROC curves used to evaluate the performances of the 

generated pharmacophore models are shown in Figures 5 and 6 

for three of the “best” models. Figure 5 shows the enrichment 

curve for the 3PE1-I model. The TP rate has also been plotted 

against the FP rate and used to compare the two of the 4BBG 

models (I and III) for the purpose of comparison (Figure 6). 

Both 4BBG models show better enrichment than the 3PE1-I 

model, with the 4BBG-III model (Figure 6B) having a higher 

AUC value than the 4BBG-I model (Figure 6A).
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Pharmacophore-based virtual screening 
of AfroCancer and NPACT datasets
The best derived pharmacophore hypotheses were employed 

as 3D search queries against the AfroCancer and NPACT 

databases. Compounds that had their chemical groups 

spatially overlapping (mapping) with the corresponding 

features, ie, molecules that satisfied all the features of the 

pharmacophore model used as the 3D query of the particular 

pharmacophoric model, were captured as hits and ranked 

following their pharmacophore fitness score, as implemented 

in LigandScout.60 A summary of the virtual screening results 

(number of hits and hit rates) for the AfroCancer and NPACT 

datasets, using the established and validated pharmacophore 

models, is given in Table 3. It was generally observed that, 

apart from the null case (model 4BBG-II), the hit rates for 

the virtual screening of the much smaller AfroCancer dataset 

were higher than those for the NPACT. Moreover, a plot of 

the ranks of the retrieved hits by pharmacophore fit scores 

against the number of compounds screened in the respective 

databases showed a better performance for the AfroCancer, 

eg, for the 4ACM pharmacophore model; this curve is shown 

in Figure 7.

Assessment of the toxicological profiles 
of the AfroCancer and NPACT datasets
Assessment of the toxicological profiles of the AfroCancer 

and NPACT datasets was run on the Derek Nexus platform.69 

Derek Nexus is an expert, knowledge-based software that 

gives informative toxicity predictions quickly. The ability 

to predict potential toxicity of either the parent compound 

Figure 4 A pharmacophore model used to screen for potential active compounds against the 4ACM target.
Notes: (A) Projected within the target site (B) with highlighted pharmacophore features located on atomic centers of the native ligand, with HBDs and HBAs in blue 
and hydrophobic centers in yellow. (C) Interactions between native ligand and target site amino acid residues, with hydrophobic interactions shown in light brown, HBD 
interactions with the native ligand in green, and acceptor interactions in red. (D) Locations of centers of pharmacophore features on the native ligand showing distances 
between the centers, with distance measurements shown in red. This model was able to capture up to 23 out of the 42 compounds (% yield of actives =55%) in the original 
database of actives, with a hit rate of 3.51% from the total database of actives and decoys. Meanwhile, the Se, Sp, and GH values for this model were all $0.55.
Abbreviations: HBDs, H-bond donors; HBAs, H-bond acceptors; GH, Güner–Henry.

Figure 5 The ROC curve for the 3PE1-I pharmacophore model.
Note: The ROC curve is shown in blue, while the random line is shown in red.
Abbreviation: ROC, receiver operating characteristic.

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Drug Design, Development and Therapy 2016:10submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

2146

Ntie-Kang et al

or its metabolites is important in the novel drug design 

programs.99,100 Computer-based assessment of potential toxic-

ity has become increasingly popular in the past decade.99–102 

Thus, early and accurate in silico toxicity prediction using 

Derek Nexus is an acceptable way of identifying potentially 

toxic chemicals, by helping experts to reject unsuitable drug 

candidates.99 The Derek system is able to perceive chemical 

substructures within molecules and relate these to a rule base, 

linking the substructures with likely types of toxicity.99–102 

It is intended to aid the selection of compounds based on 

toxicological considerations or separately to indicate specific 

toxicological properties to be assayed early in the evalua-

tion of a compound, thus saving time, cutting down costs, 

and saving the lives of some laboratory animals.103,104 This 

works through the identification of toxicity alerts within the 

chemical structures of a possible drug candidate. Alerts are 

collections of structural features observed to result in toxico-

logical activity. Lhasa’s Nexus platform helps automate alert 

identification by mining descriptions of activating structural 

features or substructures directly from toxicity datasets, 

which have been included within the program’s knowledge 

base.105 Each rule contained in the rule base describes the 

Figure 6 ROC curves for the 4BBG pharmacophore models.
Notes: (A) 4BBG-I. (B) 4BBG-III. The ROC curve is shown in blue, while the random line is shown in red.
Abbreviation: ROC, receiver operating characteristic.

