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Abstract: The present study was aimed to investigate the effects of guggulsterone (GS) on 

proinflammatory responses as well as the underlying molecular mechanisms in macrophage 

upon lipopolysaccharide (LPS) stimulation. Effects of GS on viability of Raw264.7 cells were 

examined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. 

Real-time polymerase chain reaction (PCR) was employed to examine the mRNA expression of 

cytokines, including interleukin 1β (IL-1β), tumor necrosis factor-alpha (TNF-α), and inducible 

nitric oxide synthase (iNOS). Phosphorylations of extracellular signal-regulated kinase (ERK), 

c-Jun N-terminal kinase (JNK), p38 mitogen-activated protein kinases (p38), and inhibitor of 

nuclear factor kappaB (IκB) were determined using immunoblotting. The results revealed that 

GS was not toxic to Raw264.7 cells at designated concentrations. We demonstrated that GS 

significantly suppressed the elevated mRNA expression of proinflammatory cytokines, includ-

ing IL-1β, TNF-α, and iNOS in a dose-dependent manner. GS treatment reduced the level of 

IκB phosphorylation in LPS-stimulated macrophages in a dose-dependent manner. Use of BAY 

11-7082, an inhibitor of nuclear factor-kappaB (NF-κB), led to significantly suppressing effects 

on IL-1β and TNF-α expression similar as that of GS-treated cells. Our findings suggest that 

GS possesses anti-inflammatory activity, which may be attributed to downregulation of iNOS 

and inhibition of NF-κB activity in LPS-stimulated Raw264.7 cells.
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Introduction
Inflammation is considered as a protective response against diverse pathogens or 

deteriorating stimuli. It is tightly regulated by an orchestra of cellular and soluble 

mediators. Inflammatory responses are initiated and propagated by cellular sensing 

systems such as toll-like receptor system (TLR) and production of inflammatory 

mediators such as inducible nitric oxide (NO), interleukin 1β (IL-1β), and tumor necrosis 

factor-alpha (TNF-α).1 These soluble mediators play crucial role in controlling inflam-

mation and tissue repair; however, aberrant production may exacerbate the damages.

Macrophages play a pivotal role in inflammatory process. Upon inflammation, 

these phagocytic cells are activated depending on stimuli and molecular pattern of 

recognition.2 Activation of macrophage through pattern recognition receptor such as 

TLR leads to the production of a variety of mediators, including NO, TNF-α, and 

IL-1β.3 Macrophage-derived NO is synthesized by inducible NO synthase (iNOS). 

Excessive production of NO contributes to the pathogenesis of chronic inflammatory 
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disorders.4,5 Additionally, TNF-α and IL-1β are produced 

in activated macrophages, in turn, to facilitate and amplify 

cytokines and chemokine production in chronic inflamma-

tory setting. Lipopolysaccharide (LPS), a component of 

Gram-negative bacteria cell wall, is known as the ligand 

of TLR4. Recognition of LPS by TLR4 in macrophages 

initiates downstream signaling pathways including nuclear 

factor-kappaB (NF-κB) complex and mitogen-activated 

protein kinases (MAPKs), such as p38 MAPKs (p38), c-Jun 

N-terminal kinase (JNK), and extracellular-signal regulated 

kinase (ERK).6,7 NF-κB is reported to play a critical role in 

acute and chronic inflammatory conditions. It is considered as 

a potential target for anti-inflammatory drug development.

Guggulsterone (GS) is a phytosterol that is found enriched 

in Commiphora mukul. It is reported as an antagonist of 

farnesoid X receptor and demonstrated hypolipidemic 

activity.8 GS has been demonstrated to exert a range of 

pharmacological activities, including antineoplastic, antioxi-

dation, antidiabetic, and cardioprotection.9–13 GS attenuates 

colitis in mice through inhibition of NF-κB activation.14,15 

Researches have shown that GS inhibits proliferation of tumor 

cells through induction of apoptosis and inhibition of NF-κB 

signaling pathway.16–18 It is of interest to determine the effects 

of GS on LPS-induced inflammation in lymphocytes.