Table 3 Comparison of virtual screening results (number of compounds in hit list and hit rates) for the AfroCancer and NPACT 
datasets of the pharmacophore models generated

PDB code AfroCancer NPACT

Number of hits Hit rate (%) Number of hits Hit rate (%)

1IEP 12 3.07* 11 0.70
2JDO 107 27.37* 338 21.47
2XMY 69 17.65* 223 14.17
3E37a 189 48.34 882 56.04
3E37b 228 58.31* 907 57.62
3E37c 95 24.30 440 27.95
3PE1d 37 9.46 149 9.47
3PE1e 3 0.77* 3 0.19
3PE2 106 27.11* 367 23.32
4ACM 35 8.95* 110 6.99
4BBGf 26 6.65a 93 5.91
4BBGg 0 0.00 0 0.00
4BBGh 1 0.26* 3 0.19
4PK5i 94 24.04* 301 19.12
4PK5j 102 26.09* 308 19.57

Notes: *Hit rate for AfroCancer supersedes that of NPACT; a3E37-I model is a four-point pharmacophore centered on two HBAs and two hydrophobic centers; b3E37-II 
model is a three-point pharmacophore centered on two HBAs and one hydrophobic center; c3E37-III model is a three-point pharmacophore centered on two HBAs and 
one hydrophobic center; d3PE1-I model is a six-point pharmacophore centered on one HBD, three HBAs, and two hydrophobic centers; e3PE1-II model is a four-point 
pharmacophore centered on one HBD, one HBA, and two hydrophobic centers; f4BBG-I model is a four-point pharmacophore centered on one positive ionizable group; 
g4BBG-II model is a four-point pharmacophore similar to the 4BBG-I model, except that an HBD replaces the positive ionizable group in the former model; h4BBG-III model 
is almost identical to 4BBG-I, but separated by exclusion volumes; i4PK5-I model is a three-point pharmacophore centered on one HBD and two hydrophobic centers; and 
j4PK5-II model is an almost identical model to 4PK5-I, but separated by exclusion volumes.
Abbreviations: NPACT, Naturally Occurring Plant-based Anticancer Compound-Activity-Target; PDB, Protein Data Bank; HBA, H-bond acceptor; HBD, H-bond donor.
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relationship between a structural feature or toxicophore and 

its associated toxic effect. Derek possesses the particular 

ability to report the reasoning behind its predictions.102 The 

rules are derived by an evaluation of toxicological, mecha-

nistic, and physicochemical data.103 This is achieved by an 

argumentation-based approach using general toxicological 

and physicochemical concepts, eg, log P.102,103 In this study, 

an attempt has been made to identify structural patterns 

within the AfroCancer and NPACT datasets, which may be 

related to toxicity of some of the compounds.

Of the 390 compounds within the AfroCancer dataset, 

1,330 tautomers were generated. A corresponding 5,357 

tautomers were also generated for the NPACT dataset. Pre-

dictions were carried out for all the tautomers. In some cases, 

the output “NOTHING TO REPORT” was recorded. This 

means that these compounds do not contain any toxicophores 

that are described in Derek’s current knowledge base. The 

proportion of tautomers with the NOTHING TO REPORT 

output was 5.93% for AfroCancer and 4.39% for NPACT. 