In this study, we investigated the anti-inflammatory effects 

and the underlying mechanism of GS, in particular gene 

expression of iNOS, IL-1β, and TNF-α in LPS-stimulated 

Raw264.7 cells. We also examined the role of NF-κB in 

LPS-induced inflammatory response in macrophages.

Materials and methods
Cell culture
Murine macrophage-like cell line (Raw264.7) was obtained 

from ATCC and incubated in complete Dulbecco’s Modified 

Eagle’s Medium (DMEM; Thermo Fisher Scientific, 

Waltham, MA, USA) containing 0.1% sodium bicarbon-

ate, 2 mM glutamine, 100 U/mL penicillin G, streptomycin 

(100 μg/mL), and 10% fetal bovine serum (FBS) at 37°C. 

For GS treatments, Raw264.7 cells were seeded and incu-

bated overnight prior to the treatments. Cells were treated 

with GS (0, 1, 5, 10, and 25 μM) for 24 hours (cell viability 

assay), 2 hours (real-time polymerase chain reaction [PCR] 

analysis), and 4 hours (immunoblotting), respectively, 

with or without a subsequent exposure to 1 μg/mL LPS. 

GS samples were prepared and added to the culture medium 

at a final concentration of 0.1% (v/v) in dimethyl sulfoxide 

(DMSO). DMSO with a final concentration of 0.1% was 

used as blank control.

Cell viability
Raw264.7 cells were seeded and incubated overnight prior 

to the treatments and then was followed by a treatment with 

GS (0, 1, 5, 10, and 25 μM) for 24 hours. Cell viability was 

determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl 

tetrazolium bromide (MTT) assay. In brief, 10 μL of MTT 

solution (5 mg/mL in complete DMEM) was added to the 

medium followed by an incubation time of 4 hours at 37°C. 

Following aspiration of the medium, cells were lyzed with 

2-propanol which solubilized intracellular formazan. The 

optical density of formazan was measured using a microplate 

reader at a wavelength of 570 nm.

Real-time PCR
Raw264.7 cells were seeded at a concentration of 

1×106 cells/mL and incubated overnight prior to the treat-

ments. Cells were treated with GS (0, 1, 5, 10, and 25 μM) 

for 2 hours followed by an exposure to 1 μg/mL LPS for 2 

hours. Total RNA was isolated from each sample using RNA 

simple Total RNA Kit (Tiangen, BJ, People’s Republic of 

China) as per the instruction of manufacturer. The resulting 

RNA was used as a template for generating first-strand cDNA 

synthesis using ReverTra Ace Kit (Toyobo, Osaka, Japan). 

The sequences of primers used for reverse transcription 

PCR (RT-PCR) are shown in Table 1. RT-PCR experiments 

were carried out using real-time PCR Master Mix (Toyobo) 

in triplicates for each sample. The threshold cycle numbers 

Table 1 List of RT-PCR primers

Gene Forward primer Reverse primer

GAPDH 5′-TGACCACAGTCCATGCCATC-3′ 5′-GACGGACACATTGGGGGTAG-3′
IL-1β 5′-GCAACTGTTCCTGAACTCAACT-3′ 5′-ATCTTTTGGGGTCCGTCAACT-3′
TNF-α 5′-GACGTGGAACTGGCAGAAGAG-3′ 5′-TTGGTGGTTTGTGAGTGTGAG-3′
iNOS 5′-GTTCTCAGCCCAACAATACAAGA-3′ 5′-GTGGACGGGTCGATGTCAC-3′

Abbreviations: RT-PCR, reverse transcription polymerase chain reaction; GAPDH, glyceraldehyde 3-phosphate dehydrogenase; IL-1β, interleukin 1β; TNF-α, tumor 
necrosis factor-alpha; iNOS, inducible nitric oxide synthase.
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were determined based on the ΔΔCT relative value and the 

cycle number was normalized to that of glyceraldehyde 

3-phosphate dehydrogenase (GAPDH). The PCR products 

were examined and confirmed for the size using agarose gel 

electrophoresis.