This could also imply that the models in DEREK may not 

be in the applicability domain of the compounds with the 

NOTHING TO REPORT output. The remaining compounds 

showed a number of toxicophores identified with a wide 

range of toxicity end points. The Derek Nexus prediction 

includes an overall conclusion about the likelihood of tox-

icity in a structure and detailed reasoning information for 

the likelihood (or confidence level). The confidence levels 

are classified as CERTAIN, PROBABLE, PLAUSIBLE, 

EQUIVOCAL, and DOUBTED, based on experimental 

evidence and computed physicochemical parameters. It 

is important to mention that an outcome “CERTAIN” 

indicates that the query compounds themselves (or very 

closely related analogs) have been tested and found to be 

active. A definition of these confidence levels is provided 

in Table S1. As an example, chromosome damage in vitro 

was predicted to be CERTAIN for two compounds from the 

AfroCancer dataset (Figure 8). The log P-value of both com-

pounds, imperatorin and bergapten (isolated from the stem 

of Balsamocitrus paniculata and the related Cameroonian 

rutaceae species),106,107 was computed to be 4.01, while the 

computed log K
p
 was -1.52. The coumarin imperatorin is 

an antimutagene,108 also known to exert antihypertrophic 

effect both in vitro and in vivo,109 as well as antimicrobial 

activities.107 Both imperatorin and bergapten are also known 

to be components of the apiaceous Bishop’s weed (Ammi 

majus), growing wild in Egypt and the Mediterranean (a plant 

used for the treatment of leucoderma and skin diseases).110 

Figure 7 Enrichment curves obtained by screening the database compounds 
consisting of the AfroCancer database (blue) and NPACT database (green), using 
the 4ACM pharmacophore query features.
Notes: Selection and rank ordering of the compounds in the database were performed 
using the pharmacophore fit scoring function implemented in LigandScout.58 
The AfroCancer performed better than the NPACT.
Abbreviation: NPACT, Naturally Occurring Plant-based Anticancer Compound-
Activity-Target.

Figure 8 Psoralen substructure responsible for chromosome damage predicted as CERTAIN for two compounds from the AfroCancer dataset.
Notes: (A) Imperatorin and (B) bergapten, isolated from the stem of Balsamocitrus paniculata harvested in Cameroon and related plant species.104,105 The toxicity end point 
was predicted by Derek to be CERTAIN. Thus, these compounds may rather be toxic, not necessarily exhibiting anticancer activities.
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The two coumarins activated the Derek alert for psoralen, 

which causes human chromosome damage in the in vitro 

chromosome aberration test.111 Experimental evidence sug-

gests that activity in the in vitro chromosome aberration test 

may be a result of their DNA intercalating properties. The 

noncovalent binding of psoralen and several derivatives 

between two base pairs of DNA has been demonstrated.112 

This mechanism is also supported by the weak mutagenic 

activity observed for several psoralen derivatives in the Ames 

test in Salmonella typhimurium strain TA1537,113 a strain that 

appears sensitive to other DNA intercalators.114,115

For the NPACT dataset, hepatotoxicity was predicted 

to be CERTAIN for one tautomer, ocular toxicity for two 

tautomers, and skin sensitization for six tautomers. The toxi-

cophores responsible for these outcomes will be discussed 

separately. A total of 22 and 32 end points gave predictions, 

ranging from CERTAIN to DOUBTED for the AfroCancer 

and NPACT datasets, respectively (Table 4). “DOUBTED” 

means Derek predicts this compound to be INACTIVE but 

is not very confident about the conclusion, maybe because 

of absence of further experimental evidence. A bar chart 

showing the distribution of the percentage of compounds per 

likelihood for each end point has been represented in Figure 9 

for both AfroCancer and NPACT datasets for chromosome 

damage in vitro, along with the totals. It was observed that the 

proportions of tautomers predicted with extreme likelihoods 

for the various toxicity end points (CERTAIN, PROBABLE, 

and DOUBTED) were relatively small when compared with 

the likelihoods PLAUSIBLE and EQUIVOCAL; eg, the bar 

charts in Figure 9A show that 8.5% and 9.4% of the gener-

ated tautomers were predicted as PLAUSIBLE for chromo-

some damage in vitro (an end point whose data are well 

distributed among the various aforementioned likelihoods) 

for the AfroCancer and NPACT datasets, respectively, when 

compared with equivalent percentages of 0.45% and 0.29% 

for the likelihoods CERTAIN, PROBABLE, and DOUBTED 

put together. Regarding the totals (Figure 9B), 93.6% of the 

generated tautomers were predicted as either PLAUSIBLE or 

EQUIVOCAL for all likelihoods of the AfroCancer dataset, 

with an equivalent 80.5% for the NPACT dataset. The Derek 

program uses the terms “CERTAIN”, “PROBABLE”, and 

“PLAUSIBLE” to express confidence in predictions based 

on criteria such that a record in the database reports the query 

itself to have been tested on the query species and found to 

be active, a record in the database reports the query itself to 

have been tested on a species related to the query species (but 

not on the species itself) and found to be active, and there are 

no relevant test results in the database but the query triggers 

at least one alert for activity and it is within the applicability 

domain for the model. The terms DOUBTED and IMPROB-

ABLE are not weak predictions of activity – they mean that 

there are clear reasons to predict inactivity. Predictions of 

PLAUSIBLE or EQUIVOCAL may also imply that either 

experimental evidence is not strong enough to demonstrate 

that such toxicity is CERTAIN or that there are both argu-

ments for and against such likelihood. Among the end points 

computed, the proportion of tautomers with predictions for 

skin sensitization was most pronounced, corresponding to 

47.2% of all predictions for the AfroCancer dataset and 

36.9% for the NPACT dataset. Our previous study had shown 

that the predicted maximum transdermal transport rates, 

J
m
 (in µcm-2⋅h-1), computed from the aqueous solubility (S

wat
) 

and skin permeability (K
p
) and MW using the relation 8:

	
J K S

m p wat
MW= × ×

	
(8)

indicated variations from 0 µcm-2⋅h-1 to 365 µcm-2⋅h-1, with 

only ~1.6% of the compounds in AfroCancer having the pre-

dicted value of J
m
 .100 µcm-2⋅h-1.32 However, 91.8% of the 

compounds were predicted to fall within the recommended 

range of the K
p
 parameter for .95% of known drugs. Skin 

sensitization studies may be relevant for molecules involved 

in drug discovery programs for skin cancers. Some of the end 

points may, however, be irrelevant for a study of anticancer 

agents. For example, potential eye irritation would not be of 

interest for an anticancer agent intended to be taken orally. 

A number of toxicophores responsible for the skin sensitiza-

tion predictions will be discussed separately. Whether the 

compounds within both datasets of naturally occurring poten-

tial anticancer agents would be suitable starting points for lead 

discovery against skin cancers would be subject to further 

(experimental) investigations. hERG channel inhibition 

in vitro was predicted as PLAUSIBLE for <2% of compounds 

from the AfroCancer, with a corresponding only 2.46% of 

the compounds from the NPACT. This parameter had given a 

compliance of 58.5% and 62.6% for the recommended range 

of .95% of known drugs in our previous study.32

Diversity of the AfroCancer and NPACT 
datasets 
In order to reduce redundancy and enhance the coverage of 

biological activity and chemical space, a dataset for virtual 

screening must have the requirement of diversity. PCA was 

used as a means of comparing the extent of diversity of the 

two datasets. This consists of reducing the dimensionality of 

the calculated descriptors by linearly transforming the data, 
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by calculating a new and smaller set of descriptors, which 

are uncorrelated and normalized. The PCA scatter plot of 

the previously calculated physicochemical properties of 

the AfroCancer (red) and NPACT dataset (blue), shown in 

Figure 10, is a visual representation of the molecules in the 

respective datasets, as described by the three best selected 

principal components (PCA1, PCA2, and PCA3). Each point 

shown corresponds to a molecule, with the spread of the 

points representing the diversity of the respective datasets. 