Immunoblot assay
Raw264.7 cells were seeded at a concentration of 

1×106 cells/mL and incubated overnight prior to the treat-

ments. Cells were treated with GS (0, 1, 5, 10, and 25 μM) 

for 4 hours followed by an exposure to 1 μg/mL LPS for 

30  minutes. After treatments, cells were harvested and 

washed twice with ice-cold PBS, followed by lysis using 

RIPA buffer (Thermo Fischer Scientific, Waltham, MA, 

USA). The resulting lysates were subjected to centrifuga-

tion at 13,000 rpm for 10 minutes at 4°C. The supernatants 

were obtained and protein concentrations were measured 

using BCA protein assay kit (Pierce, Rockford, IL, USA). 

Thirty micrograms of protein was loaded in each lane and 

was subjected to 12.5% SDS-PAGE followed by a transfer 

onto a polyvinylidene difluoride (PVDF) membrane (EMD 

Millipore, Billerica, MA, USA). Resulting blots were 

incubated with 5% (w/v) skimmed milk in PBS followed 

by incubation with 1/1,000 dilution of antibodies against 

inhibitor of NF-κB (IκB), phosphorylated IκB (p-IκB), 

JNK, phosphorylated-JNK (p-JNK), p38, phosphory-

lated p38 (p-p38), ERK1/2, and phosphorylated ERK1/2 

(p-ERK1/2) (Cell Signaling Technologies, Danvers, MA, 

USA) as well as GAPDH (Santa Cruz Biotechnology Inc., 

Dallas, TX, USA). The antigen–antibody complexes were 

unveiled using 1/2,000 dilution of peroxidase-conjugated 

secondary antibodies (Abcam, Cambridge, UK) and a 

chemiluminescence substrate (EMD Millipore).

Statistical analyses
All the data were presented as mean ± standard deviation (SD) 

of triplicate experiments. A one-way analysis of variance 

(ANOVA) with a Duncan multiple-comparison test was 

utilized to determine statistical differences among the groups. 

P-values 0.05 were considered statistically significant.

Results
Effects of GS on cell viability of murine 
macrophage Raw264.7 cells
To determine the cytotoxic effects of GS, Raw264.7 cells were 

exposed to GS at serial concentrations (0, 1, 5, 10, and 25 μM) 

and determined for the viability using MTT assay. We found 

that GS exerted nontoxic effects on Raw264.7 cells at desig-

nated concentrations as high as 25 μM (data not shown).

GS inhibited LPS-induced mRNA 
expression of IL-1β, TNF-α, and iNOS 
in Raw264.7 cells
We next investigated whether treatment with GS alters the 

expression of proinflammatory cytokines in LPS-stimulated 

macrophage. mRNA expressions of IL-1β, TNF-α, and iNOS 

in LPS-treated Raw264.7 cells were determined using real-

time PCR. Results of real-time PCR analysis revealed that 

mRNA expressions of IL-1β, TNF-α, and iNOS in Raw264.7 

cells were significantly enhanced in the presence of LPS, and 

the elevated mRNA expressions were suppressed in response 

to GS pretreatment in a dose-dependent manner (Figure 1).

GS inhibited LPS-induced NF-κB pathway 
in Raw264.7 cells
It is evident that GS exerts its pharmacological effects 

through manipulating NF-κB pathway. Phosphorylation 

of IκB, NF-κB inhibitor, is concomitantly required with 

nuclear translocation of NF-κB. We hence investigated 

the effect of GS on LPS-induced phosphorylation of 

IκB in Raw264.7 macrophages. The results showed that 

Raw264.7 cells exhibited an increased phosphorylation 

of IκB in response to LPS stimulation (Figure 2A). The 

elevated IκB phosphorylation was inhibited by GS in a 

dose-dependent manner. Inhibition of NF-κB using BAY 

11-7082 (10  μM), a commercially available inhibitor of 

NF-κB, led to a significant decrease in the LPS-induced 

IL-1β expression, whereas GS showed comparatively less 

suppression effects (Figure 2B). GS treatment significantly 

decreased the expression of TNF-α in LPS-stimulated 

macrophages, while BAY 11-7082 also exerted similar 

inhibitory activity (Figure 2C).

Effects of GS on phosphorylation of 
ERK1/2, JNK, and p38 in LPS-stimulated 
Raw264.7 cells
Activation of ERK1/2, JNK, and p38 is suggested to be 

involved in excessive production of proinflammatory cytok-

ines in presence of LPS. We examined the effects of GS on 

phosphorylation of ERK1/2, JNK, and p38 in LPS-stimulated 

Raw264.7 cells. As shown in Figure 3, exposure to LPS led 

to significantly increased phosphorylation of ERK1/2, JNK, 

and p38 in Raw264.7 cells. Treatment of LPS-stimulated 

Raw264.7 cells with GS at 1, 2.5, 5, 10, 12.5, and 25 μM 
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concentrations resulted in no change in the levels of p-ERK1/2, 

p-JNK, and p-p38 in comparison to LPS alone.

Discussion
In the present study, we demonstrated that GS significantly 

suppressed elevated production of proinflammatory media-

tors in LPS-stimulated Raw264.7 cells. The GS-induced 

downregulation of chemokine expression was associated 

with inhibition of NF-kB activation induced by LPS in mac-

rophages. Moreover, GS had no effects on the LPS-induced 

phosphorylation of MAP kinase family members, including 

ERK1/2, JNK, and p38.

Macrophages are known to play a fundamentally 

critical role in the inflammatory response through 

producing a variety of mediators and proinflammatory 

cytokines depending on stimuli. A prolonged activation 

of macrophages results in a dysregulated inflammatory 

mediator production, leading to a vicious cycle of chronic 

inflammation.19 LPS is recognized by TLR4 in association 

with MD2 and CD14 in macrophages. LPS-induced 

activation of TLR4 signaling is known to trigger the 

release and mRNA accumulation of critical proinflamma-

tory cytokines, including IL-1β, TNF-α, and iNOS.20–22 

We showed that the upregulated mRNA expression of 

IL-1β, TNF-α, and iNOS in LPS-stimulated Raw264.7 

cells was abolished in the presence of GS. The finding is 

consistent with previous research in which GS suppresses 

the activation of transcription factor IRF3 induced by 

LPS.23 The LPS-induced activation of TLR4 leads to both 

early and late activation of NF-κB through MyD88- and 

TRIF-dependent signaling pathways, respectively.24,25 Our 

data showed that GS was unable to fully exert its inhibitory 

effects on TNF-α expression in LPS-stimulated Raw264.7 

cells. It is indicated that the inhibitory effect of GS in LPS-

stimulated macrophages might be attributed to a later step 

in the NF-κB activation cascade.

β α

Figure 1 GS suppressed mRNA expression of proinflammatory cytokines IL-1β, TNF-α, and iNOS in LPS-stimulated Raw264.7 cells. 
Notes: Cells were pretreated with GS at indicated concentrations (1, 2.5, 5, 10, 12.5, and 25 μM) for 2 hours, then cells were challenged with 1 µg/mL LPS for 2 hours. After 
treatments, the cells were lysed for mRNA extraction and gene expression level was analyzed by real-time PCR. mRNA expression of (A) IL-1β, (B)TNF-α, and (C) iNOS is 
presented. Data are shown as relative fold change after normalization to GAPDH and expressed as mean ± SD of the three independent experiments. *P0.05 as compared 
to LPS alone. **P,0.01 as compared to LPS alone. ***P,0.001 as compared to LPS alone.
Abbreviations: GS, guggulsterone; IL-1β, interleukin 1β; TNF-α, tumor necrosis factor-alpha; iNOS, inducible nitric oxide synthase; LPS, lipopolysaccharide; PCR, polymerase 
chain reaction; GAPDH, glyceraldehyde 3-phosphate dehydrogenase; SD, standard deviation.
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NF-κB is a ubiquitous transcription factor, which has 