In this study, a comparison was carried out for the diversity 

of the two datasets, with the intention of examining the 

chemical spaces of the two datasets. From the 3D scatter 

plot of the three best principal components, obtained from 

the uncorrelated normalized descriptors (Figure  10), the 

regions close to the center of the cube contain some regions 

of intersection of chemical spaces of the two datasets. The 

larger number of outliers in the case of the NPACT dataset 

(away for the center and toward the left side of the cube) 

indicates a wider sampling of the chemical space, when 

compared with the AfroCancer collection. However, it 

stands out clear that the right side of the cube is dominated 

by components from the AfroCancer dataset, while the left 

side is dominated by components from the NPACT dataset. 

Overall, the NPACT occupies a wider region of chemical 

space than the AfroCancer. The first three PCAs could 

explain 89% (AfroCancer) and 87% (NPACT) of variance 

of the individual datasets. The MCSS panel for compound 

selection in the two datasets (Figure  11) is based on the 

substructures that can be synthetically combined and are com-

mon in “drug-like” molecules, allowing a direct selection and 

identification of compounds containing such substructures. 

The panel highlights the large diversity of the rings present 

in the NPs of both datasets, but a broad diversity is clearly 

seen in the MCSSs, apart from ethers, olefins, and carbonyl-

bonded aromatic esters, featuring among the most common 

fragments obtained in the two datasets.

Conclusion
Based on this study, three main objectives have been attained: 

pharmacophore models for virtual screening aimed at the 

identification of naturally occurring anticancer agents have 

been generated and validated, the toxicity of the components 

of two datasets containing naturally occurring potential anti-

cancer agents has been assessed in computer-based methods, 

and a diversity analysis of the two datasets has been carried 

out. This sets the stage for further identification and devel-

opment of high affinity compounds with potential activities 

against eight known anticancer drug targets, including tyrosine 

Figure 9 Bar charts showing the distribution of toxicity predictions per likelihood.
Notes: (A) Chromosome damage in vitro and (B) totals. In both cases, AfroCancer is in blue, while NPACT is in red. The bulk of the generated tautomers were predicted 
as either PLAUSIBLE or EQUIVOCAL for all likelihoods of both datasets.
Abbreviation: NPACT, Naturally Occurring Plant-based Anticancer Compound-Activity-Target.

Figure 10 A PCA plot showing the comparison of the chemical space defined by the 
NPs in the AfroCancer (red) datasets and the chemical space represented by NPs 
in the NPACT (cyan) datasets, with the first three principal components projected, 
respectively, in the x, y, and z directions of space.
Notes: The larger number of outliers in the case of the NPACT dataset (away from 
the center and toward the left side of the cube) indicates a wider sampling of the 
chemical space when compared with the AfroCancer collection.
Abbreviations: PCA, principal component analysis; NPs, natural products; 
Var, variance.
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Figure 11 MCSS panel in (A) AfroCancer and (B) NPACT, featuring the most common substructures included in the databases.
Abbreviations: MCSS, most common substructure selection; NPACT, Naturally Occurring Plant-based Anticancer Compound-Activity-Target.
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kinase, PKB β, cyclin-dependent kinase, protein farnesyltrans-

ferase, human protein kinase, glycogen synthase kinase, and 

indoleamine 2,3-dioxygenase 1. The advantage of this work 

is that both datasets evaluated are relatively small and easy to 

screen virtually, even using a laptop personal computer. After 

virtual screening runs using the established pharmacophore-

based models, a significant numbers of virtual “hits” have 

been identified from the datasets of both compounds. These 

could be further assayed using classical “wet lab” experiments. 

Moreover, predictions from Derek show that only a few of 

the compounds in both datasets could be potentially toxic to 

an extent that might make them unsuitable for investigation 

as potential cancer therapy. Diversity analysis using the three 

most important principal components of the computed physi-

cochemical properties of the compounds in the two datasets 

shows that the databases do not occupy the same chemical 

space. The two datasets therefore represent reasonable starting 

virtual libraries for the identification of naturally occurring 

plant-based anticancer lead compounds for drug discovery.
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