a central role in LPS-induced inflammatory responses. In 

resting macrophages, NF-κB is inactive and sequestered 

in the cytoplasm through binding with IκB. Interaction of 

LPS with TLR4 leads to the activation of NF-κB through 

phosphorylation and degradation of IκB, followed by nuclear 

translocation of NF-κB.26 Phosphorylation of IκB is catalyzed 

by IκB kinase (IKK) complex. We found that LPS induced a 

significantly increased level of p-IκB in the Raw264.7 cells, 

which was restored by GS treatment. Corresponding to the 

changes in IκB phosphorylation, LPS-induced elevation of 

IL-1β and TNF-α mRNA expression was reduced in response 

to GS treatment. These data suggest that GS exerts anti-inflam-

matory activity through inhibition of NF-κB activation. Use of 

IκB inhibitor, BAY 11-7082, which blocks phosphorylation of 

IκB, resulted in a relatively low expression of IL-1β compared 

with that of GS-treated cells, whereas GS and BAY 11-7082 

shared similar suppression effects on TNF-α expression. It 

is known that LPS induces biphasic activation of NF-κB.26 

LPS-induced early NF-κB activity initiates production of 

proinflammatory cytokines such as TNF-α and IL-1β, which 

in turn induce the late NF-κB activation.26,27 Our results sug-

gest that GS suppressed LPS-induced inflammatory response 

through interfering with late NF-κB activation.

MAPK signaling pathway has been reported to be 

involved in the regulation of proinflammatory cytokine 

expression in activated macrophages. In the presence of 

LPS, signal transduction is initiated with the formation of 

LPS/TLR/MD2 complex, leading to activation of MAPK 

α

κ

κ

β

Figure 2 GS inhibited LPS-induced NF-κB pathway in Raw264.7 cells.
Notes: (A) Cells were incubated with GS at indicated concentrations (1, 2.5, 5, 10, 12.5, and 25 μM) for 4 hours and then stimulated with 1 µg/mL LPS for 30 minutes. 
After treatments, phosphorylation of IκB was demonstrated by immunoblot. Level of GAPDH was used as control. mRNA expression of (B) IL-1β and (C) TNF-α relative 
to GAPDH is presented. GS and BAY 11-7082 inhibited proinflammatory cytokines mRNA expression in LPS-stimulated Raw264.7 cells through interfering with NF-κB 
activation. Data are shown as relative fold change after normalization to GAPDH and expressed as mean ± SD of the three independent experiments. *P0.05 as compared 
to LPS alone.
Abbreviations: GS, guggulsterone; NF-κB, nuclear factor-kappaB; LPS, lipopolysaccharide; GAPDH, glyceraldehyde 3-phosphate dehydrogenase; IL-1β, interleukin 1β; 
TNF-α, tumor necrosis factor-alpha; SD, standard deviation.

Figure 3 Effect of GS on phosphorylation of ERK1/2, JNK, and p38 in LPS-stimulated 
Raw264.7 cells.
Notes: Cells were incubated with GS at indicated concentrations (1, 2.5, 5, 10, 
12.5, and 25 μM) for 4 hours and then stimulated with 1 µg/mL LPS for 30 minutes. 
After treatments, the cells were lysed for protein extraction. Phosphorylation of 
indicated kinases was demonstrated by immunoblot using specific antibodies and 
chemiluminescence development. Level of GAPDH was used as control.
Abbreviations: GS, guggulsterone; ERK, extracellular signal-related kinase; 
JNK, c-Jun N-terminal kinase; p38, p38 mitogen-activated protein kinase; 
LPS, lipopolysaccharide; GAPDH, glyceraldehyde 3-phosphate dehydrogenase.
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pathway cascade.7,28 Researches have shown that p38 MAPK 

pathway is associated with expression of TNF-α, IL-1β, 

IL-6, and IL-8.29–31 In our study, ERK1/2, JNK, and p38 were 

activated in LPS-stimulated Raw264.7 cells in parallel with 

elevated expression of proinflammatory cytokines. GS treat-

ment showed no alteration in levels of p-ERK, p-JNK, or 

p-p38, but increased expression of cytokines was abolished. 

It is suggested that anti-inflammatory property of GS is not 

mediated by ERK, JNK, or p38 MAPK pathways in part.

Conclusion
In conclusion, we provide evidence highlighting the immu-

nomodulatory activity of GS via the suppression of NF-κB 

activation but not ERK, JNK, or p38 MAPK pathways in 

LPS-treated Raw264.7 cells. Our results are expected to 

contribute to the understanding of mechanism of regulating 

chronic inflammation, such as sepsis, by using a natural 

plant component.
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